
Introduction and Overview
AMPlayer is a module for playing Audio MPEG data through the computers
sound output, or to a streaming destination. Where sound is to be output, it
will select the 8 or 16 bit output depending on the normal configuration
(and availability).

The module has been designed so it is easy to make other frontends, or add
support for the module to existing player-frontends.

The AMPlayer module supports MPEG version 1, 2 and 2.5, for layers I, II
and III. Mixed data may be safely used with the module. The AMPlayer is
resilient when faced with corrupt data, and will skip unknown data in a safe
manner. Streams of data may contain ID3v2 tags, and may be terminated by
ID3v1.1 tags. ID3v2 footers are skipped and not parsed.

AMPlayer

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Terminology
MPEG audio data is used as a generic term, covering MPEG 1/2/2.5 audio
data, using layers I, II, or III.

The term VBR is used to mean 'Variable Bit-Rate'. VBR data is data which
contains non-constant bitrate through the track. It is still assumed that the
MPEG version and layer remain constant.

Terminology

2

Technical Details
In order to play MPEG audio data, AMPlayer processes data in the
background using callbacks. This allows the module to continue in, and out
of the desktop with no supervision from any other component.

MPEMPEG daG data input meta input methodsthods

MPEG audio data can come from either a file, or from a data stream. When
operating in both of these modes, the functionality of AMPlayer is similar.

File plaFile playbackyback

During file playback, the AMPlayer module continually takes data from the
file as it needs it. File data is buffered by the module.

File playback will initially read the ID3v1.1 tags from the file if present, and
store these for later retrieval by front ends. During playback, ID3v2 tags will
be processed (if enabled) and services issued announcing their arrival.

SStrtreaming plaeaming playbackyback

When streaming, an application must feed data to AMPlayer in a timely
fashion. Data is supplied to a ring of buffers which are drained individually
by the AMPlayer module. As each buffer is emptied it is the job of the
streaming application to provide further data or to close the stream.

The player will take data from buffers supplied by the streaming
application in the order given. When the end of a buffer is reached, the
player will continue seamlessly to the next buffer. There is no necessity to
provide frame-aligned data to the buffers. Where frames straddle the buffer
end, it may be necessary for the player to retain the buffer until the frame
can be processed. Because of this streaming application must supply at least
two buffers and at least 2000 bytes in total for streaming playback. When a
buffer is no longer required, a service will be issued to inform the streaming
application.

Metadata can be supplied to the AMPlayer module during streaming. This
data will be inserted in-line with the stream and made available at the point
at which it is played. This data is incompatible with ID3v1.1 data, and with
ID3v2 data. During playback, ID3v1.1 and ID3v2 tags are skipped. ID3v2
tags larger than the total size of the ring of buffers will cause the player to

AMPlayer

3

stall.

File output meFile output methodsthods

AMPlayer is able to output to a number of different destinations. Where the
destination is the physical sound system (8bit, 16bit or SharedSound), the
interface to the module is unchanged.

8 bit sound output8 bit sound output

All sound output is generated as 16bit-stereo data. When only the 8bit
sound system is available, a lookup table will be used by the output code to
generate the correct logarithmic output. This will result in a slight
degradation in quality, but only to the level of the system accuracy. The
overall frequency of the sound system will track that of the sound being
generated to the limits of the sound system itself. This may result in further
inaccuracies.

Because AMPlayer takes over the entire sound system to handle its output,
no other sounds (for example, the system beep) will be heard in this mode.

16 bit sound output16 bit sound output

Where 16 bit sound is available, but SharedSound support is not, the
standard 16 bit sound drivers will be used. The overall frequency of the
sound system will track the sound being output to the limits that it is
capable.

In this mode, AMPlayer uses the entire 16 bit sound system. As a
consequence, no other sound will be generated whilst AMPlayer is playing.

SharSharedSound outputedSound output

Where the SharedSound module is available, it will be used by the AMPlayer
module. When playing through the SharedSound module, the frequency of
the sound system is unaffected by playback. In this mode, the sound most
closely matches that which would be generated within the limits of the
sound system and its configuration. Importantly, if the overall sound
system frequency is configured lower than any of the clients of
SharedSound, the output quality will suffer.

Sound from other sources is unaffected by AMPlayer playback, allowing
other clients to share the sound system.

Technical Details

4

SStrtreaming outputeaming output

AMPlayer can be used to stream generated sound data to any other
destination through the use of the streaming output interface. In this mode,
the sound system is totally unaffected by processing performed by the
module. The streaming interface can obtain the frequency at which the data
being read should be played through this interface.

Multiple instanMultiple instantiatiationtion

AMPlayer is able to function as a decoder for multiple clients. It achieves
this by multiple instantiation of the AMPlayer module. The SWI SWI
AMPlayer_Instance (on page 73) manages the instances for clients such that
it is not necessary for every client to duplicate the same code.

In addition to this, all AMPlayer SWIs may have bit 31 of their flags set to
indicate that the operation should be directed to the instance of the
AMPlayer module held in R8. This allows background processes to
communicate with just the instance to which they are interested. When
services are issued to notify clients of events from the decoder, R8 will be
set to the instance handle that generated the service.

If a SWI is not directed at a particular instance, then the currently preferred
instance will deal with the request.

User front ends

Front end applications which are controlled by the user, queue tracks, or
just monitor the state of the player should only communicate with the base
instance of AMPlayer. This allows them to function with any number of
other concurrent utilities.

Under most circumstances it is advisable that front ends not worry about
the existance of multiple instances and merely communicate with the
currently preferred instance. This allows for the greatest flexibility with
clients selecting alternative instances as the private for control if necessary

Plugins

Plugins should be aware of the existance of plugins, and only register
themselves with the base instance unless explicitly requested otherwise.
Because of their nature, plugins are only really suitable for the base
instance, or a secondary instance which is being mixed with the base.

AMPlayer

5

* Commands

*Commands will always be issued to the currently 'preferred' instance. In
general this will be the base, but under specialised circumstances another
instance may be preferred. The AMPlayer module itself will retain the
current preferred instance through all operations, and therefore the only
mechanism by which another AMPlayer instance may be the preferred is by
explicitly issuing the relevant OS_Module, or by issuing a * Command
directly to an instance.

