
Introduction and Overview
Application and system configuration is held in a group of central
repositories. Applications may be shared between a number of different
users, and therefore their configurations should not be locked to that
application. As a result of this, it is possible to have a hierarchy of
configuration details which allows (in the most common case) the
application to use system defaults, or user specific settings.

Configuration storage

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Technical Details
Two system variables are used in the configuration of applications -
Choices$Path (on page 7) and Choices$Write (on page 6). Applications
should not attempt to process Choices$Path directly, but should use it
only in via the filename Choices:.

Applications must read from Choices:* and write to Choices$Write.*.
Reading and writing should not be performed simultaneously, as these
entries refer to the same file. Applications should never read from
Choices$Write.*, or write to Choices:*.

Applications may assume that Choices$Write exists and is writable. No
other part of the Choices$Write or Choices: may be assumed to exist.

NNaming caming cononvvenentionstions

The generic form of naming of files within the Choices structure is :

<application>.<file>

Any number of files may be stored within the application specific directory
of the Choices structure, but authors should be aware that the filing system
on which the choices are stored may be limited to 77 files per directory, or
10 character filenames as determined by the file system itself. Whilst
authors should not worry unduly about this, it should be a factor in naming
such files.

Whilst it is possible to store files without using a sub-directory - ie, just
storing a file in the hierarchy with the same name as that of the application,
this is not recommended. Such use precludes the additional of other
configuration files for that application, should future versions require them.

GrGrouping bouping by authory author

An alternative form of naming files which may be used is :

<author>.<application>.<file>

In this case, the <author> should be the well known name of the group
issuing the product, such as MegaCorp, or JBloggs. As with the files
themselves, the filesystems constraints on naming should be considered
when selecting such names.

Technical Details

2



GrGrouping bouping by cay cattegoryegory

A more wide spread and preferred form of naming files which may be used
is that of grouping by the category into which the application falls :

<category>.<application>.<file>

The <category> name should be chosen to avoid clashes between it and
application names.

Categories currently known to be in use - this is in no way an exhaustive list
- include :

CategoryCategory ContentsContents

!ZapUser Zap modules and resources for the user live here.

Boot Resources relating to the booting of the machine live here.

Audio Audio applications should store their details here.

IRC IRC related applications should store their details here.

ScrSavers RISC OS 4-style screen savers should store their details here.

USB USB devices should store their details here.

WWW World Wide Web related applications should store their details
here.

Authors wishing to create new categories should consider whether this is in
fact the best course of action. Consultation with other developers working
on similar projects is recommended.

NName rame registregistraationtion

When you register an application name (and have had it confirmed), this
also includes an allocation in the Choices hierarchy of the same name. This
should be borne in mind when naming applications.

If a new category name is to be used, it should also be registered, as should
author name groups.

ConConfigurfiguraation file ction file cononttenentsts

Whilst it is recommended that configuration files contain textual
configuration data, it is entirely the choice of the application what data it
should store.

Configuration storage

3



Robustness

No application should ever crash because of a poorly formatted
configuration file. Loading an entire file into a structure (in C or Assembler)
or fixed length buffer is likely to cause problems if the file is corrupt in any
way. Reading textual strings in BASIC should be checked for overly long
strings. Non-existent tags (in tagged files) should be given default values. It
is recommended that if a corrupt configuration file is identified it be
ignored and the defaults used.

When ChoicWhen Choices should be writtes should be writtenen

In general, applications should not write choices unless the user explicitly
requests this. This is not practical in some situations, particularly where the
choices require a reload to take effect. Care should be taken to ensure as far
as is possible, that the configuration presented to the user is preserved fully
within the files written.

In particular applications should not write choices when they quit. Doing so
may cause invalid choices to be written, or (in the case of defaulted choices)
overwrite the user selected choices. The only exception to this is where the
user has chosen to write choices on application quit.

RISC OS 3.1 and earlierRISC OS 3.1 and earlier

Previous versions of this document dealt with support for systems where
Choices$* were unset. Such system are should no longer be supported. It
is strongly recommended that applications fault the lack of
Choices$Write in their !Run file.

An application, !Choices has been provided for systems without a suitable
boot sequence, should this be necessary. In general, support for such
systems should be discontinued.

Technical Details

4



System variables

Choices$Dir
Obsolete description of the Choices hierarchy

UUsese

This variable contains a reference to the highest level (usually the users)
configuration directory. It is now obsolete and should not be used by any
applications.

RRelaelatted sed syyststem vem variablesariables
Choices$Write (on page 6)
Choices$Path (on page 7)

Configuration storage

5



Choices$Write
Directory into which application configuration details should be written

UUsese

This variable contains the name of the directory into which configuration
details should be written. It is used to write out user-specific configuration
details, which will override any others which may have been given in
Choices$Path (on page 7).

Applications should never use the directory given in this variable for any
form of read operation. The directory specified may be assumed to exist and
be writable.

RRelaelatted sed syyststem vem variablesariables
Choices$Path (on page 7)

System variables

6



Choices$Path
Comma separated list of paths to scan for configuration details

UUsese

This variable contains a comma separated list of paths which will be
searched to locate configuration details. This list will be searched in order
from beginning to end until a match is found. It is usual for the first entry in
Choices$Path to be Choices$Write., which ensures that the user
configuration is searched after any other system, or administrator set
configuration. Applications should always access the choices hierarchy via
Choices: rather than attempting to expand this variable themselves.

This variable should never be used directly by applications. The path
Choices: should never be used for write operations.

RRelaelatted sed syyststem vem variablesariables
Choices$Write (on page 6)

Configuration storage

7



Document information
Maintainer(s):Maintainer(s): Justin Fletcher <gerph@innocent.com>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
0.00 04 Jun 1998 JRF ● Released to various people

via IRC and email for
comments.

● Sent to Dave Walker for
confirmation that I'm not
talking rubbish.

1.00 29 Jun 1998 JRF ● Suggestions, comments and
complaints added to the
document.

● Reformatted into sections.
1.01 08 Jan 1999 JRF ● Reformatted as HTML for the

'info' section of my website.
2.00 09 Jan 2002 JRF ● Re-written from scratch,

using information in the
original.

● Support for RISC OS 3.1 is no
longer given and is strongly
discouraged.

● We no longer provide
examples; applications
programmers capable of
using files should be able to
construct their own code.
The removal of support for
RISC OS 3.1 makes such
examples redundant anyhow.

● This documentation is based
on the PRMinXML
structures, rather than HSC.

DDisclaimerisclaimer:: This document is based on my own experiences as a developer
and is not an officially sanctioned document. It describes what I
believe to be the Best Common Practices for applications using
Choices.

Document information

8

mailto:gerph@innocent.com

	Configuration storage
	Introduction and Overview
	Technical Details
	Naming conventions
	Grouping by author
	Grouping by category

	Name registration
	Configuration file contents
	Robustness

	When Choices should be written
	RISC OS 3.1 and earlier

	System variables
	Document information