DDaata structurta structureses

In order to communicate with AMPlayer, a number of data structures are
required. These provide information about the streams being processed.

File Information Block

The File Information Block provides information about the file currently
being played.

Technical Details

6

OOffsetffset RRequiredequired
flagsflags

ContentsContents

+0 none flags :
Bit(s)Bit(s) MeaningMeaning

0 Total time valid

1 Elapsed time valid

2 ID3 tag info pointers valid

3 VU values valid

4 Error message pointer valid

5 Next filename pointer valid

6 File uses variable bit rate, high and low rates
valid

7 ID3v1.1 track valid

8 Data comes from stream

9-31 Reserved, must be zero

+4 none buffer usage ratio in % (*)

+8 bit 0 projected total time in cs

+12 bit 1 time elapsed in cs

+16 bit 2 pointer to ID3 song title

+20 bit 2 pointer to ID3 artist

+24 bit 2 pointer to ID3 album name

+28 bit 2 pointer to ID3 year string

+32 bit 2 pointer to ID3 comment

+36 bit 3 left channel VU

+40 bit 3 right channel VU

+44 none main volume (0..127) (*)

+48 bit 4 pointer to most recent error/warning message, or 0 if
no message is pending

+52 bit 5 pointer to filename of the "next" file, or 0 if no file
currently queued

+56 bit 2 ID3v1 genre (a number)

+60 bit 2+7 ID3v1.1 track (a number), or 0 if not specified

+64 bit 6 lowest bitrate used

+68 bit 6 highest bitrate used

Fields marked with (*) are not valid when returned from an
AMPlayer_FileInfo call.

AMPlayer

7

PrProjectojected ted tootal timetal time

The projected total time for the track is based on the bitrate used by the file
so far (unless supplied in another manner). It is assumed that the bitrate
remains constant for this calculation. The total time given will be wrong if :

● the file size is unknown, e.g. if playing a stream
● the frame type will later change in a way that alters the number of

bytes per frame (eg change in bit rate)
● the data is partially corrupt or contains skippable data (ID3v2 tags,

rogue unsynchronised data, etc)

None of the above exceptions are true in the vast majority of MPEG files.
The first case is determined by the module, and bit 0 of the flags will be
clear. The second case cannot be known in advance, and it will also affect
the elapsed time. No matter what happens, the time will always move
forward, it just might not be counting centiseconds in these cases.

Within VBR files generated by the Xing encoder (or applying a Xing
compatible header) the total time will be calculated from the header. If the
file has been truncated, this time will be estimated based on the information
in the header.

ID3v1 genrID3v1 genre ve valuesalues

ID3v1 genre values are defined elsewhere. See http://www.id3.org for more
details.

ID3v1.1 trID3v1.1 track numbersack numbers

ID3v1.1 is an extension to ID3 which, if present, declares the track number
within an album.

VU-vVU-var var valuesalues

When the VU level is available, it is a number between 0 and 255. The value
is from -42 to 0 dB, in 1/6th dB steps. The level is the peak of the average
level since last calling this SWI.

BitrBitraatte ve valuesalues

Where VBR Audio MPEG data is being processed, the high and low bitrate
values are used to indicate the current known limits of the data.

Technical Details

8

Frame Information Block

The Frame Information Block provides information about the most recent
frame processed.

OOffsetffset ContentsContents

+0 MPEG version as 3 ASCII chars and a 0 terminator, e.g. "2.0"

+4 layer type (1..3). 0 is unknown layer

+8 sampling frequency in Hz

+12 bitrate in kbit/sec

+16 mode :
ModeMode MeaningMeaning

0 Stereo

1 Joint-stereo

2 Dual channel

3 Single channel

+20 number of channels

+24 frame flags :
Bit(s)Bit(s) MeaningMeaning

0 Copyright

1 Original

2 CRC

+28 pointer to left channel DCT array (*)

+32 pointer to right channel DCT array (*)

Fields marked with (*) are not valid when returned from an
AMPlayer_FileInfo call.

Plugin Information Block

The Plugin Information Block is used when registering and enumerating
plugins present.

OOffsetffset ContentsContents

+0 Filter name, padded with 0's (16 chars)

+16 Filter author, padded with 0's (32 chars)

+48 Filter version, padded with 0's (8 chars)

AMPlayer

9

IDTag Information block

The IDTag Information Block is passed to the service handlers for ID3v2
processing. It provides information on the overall structure of the ID3v2
tag.

OOffsetffset ContentsContents

+0 Version of original tag data (major * 256 + minor)

+4 Header flags :
Bit(s)Bit(s) NameName MeaningMeaning

7 HEADERF_UNSYNCHRONISED Data was
unsynchronised

6 HEADERF_EXTENDEDHEADER Extended header was
present (ignored at
present)

5 HEADERF_EXPERIMENTAL Tag is experimental
(should never be seen
by decoder)

4 HEADERF_FOOTER Footer was included
(has been ignored)

other reserved, must be 0

IDFrame Information block

The IDFrame Information Block is passed to the service handlers for ID3v2
processing. It provides information on the specific ID3v2 frame being
processed.

Technical Details

10

OOffsetffset ContentsContents

+0 frame number (within this tag)

+4 frame name (0 terminated)

+12 flags for this frame :
Bit(s)Bit(s) NameName MeaningMeaning

0 FRAMEF_HASLENGTH Length field was given

1 FRAMEF_UNSYNCHRONISED Frame was
unsynchronised

2 FRAMEF_ENCRYPTED Frame was encrypted (N/
I)

3 FRAMEF_COMPRESSED Frame was compressed

6 FRAMEF_GROUP Frame is one of a group

12 FRAMEF_READONLY Frame should not be
edited

13 FRAMEF_FILEDISCARD Discard frame if file
changed

14 FRAMEF_TAGDISCARD Discard frame if tag
changed

other reserved, must be 0

+16 Pointer to frame data (decompressed, de-unsynchronised)

+20 Frame data length

+24 Encryption type, or -1 if not given

+28 Compressed length, or -1 if not compressed

+32 Frame group, or -1 if not given

Flags will be promoted to those used by ID3v2.4, if they are of a lower
version than that.

Frame data will be terminated by a 0 (not included in the length) for ease of
decoding text fields.

AMPlayer

11

System variables

AMPlayer$Buffer$*
Default AMPlayer output buffer sizes

UUsese

When starting playback, AMPlayer checks the file being played against the
variable AMPlayer$Buffer$<part path>, where <part path> is the
longest component of the path name which is set as a system variable. For
example, if you were to play ADFS::Music.$.Lennon.Imagine and had
the system variables AMPlayer$Buffer$ and AMPlayer$Buffer$ADFS
set, the latter would be used in preference to the former.

The value given is used to determine the number of 'blocks' of output data
that will be buffered in the 'Antishock buffer'. The larger this buffer is, the
longer the system can be busy before playback ceases. Larger buffers have a
greater initial load on the machine as more data is decoded to fill the buffer
when the first file is played.

A 'block' is an arbitrary size, currently around 4.5K. The reason for
supplying a buffering value in blocks is to provide a more robust means of
storing the buffering size. If in future the block size changes, the amount of
time that that buffer corresponds to will remain constant (for a given
frequency of data).

In the case of streams, the variable AMPlayer$Buffer$Stream will be used
to determine the initial output buffer size.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 1 (on page 39)

System variables

12

AMPlayer$FileBuffer
Input file buffer size

UUsese

When starting playback, AMPlayer allocates a buffer for data from the file.
Whereas AMPlayer$Buffer$* determines the output buffer size,
AMPlayer$FileBuffer determines the input buffer size. If you are
accessing files on a filing system which has a slow start up time, (for
example networks or CDs) you may wish to set this higher value than the
default.

The value this variable is set to is in Kilobytes. Unlike the output buffer, the
input cannot be measured in blocks because that would require knowing in
advance the data contained in the blocks.

For Streams AMPlayer$FileBuffer has no meaning and is not used.

AMPlayer

13

AMPlayer$Volume
Volume level to use when AMPlayer starts

UUsese

When AMPlayer initialises, it reads AMPlayer$Volume to determine the
initial volume. This is a linear volume level, with a maximum at 127, a
minimum at 0, and a default level of 112.

Whenever the volume level is changed in the base instance, this system
variable is updated to reflect this. When an instance starts (in the same
manner as the base AMPlayer instantiation intialising), it reads the state of
AMPlayer$Volume and sets its volume to that specified. The result of this is
that at any time that an instance is created it starts with the same volume
level as the base instance. Should an instance wish to control the volume
level of its instance, it should do so with care and pay attention to the initial
volume level where appropriate. For example, if the user is playing their
base instance at a volume level of 12, they will not wish to have a new
instance playing at 112 unless they specifically requested it.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 1 (on page 39)

System variables

14

AMPlayer$DecimationThreshold
Select decimation threshold to use when AMPlayer starts

UUsese

When AMPlayer initialises, it reads AMPlayer$DecimationThreshold to
determine the initial decimation threshold. This threshold is used to
determine during playback whether decimation of input data is used to
provide output data.

Whenever the decimation threshold is changed in the base instance, this
system variable is updated to reflect this. When an instance starts (in the
same manner as the base AMPlayer instantiation intialising), it reads the
state of AMPlayer$DecimationThreshold and sets its threshold to that
specified. The result of this is that at any time that an instance is created it
starts with the same threshold as the base instance.

When decimating input data, the upper half of the frequency data is
discarded, resulting in a frequency of half that normally required for the
input data. This reduces the processing required by the data, and therefore
reduces the load that AMPlayer places on the system. This speed increase is
to the detriment of the quality of the output data.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 5 (on page 51)

AMPlayer

15

Service calls

Service_AMPlayer
(Service Call &52E00)

Events issued by AMPlayer

OOn enn entrytry
R0 = reason code :

RReasoneason MeaningMeaning

0 AMPlayer module is initialising (on page 17)

0 AMPlayer module is initialising (on page 17)

1 AMPlayer module is dying (on page 18)

2 Playback is about to start (on page 19)

3 Playback has stopped (on page 20)

4 Playback has moved on to another track (on page 21)

5 ID3v2 tag has been found (on page 22)

6 One or more buffers previously passed to an
AMPlayer have been marked as free (on page 23)

R1 = service call number
R2 - RR7 = dependant on reason code

R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer is issued by the AMPlayer module to inform clients of a
change in state, or other information about playback. Consult the individual
reason codes for more details.

RRelaelatted APIed APIss
None

Service calls

16

Service_AMPlayer 0
Initialising

(Service Call &52E00)
AMPlayer module is initialising

OOn enn entrytry
R0 = reason code
R1 = service call number
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 0 is issued by the AMPlayer module when it initialises.
Clients wishing to add plugins to the output of the module should register
themselves.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Plugin (on page 53)

AMPlayer

17

Service_AMPlayer 1
Dying

(Service Call &52E00)
AMPlayer module is dying

OOn enn entrytry
R0 = reason code
R1 = service call number
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 1 is issued by the AMPlayer module (or an instance of
AMPlayer) when it is killed. Clients wishing to only run during the lifetime
of AMPlayer should either become dormant or terminate.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Instance 2 (on page 79)

Service calls

18

Service_AMPlayer 2
Start

(Service Call &52E00)
Playback is about to start

OOn enn entrytry
R0 = reason code
R1 = service call number
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 2 is issued by the AMPlayer module when it is about to
stat playing a track. Clients wishing to monitor the progress of the track in
the background, or to schedule new tracks may wish to watch for this
service.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)

AMPlayer

19

Service_AMPlayer 3
Stop

(Service Call &52E00)
Playback has stopped

OOn enn entrytry
R0 = reason code
R1 = service call number
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 3 is issued by the AMPlayer module when it has stopped
playing and moved to state 'Dormant'.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Stop (on page 26)

Service calls

20

Service_AMPlayer 4
Change

(Service Call &52E00)
Playback has moved on to another track

OOn enn entrytry
R0 = reason code
R1 = service call number
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 4 is issued by the AMPlayer module when it has changed
to playing the next track queued. Clients wishing to track the file being
played should watch for this service.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)

AMPlayer

21

Service_AMPlayer 5
ID3v2

(Service Call &52E00)
ID3v2 tag has been found

OOn enn entrytry
R0 = reason code
R1 = service call number
R2 = pointer to IDTag Information Block
R3 = pointer to IDFrame Information Block
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 5 is issued by the AMPlayer module during playback,
when an ID3v2 tag has been encountered. Clients wishing to process ID3v2
as they arrive should watch for this service.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 3 (on page 43)

Service calls

22

Service_AMPlayer 6
StreamBuffersAvailable

(Service Call &52E00)
One or more buffers previously passed to an AMPlayer have been marked
as free

OOn enn entrytry
R0 = reason code
R1 = service call number
R2 = stream handle
R3 = flag word (currently 0)
R8 = instance handle of issuing instance, or 0 for the base

OOn en exitxit
R1 preserved

UUsese

Service_AMPlayer 6 is issued by the AMPlayer module during playback
from an AMPlayer stream for which service call reporting was requested at
creation time when one or more blocks previously passed to that stream
have been marked as being freed. Clients wishing to be informed when their
blocks are no longer being held by the module should watch for this service.

RRelaelatted Sed SWIWIss
SWI AMPlayer_StreamOpen (on page 57)

AMPlayer

23

SWI calls

AMPlayer_Play
(SWI &52E00)

Plays or queues a file

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) NameName MeaningMeaning

0 Queue Places the named file in the queue of tracks to play.
If there is no file currently playing, the behaviour
is exactly as if bit 0 were clear.

1 Cue Starts the named file immediately, but paused at
the first frame. Use SWI AMPlayer_Pause (on page
28) to start playback.

2 Transient Creates a new instance, sets the volume level,
marks the instance as transient, and starts the
named file within that instance.

3-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call
should be directed.

R1 = pointer to filename
R2 = if bit 2 of R0 set:

volume level to set, or -1 for default
R3 = if bit 2 of R0 set:

pointer to instance name, or 0 to name automatically
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = if bit 2 of R0 set:

handle of created instance

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

SWI calls

24

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to play or queue a file for playback. When starting play
transiently, the current play is unchaged and only the new instance is
affected.

RRelaelatted * ced * commandsommands
*AMPlay (on page 89)

RRelaelatted Sed SWIWIss
SWI AMPlayer_Stop (on page 26)
SWI AMPlayer_Pause (on page 28)
SWI AMPlayer_Instance (on page 73)
SWI AMPlayer_Control 4 (on page 49)

AMPlayer

25

AMPlayer_Stop
(SWI &52E01)

Stops playback

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) NameName MeaningMeaning

0 Cut Playback continues with the queued file if any. If no
file is queued, playback will stop.

1-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call
should be directed.

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to stop playback, or start the skip to the queued file.

RRelaelatted * ced * commandsommands
*AMStop (on page 90)

SWI calls

26

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)
SWI AMPlayer_Pause (on page 28)

AMPlayer

27

AMPlayer_Pause
(SWI &52E02)

Pauses playback

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) NameName MeaningMeaning

0 Resume Resumes playback.

1-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call
should be directed.

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to pause or resume playback. When paused, decoding to
the output buffer continues, but at a much reduced rate. There is no sound
output.

Pause mode may also be cancelled by stopping. If SWI AMPlayer_Stop (on
page 26) is used to cut to the next file, or if a different file is started, pause
mode will continue to be in effect, freezing the new file at the start of the

SWI calls

28

file. This can be used to ensure that playback starts at the instant of calling
AMPlayer_Pause (as opposed to calling SWI AMPlayer_Play (on page 24),
which can have a delay while opening the file etc).

RRelaelatted * ced * commandsommands
*AMPause (on page 88)

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)
SWI AMPlayer_Stop (on page 26)

AMPlayer

29

AMPlayer_Locate
(SWI &52E03)

Locates a position in the playback

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = target time in centi-seconds
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI locates the position of the target time, and continues playback (or
pausing) from there. This has no effect unless the status is either Playing,
Locating or Paused. This may take some time, and the playback buffer may
empty (which will mute the sound).

The time given here corresponds to the elapsed time returned from SWI
AMPlayer_Info (on page 32). This is true even when the elapsed time is

SWI calls

30

wrong. So when, at time X, the Info call returns the wrong time Y, giving
time Y to this call will still start playing at the right time X.

Playback can only start on a frame boundary, so the resolution of the start
point is around 2 cs (for 128kbit/sec, 44.1kHz frames).

RRelaelatted * ced * commandsommands
*AMLocate (on page 87)

AMPlayer

31

AMPlayer_Info
(SWI &52E04)

Return information on the state of playback

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

SWI calls

32

OOn en exitxit
R0 = Player status :

StateState Meaning and registersMeaning and registers

0 Dormant
R1 - R4 preserved

1 Starting
R1 = pointer to filename
R2 - R4 preserved

2 Locating
R1 = pointer to filename
R2 = pointer to File Information Block (on page 6), or 0 if not
set up yet
R3 = pointer to Frame Information Block (on page 9), or 0 if
not set up yet
R4 = target time

3 Playing
R1 = pointer to filename
R2 = pointer to File Information Block (on page 6), or 0 if not
set up yet
R3 = pointer to Frame Information Block (on page 9), or 0 if
not set up yet
R4 preserved

4 Pausing
R1 = pointer to filename
R2 = pointer to File Information Block (on page 6), or 0 if not
set up yet
R3 = pointer to Frame Information Block (on page 9), or 0 if
not set up yet
R4 preserved

5 Stopping
R1 = pointer to filename
R2 - R4 preserved

6 Changing
R1 = pointer to filename
R2 - R4 preserved

7 Cueing
R1 = pointer to filename
R2 - R4 preserved

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

AMPlayer

33

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call will return information about the current state of the player.

When locating, the current time can be read from the file info block, as it
moves toward the target time returned in R4.

This call might be made from BASIC with :

SYS "AMPlayer_Info",,"" TO ,Filename$,FIB%

This will set Filename$ to either "" or the filename. Similarily, FIB% will be 0
if there is no info at this stage, or a pointer to it if there is.

There is a brief period when the status might be returned as Locating (2) or
Playing (3), but where there is no valid FIB or FRIB, because the first frame
has yet to be read.

RRelaelatted * ced * commandsommands
*AMInfo (on page 86)

RRelaelatted Sed SWIWIss
SWI AMPlayer_FileInfo (on page 55)

SWI calls

34

AMPlayer_Control
(SWI &52E05)

Configure the operation of the player

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 reason code :
RReasoneason ConfigurationConfiguration

0 Read or write the volume level (on page 37)

1 Read or write the output buffer size (on page 39)

2 Set SVC stack check level (on page 41)

3 Control the ID3v2 tag processing facilities (on page
43)

4 Read or write the 'transience' flag (on page 49)

5 Read or write the decimation threshold (on page
51)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

AMPlayer

35

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to configure various aspects of the AMPlayer module's
operation.

RRelaelatted APIed APIss
None

SWI calls

36

AMPlayer_Control 0
Volume

(SWI &52E05)
Read or write the volume level

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 0 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = new volume level (0-127), or -1 to read current level
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = old volume level

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to read or write the main volume level of the player.

AMPlayer

37

RRelaelatted * ced * commandsommands
*AMVolume (on page 91)

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control (on page 35)

RRelaelatted sed syyststem vem variablesariables
AMPlayer$Volume (on page 14)

SWI calls

38

AMPlayer_Control 1
BufferSize

(SWI &52E05)
Read or write the output buffer size

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 1 (reason code)

8 Use blocks, rather than bytes

9-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = new buffer size in bytes or blocks, or -1 to read current size
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = old size in bytes or blocks

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

39

UUsese

This control call is used to read or write the size of the audio buffer used by
AMPlayer to store decoded data. The size can be specified in bytes or in
blocks. It is recommended that you use the blocks size to be compatible
with the system variable usage, and to ensure that similar amounts of data
are buffered in future.

If the buffer isn't currently created, this controls how large it will be when it
eventually is. If it exists, OS_ChangeDynamicArea is used to change the size.
This may fail with an error, even if some of the job was done (this can
happen when reducing the size, as the amount that can be released depends
on what is currently being played). This effect is greatly reduced in
AMPlayer 1.29 and later.

If it succeeds, the sound may be broken up slightly. On versions of
AMPlayer prior to 1.29, this will always cause at least one 'jump' in the
playback.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control (on page 35)

RRelaelatted sed syyststem vem variablesariables
AMPlayer$Buffer$* (on page 12)

SWI calls

40

AMPlayer_Control 2
StackSize

(SWI &52E05)
Set SVC stack check level

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 2 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = new level (in words), or 0 for default
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = old level

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI call is used to set the stack check level used when a callback
occurs

When receiving a callback, the SVC stack depth is checked to see if the

AMPlayer

41

kernel is reasonably unthreaded. By using this call, you can control what is
considered "reasonable". The default value is currently 64, i.e. if there are
more than 64 words on the stack by the time of the callback, a new callback
will be registered later instead. Setting this too low will cause the player to
stall, and you can only stop it by killing the module (or putting the level
back up).

It is not expected that users of the AMPlayer API will need to use this SWI.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control (on page 35)

SWI calls

42

AMPlayer_Control 3
ID3v2Control

(SWI &52E05)
Control the ID3v2 tag processing facilities

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 3 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = sub-reason code :
Sub-reasonSub-reason MeaningMeaning

0 Enable or disable ID3v2 processing (on page 45)

1 Select ID3v2 frame filtering (on page 47)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = old level

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

43

UUsese

This control call is used to control ID3v2 processing within the player.

ID3v2 processing is quite intensive and can have a performance hit,
especially when compressed frames are used.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 3 (on page 43)

SWI calls

44

AMPlayer_Control 3, 0
ID3v2State

(SWI &52E05)
Enable or disable ID3v2 processing

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 3 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 0 (sub-reason code)
R2 = type of change :

TTypeype MeaningMeaning

0 disable

1 enable

-1 read current state
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R2 = enable count, or 0 if disabled

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

45

UUsese

This SWI is used to enable or disable the processing of ID3v2 tags by the
AMPlayer module.

When disabled, no ID3v2 processing at all is performed - the tags are
merely skipped. This will improve performance when such tags are
encountered.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 3 (on page 43)

SWI calls

46

AMPlayer_Control 3, 1
ID3v2Filtering
(SWI &52E05)

Select ID3v2 frame filtering

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 3 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 1 (sub-reason code)
R2 = pointer to frame name, or 0 for 'all frames'
R3 = filtering operation :

TTypeype MeaningMeaning

0 disable frame processing

1 enable frame processing

-1 read current state of processing

-2 read frame state as matched by processing engine
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R2 = enable count, or 0 if disabled

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

AMPlayer

47

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to enable or disable specific frames or groups of frames for
processing through the service interface.

A single character frame name will select all frames starting with that
character. Three character frame names select the ID3v2.2 and earlier
frames that match. Four character frame names select the ID3v2.3 and
ID3v2.4 frame explicitly.

Claimants of the ID3v2 service should enable the frames they wish to see,
and disable them when they no longer require them.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 3 (on page 43)

SWI calls

48

AMPlayer_Control 4
Transience

(SWI &52E05)
Read or write the 'transience' flag

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 4 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = Operation to apply:
VValuealue MeaningMeaning

0 Mark as intransient

1 Mark as transient

-1 Read current flag
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = old transience flag

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

49

UUsese

This SWI is used to read or write the transiency flag for an instance.
Transiency has no meaning for the base instance, but for created instances,
it means that when playback completes, the instance will be destroyed
automatically.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 3 (on page 43)

SWI calls

50

AMPlayer_Control 5
DecimationControl

(SWI &52E05)
Read or write the decimation threshold

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-7 5 (reason code)

8-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = Operation to apply:
VValuealue MeaningMeaning

0 Read decimation threshold

1 Set decimation threshold
R2 = new decimation threshold
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R1 = current decimation threshold

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

51

UUsese

This SWI is used to read or write the 'decimation threshold'. AMPlayer will
normally decode data at full accuracy. If the 'decimation threshold'
frequency is met or exceeded, the module will apply automatic decimation
to the output.

The initial decimation value is based on the version of the module in use (for
AMPlayer, this is 1000000, for AMPlayerFP, it is 22050, and for AMPlayer6
it is 0). This can be overridden by setting the
AMPlayer$DecimationThreshold variable to a number before starting
the module. Setting the decimation threshold of the base instance will set
the variable to the same value.

On builds that do not support decimation, the calls are ignored, and reading
the decimation always returns 1000000.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control (on page 35)

RRelaelatted sed syyststem vem variablesariables
AMPlayer$DecimationThreshold (on page 15)

SWI calls

52

AMPlayer_Plugin
(SWI &52E06)

Plugin operations

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = reason code :
VValuealue MeaningMeaning

0 Register plugin

1 Deregister plugin
R2 = private word to pass in R0
R3 = pointer to pre-processor (pre-DCT) (on page 84), or 0 for none
R4 = pointer to post-processor (post-DCT) (on page 85), or 0 for none
R5 = pointer to static Plugin Information Block (on page 9)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

53

UUsese

This SWI is used to register or deregister plugins.

RRelaelatted APIed APIss
None

SWI calls

54

AMPlayer_FileInfo
(SWI &52E07)

Return information on the a file

OOn enn entrytry
R0 = flags for requested information, or 0 to return size of buffers :

Bit(s)Bit(s) MeaningMeaning

0 Return total time, and Frame Information Block for the first
frame

1 Reserved, must be 0

2 Return ID3 tag information

3-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = pointer to filename
R2 = pointer to buffer for File Information Block (on page 6)
R3 = pointer to buffer for Frame Information Block (on page 9)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R2 = required size of the File Information Buffer, if reading size of buffer
R3 = required size of the Frame Information Buffer, if reading size of buffer

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

55

UUsese

This SWI attempts to return useful information about the file given. The
more bits you set in R0, the slower it gets, as it requires more of the file to be
read. In particular, requesting the ID3 tag information means seeking to the
end of the file, which may be very slow on some filing systems (like DATFS).

Therefore, it sometimes makes sense to make 3 calls:

1. With R0=&000, to get the size of the buffers.
2. With R0=&001, to read the quick things and determine whether the

file is interesting at all.
3. With R0=&004, to read only the ID3 tag fields.

Remember to read the buffer sizes first. These information blocks will no
doubt be extended, and if you assume the old size, your program will stop
working when a new AMPlayer module comes out. Just read the size, and
your program will continue to work for eternity. You don't need to supply a
frame info pointer in R3 unless bit 0 is set.

RRelaelatted * ced * commandsommands
*AMInfo (on page 86)

RRelaelatted Sed SWIWIss
SWI AMPlayer_Info (on page 32)

SWI calls

56

AMPlayer_StreamOpen
(SWI &52E08)

Starts a stream playing

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) NameName MeaningMeaning

0 Queue Places the named file in the queue of tracks
to play. If there is no file currently playing,
the behaviour is exactly as if bit 0 were
clear.

1 Cue Starts the named file immediately, but
paused at the first frame. Use SWI
AMPlayer_Pause (on page 28) to start
playback.

2 GenerateService Indicates that Service_AMPlayer 6 (on page
23) should be generated every time one or
more blocks passed into the stream become
free.

3-30 Reserved, must be 0.

31 R8 contains the instance handle to which
this call should be directed.

R1 = pointer to stream name (for information)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = stream handle, or 0 if failed to start

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

AMPlayer

57

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to start streamed input, ready for playback.

Called by a streaming application to get a Stream Handle. Most streamers
will start the stream paused and feed data in until the buffer full flag (see
SWI AMPlayer_StreamInfo (on page 63)) is set.

Note: The combination of Queue and Start Paused may not work.

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)
SWI AMPlayer_StreamClose (on page 59)

SWI calls

58

AMPlayer_StreamClose
(SWI &52E09)

Informs AMPlayer that a stream has ended

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = stream handle
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to inform the AMPlayer module that no more data will be
supplied to the stream. This does NOT release outstanding buffers that have
been passed to AMPlayer. If you need to get these back, call
AMPlayer_StreamClose, then SWI AMPlayer_Stop (on page 26).

AMPlayer

59

RRelaelatted Sed SWIWIss
SWI AMPlayer_StreamOpen (on page 57)

SWI calls

60

AMPlayer_StreamGiveData
(SWI &52E0A)

Inform AMPlayer of the location of input data

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = stream handle
R2 = pointer to streaming data block :

OOffsetffset ContentsContents

+0 Usage word

+4 Meta data list associated with this buffer, or 0 for no data

+8 Length of data following
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

61

UUsese

Called by a streamer application to pass a block of data to AMPlayer. All but
the first word may be considered read-only and must be in interrupt
sharable space (i.e. in a dynamic area, module area, sprite pool etc, NOT in
the application). By calling this SWI, the application must guarantee that it
will keep the buffer around (and unchanged) at least until AMPlayer sets the
usage word to zero.

The streamer application should monitor the first word of the buffers it has
previously passed in to see when it gets set to 0 to allow reuse. Buffers will
be released strictly in the same order they were passed in.

The metadata list blocks must be kept intact for the same length of time as
the data blocks, and can be considered 'released' by AMPlayer when their
corresponding data blocks are.

Metadata blocks are in the following format:

OOffsetffset ContentsContents

+0 Pointer to next metadata block, or 0 for the last entry

+4 Pointer to a 0-terminated 'Key name' field

+8 Pointer to a value field (often a 0-terminated string, but may be
binary data)

+12 Length of value buffer in bytes

It is envisaged that there will be a SWI added later to allow metadata to be
supplied for non-streaming sources.

RRelaelatted Sed SWIWIss
SWI AMPlayer_StreamOpen (on page 57)
SWI AMPlayer_StreamClose (on page 59)

SWI calls

62

AMPlayer_StreamInfo
(SWI &52E0B)

Read information about the streaming data

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = stream handle
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = flags word :

Bit(s)Bit(s) MeaningMeaning

0 Stream is active (actively being
processed)

1 Output buffer has been full

2 Stream is paused

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

63

UUsese

This SWI is called by a streaming application to monitor the state of the
decoder. Typically a streamer will start a stream up paused and feed it data.
The streamer application will then wait until the stream becomes active,
and until either the output buffer becomes full, or until it runs out of buffer
space itself. Then it can unpause the stream knowing that the maximum
amount of buffering is in use.

RRelaelatted APIed APIss
None

SWI calls

64

AMPlayer_MetaDataPollChange
(SWI &52E0C)

Read meta-data state value

OOn enn entrytry
None

OOn en exitxit
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = opaque unique value, guaranteed to change to a new unique value
when any metadata items change.

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is called by streaming applications to discover when meta-data
provided by the application has been 'passed' by the decoder and is now
active.

AMPlayer

65

RRelaelatted Sed SWIWIss
SWI AMPlayer_MetaDataLookup (on page 67)

SWI calls

66

AMPlayer_MetaDataLookup
(SWI &52E0C)

Read meta-data token value

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = pointer to key field to match
R2 = pointer to buffer for result (or NULL to read length)
R3 = length of buffer, or 0 to read required length
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 preserved
R1 = buffer, filled with data to length given
R2 = length of buffer required, including terminator

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is called by applications to read meta-data passed to the AMPlayer
module. Every element of meta-data is tagged with a 'key' which is used to
return its value.

AMPlayer

67

RRelaelatted Sed SWIWIss
SWI AMPlayer_MetaDataPollChange (on page 65)

SWI calls

68

AMPlayer_SoundSystem
(SWI &52E0E)

Read sound systems available, or set output sound system

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = Operation type :
TTypeype MeaningMeaning

-1 Read available sound systems

0 Select any available system (best possible)

1 Select 8 bit sound system

2 Select 16 bit sound system

3 Select SharedSound

4 Select 'User' sound system (data read via SWI
AMPlayer_StreamReadData (on page 71))

R8 = if bit 31 of R0 set:
instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = Bit mask of avialable sound systems :

Bit(s)Bit(s) MeaningMeaning

0 8 bit output available

1 16 bit output available

2 SharedSound output available

3 User output available
R1 = Last sound system in use (as on input)

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

AMPlayer

69

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to determine what sound systems are available on the
current machine, and to select a different sound system. Its most common
use is to select the User sound system for streaming output data.

RRelaelatted Sed SWIWIss
SWI AMPlayer_StreamReadData (on page 71)

SWI calls

70

AMPlayer_StreamReadData
(SWI &52E0F)

Read data from streaming sound system

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = Unused
R2 = pointer to next byte of data to read, or 0 for first call
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R2 = pointer to first byte of data to read, or 0 if none available
R3 = number of bytes of data available
R4 = frequency of data

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

71

UUsese

This SWI is used to take data from the 'user' sound system. Initially, users
would call with R2 = 0, to determine where to read data from. They then
take use from this address up to the limit supplied. Subsequently, the call
this SWI again to inform AMPlayer how much data has been read. AMPlayer
will only remove data after it has been informed that it has been read.

Decoding will continue in the background. It may be necessary to delay
processing if no data is ready. Data can only be generated on callbacks. It
may, therefore, be necessary to wait for a moment or so for the decode to
function.

VU-bars are inactive when use user sound state is in use.

Callers should note that only complete frames fed in will produce any
output - not all the input stream may be used.

RRelaelatted Sed SWIWIss
SWI AMPlayer_SoundSystem (on page 69)

SWI calls

72

AMPlayer_Instance
(SWI &52E10)

Manipulate AMPlayer instances

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = Reason code :
RReasoneason MeaningMeaning

0 Read current instance handle (on page 75)

1 Create a new instance of the module (on page 77)

2 Destroy an instance of the module (on page 79)

3 Read handle of base instance (on page 81)

4 Enumerate handles of known instances (on page 82)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 - R7 = dependant on reason code

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

73

UUsese

This SWI is used control instances of AMPlayer. You should use it in
preference to directly creating instances of the AMPlayer module yourself.
Consult the reason code descriptions for more details.

RRelaelatted APIed APIss
None

SWI calls

74

AMPlayer_Instance 0
Current

(SWI &52E10)
Read current instance handle

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 0 (reason code)
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = instance handle

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used return the instance handle of the current instance of
AMPlayer. This may be used to discover the handle of the preferred
instance such that the preferred instance may be changed to allow fading
from one track to another. It is not expected that this call be used often.

AMPlayer

75

RRelaelatted APIed APIss
None

SWI calls

76

AMPlayer_Instance 1
Create

(SWI &52E10)
Create a new instance of the module

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 1 (reason code)
R2 = pointer to zero terminated suffix for the instance name. Ideally you

should keep this to < 16 characters.
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R0 = instance handle of new instance

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

AMPlayer

77

UUsese

This SWI is used create a new instance of the AMPlayer module. This
instance may be used in exactly the same manner as any other, if SWIs are
directed at it. Set bit 31 of any SWIs flags to direct the call to the instance
whose handle is in R8.

RRelaelatted APIed APIss
None

SWI calls

78

AMPlayer_Instance 2
Destroy

(SWI &52E10)
Destroy an instance of the module

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 2 (reason code)
R2 = instance handle to destroy
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used destroy an instance of the AMPlayer module. You should
destroy instances when you have no further use for them, to free up
resources and processing time.

AMPlayer

79

RRelaelatted APIed APIss
None

SWI calls

80

AMPlayer_Instance 3
ReadBase

(SWI &52E10)
This SWI call is for internal use only. You must not use it in your own code.

AMPlayer

81

AMPlayer_Instance 4
Enumerate

(SWI &52E10)
Enumerate handles of known instances

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-30 Reserved, must be 0.

31 R8 contains the instance handle to which this call should be
directed.

R1 = 4 (reason code)
R2 = last instance handle, or -1 to start enumerating
R3 = pointer to buffer to write name into
R4 = length of buffer
R8 = if bit 31 of R0 set:

instance handle to direct at, or 0 for the base

OOn en exitxit
R2 = instance handle, or -1 if no more
R4 = length written to buffer, or -ve length if failed to write

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

SWI calls

82

UUsese

This SWI is used to enumerate the instances currently in use by AMPlayer.
A 'visualisation' application might use this call to select what source to
provide a representation of.

RRelaelatted APIed APIss
None

AMPlayer

83

Entry points

Plugin_PreProcess
Pre-process DCT blocks

OOn enn entrytry
R0 = private word
R1 = pointer to 'out 1' buffer
R2 = pointer to 'out 2' buffer
R3 = pointer to 32 frequencies (16.16 format)

OOn en exitxit
R0 = 0 if frequencies processed

1 if DCTs done (not recommended)

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
Entry point is not re-entrant

UUsese

This entry is called prior to 'dct64' which decodes the frequencies into the
buffer. Note that there is no way in which to identify whether the buffer is
for the left or right channel.

RRelaelatted APIed APIss
None

Entry points

84

Plugin_PostProcess
Post-process DCT output buffers

OOn enn entrytry
R0 = private word
R1 = pointer to 'out 1' buffer
R2 = pointer to 'out 2' buffer
R3 = pointer to samples buffer

OOn en exitxit
R0 = 0 if buffer processed

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
Entry point is not re-entrant

UUsese

This entry is called after the 'dct64' which decodes the frequencies into the
buffer. Note that there is no way in which to identify whether the buffer is
for the left or right channel.

RRelaelatted APIed APIss
None

AMPlayer

85

*Commands

*AMInfo
Read information on playback, plugins or file

SSynyntaxtax
*AMInfo [-plugins] [-file <filename>]

PPararameamettersers
-plugins - Display information about the plugins currently active.

-file
<filename>

- Display information about a file, rather than about the
current playback state.

UUsese

This command is used to display information about the current playback
state, or the state of the plugins.

ExExamplesamples
*AMInfo -file
Corrs,The.01ForgivenNotForgotten.01ErinShore(TraditionalIntro)

RRelaelatted Sed SWIWIss
SWI AMPlayer_Info (on page 32)
SWI AMPlayer_FileInfo (on page 55)
SWI AMPlayer_Plugin (on page 53)

*Commands

86

*AMLocate
Skip to a position in the current file

SSynyntaxtax
*AMLocate [+ | -] <hours>:<minutes>:<seconds>
*AMLocate <minutes>:<seconds>

PPararameamettersers
<hours> - Number of hours to search for

<minutes> - Number of minutes to search for

<seconds> - Number of seconds to search for

UUsese

This command is used to jump to a point in the playback of the file. Use +
and - to indicate a location relative to the current playback position.

ExExamplesamples
*AMLocate 7:23

RRelaelatted Sed SWIWIss
SWI AMPlayer_Locate (on page 30)

AMPlayer

87

*AMPause
Pause, or resume, playback

SSynyntaxtax
*AMPause [-off]

PPararameamettersers
-off - resume playback, instead of pausing

UUsese

This command is used to pause, or resume playback.

ExExamplesamples
*AMPause

RRelaelatted Sed SWIWIss
SWI AMPlayer_Pause (on page 28)

*Commands

88

*AMPlay
Play a new file

SSynyntaxtax
*AMPlay [-next] [-queue] [-cue] [-transient] <filename>

PPararameamettersers
-next - Start playback of queued file immediately

-queue - Queue this file, rather than playing it immediately

-cue - Start decoding this track, but leave the player paused

-transient - Start decoding this track in a new instance which will
terminate when playback completes.

UUsese

This command is used to play a new file.

ExExamplesamples
*AMPlay -queue
ADFS::4.$.Music.Artists.Dido.NoAngel.06Thankyou

RRelaelatted Sed SWIWIss
SWI AMPlayer_Play (on page 24)

AMPlayer

89

*AMStop
Stops playback

SSynyntaxtax
*AMStop

PPararameamettersers
None

UUsese

This command is used to stop playback.

ExExamplesamples
*AMStop

RRelaelatted Sed SWIWIss
SWI AMPlayer_Stop (on page 26)

*Commands

90

*AMVolume
AMVolume

SSynyntaxtax
*AMVolume [+ | -] <volume>

PPararameamettersers
<volume> - volume level (0-127)

UUsese

This command is set the playback volume. Initially, 113 is selected.

ExExamplesamples
*AMVolume 113

RRelaelatted Sed SWIWIss
SWI AMPlayer_Control 0 (on page 37)

RRelaelatted sed syyststem vem variablesariables
AMPlayer$Volume (on page 14)

AMPlayer

91

Document information
Maintainer(s):Maintainer(s): AMPlayer developers <amplayer@amplayer.org>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 JRF First XML monitored version

● First version of the document which
includes revision information.

RRelated:elated: None
DDisclaimerisclaimer:: This document is, to the best of our knowledge, a correct

representation of the API of AMPlayer.

Document information

92

mailto:amplayer@amplayer.org

	AMPlayer
	Introduction and Overview
	Terminology
	Technical Details
	MPEG data input methods
	File playback
	Streaming playback

	File output methods
	8 bit sound output
	16 bit sound output
	SharedSound output
	Streaming output

	Multiple instantiation
	User front ends
	Plugins
	* Commands

	Data structures
	File Information Block
	Projected total time
	ID3v1 genre values
	ID3v1.1 track numbers
	VU-var values
	Bitrate values

	Frame Information Block
	Plugin Information Block
	IDTag Information block
	IDFrame Information block

	System variables
	Service calls
	SWI calls
	Entry points
	*Commands
	Document information
	First XML monitored version

