
Introduction
ColourTrans allows a program to select the physical red, green and blue
colours that it wishes to use, given a particular output device and palette.
ColourTrans then calculates the best colour available to fit the required
colour.

Thus, an application doesn't have to be aware of the number of colours
available in a given mode.

It can also intelligently handle colour usage with sprites and the font
manager, and is the best way to set up colours when printing.

Finally, it supports colour calibration, so that you can make different output
devices produce the same colours. (This feature is not supported by RISC
OS 2)

Before reading this chapter, you should be familiar with the VDU, sprite and
font manager principles.

We also advise that you read the chapter entitled Printing a document from
an application. This section gives advice on which ColourTrans calls you
should use to set colours when printing. You'll probably find it easiest if you
use the same calls for screen output; you should then find that your routines
for printer and screen output can share large parts of coding.

ColourTrans

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Overview
The ColourTrans module is provided on disc in RISC OS 2 as the file
System:Modules.Colours, but is in the ROM for later releases of RISC OS.
Any application which uses it should ensure it is present using the
*RMEnsure command, say from an Obey file. For example:

RMEnsure ColourTrans 0.51 RMLoad System:Modules.Colours
RMEnsure ColourTrans 0.51 Error You need ColourTrans 0.51
or later

DeDefinition ofinition of tf termserms

Here are some terms you should know when using this chapter.

GCOL is like the colour parameter passed to VDU 17. It uses a simple format
for 256 colour modes.

Colour number is what is written into screen memory to achieve a given
colour in a particular mode.

Palette entry is a word that contains a description of a physical colour in
red, green and blue levels. Usually, this term refers to the required colour
that is passed to a ColourTrans SWI.

Palette pointer is a pointer to a list of palette entries. The table would have
one entry for each logical colour in the requested mode. In 256 colour
mode, only 16 entries are needed, as there are only 16 palette registers.

Closest colour is the colour in the palette that most closely matches the
palette entry passed. Furthest colour is the one furthest from the colour
requested. These terms refer to a least-squares test of closeness.

Finding a cFinding a colourolour

There are many SWIs that will find the best fit colour in the palette for a set
of parameters. Here is a list of the different kinds of parameters that can
return a best fit colour:

● Given palette entry, return nearest or furthest GCOL
● Given palette entry, return nearest or furthest colour number
● Given palette entry, mode and palette pointer, return nearest or

furthest GCOL

Overview

2



● Given palette entry, mode and palette pointer, return nearest or
furthest colour number

SeSetting a ctting a colourolour

Some SWIs will set the VDU driver GCOL to the calculated GCOL after
finding it.

● Given palette entry, return nearest GCOL, and set that colour
● Given palette entry, return furthest GCOL, and set that colour

ConConvversionersion

There is a pair of SWIs to convert GCOLs to and from colour numbers. Note
that this only has meaning for 256 colour modes. There are also SWIs to
convert between different colour models, such as RGB, CIE, HSV, and
CMYK.

SpritSprites and Fes and Fonontsts

ColourTrans provides full facilities for setting the colours used by sprites
and fonts.

UUsing osing other palether paletttte Se SWIWIss

If an application changes the output palette (perhaps by changing the
screen colours or by switching output to a sprite), then it has to call a SWI to
inform ColourTrans. This is because ColourTrans maintains a cache used
for mapping colours. If the palette has independently changed, then it has
no way of telling.

If the screen mode has changed there is no need to use this call, since the
ColourTrans module detects this itself - but, under RISC OS 2, if output is
switched to a sprite (and ColourTrans will be used) then the SWI must also
be called.

WimpWimp

If you are using the Wimp interface, then the ColourTrans calls are fine to
use, because they never modify the palette.

ColourTrans

3



PrinPrintingting

Because ColourTrans allows an application to request an RGB colour rather
than a logical colour, it is ideal for use with the printer drivers, where a
printer may be able to represent some RGB colours more accurately then
the screen.

Colour calibrColour calibraationtion

There is a major problem in working with colour documents. This is that, if
the user selects some colours on the screen, they may well come out as
different colours on a printer or other final output device. Colour
calibration is a way to get round this problem.

Colour calibration involves calibrating the screen colours with a fixed
standard set of colours, and also calibrating the output device colours to the
same fixed set of colours. Then, when an application draws to the screen, it
does so in standard colours which are converted by the OS to screen
colours. If the application draws to the printer it again does so in standard
colours, but this time they are converted to printer colours.

So, for the user, calibrating the colours will give constant colour
reproduction throughout the system, for the cost of calibrating the devices
in the first place.

Colour calibration is not available in RISC OS 2.

Overview

4



Technical Details
ColoursColours

Two different colour systems are used in 256 colour modes. The GCOL
form is much easier to use, while the colour number is optimised for the
hardware. In all other colour modes, they are identical.

The palette entry used to request a given physical colour is in the same
format as that used to set the anti-alias palette in the font manager.

GCOL

The 256 colour modes use a byte that looks like this:

Bit(s)Bit(s) MeaningMeaning

0 Tint bit 0 (red+green+blue bit 0)

1 Tint bit 1 (red+green+blue bit 1)

2 Red bit 2

3 Red bit 3 (high)

4 Green bit 2

5 Green bit 3 (high)

6 Blue bit 2

7 Blue bit 3 (high)

This format is converted into the internal 'colour number' format when
stored, because that is what the VIDC hardware recognises.

Colour number

The 256 colour mode in the colour number looks like this:

ColourTrans

5



Bit(s)Bit(s) MeaningMeaning

0 Tint bit 0 (red+green+blue bit 0)

1 Tint bit 1 (red+green+blue bit 1)

2 Red bit 2

3 Blue bit 2

4 Red bit 3 (high)

5 Green bit 2

6 Green bit 3 (high)

7 Blue bit 3 (high)

In fact the bottom 4 bits of the colour number are obtained via the palette,
but the default palette in 256 colour modes is set up so that the above
settings apply, and this is not normally altered.

Palette entry

The palette entry is a word of the form &BBGGRR00. That is, it consists of
four bytes, with the palette value for the blue, green and red gun in the top
three bytes. Bright white, for instance would be &FFFFFF00, while half
intensity cyan would be &77770000. The current graphics hardware only
uses the upper nibbles of these colours, but for upwards compatibility the
lower nibble should contain a copy of the upper nibble.

Finding a cFinding a colourolour

The SWIs that find the best fit have generally self explanatory names. As
shown in the overview, they follow a standard pattern. They are as follows:

SWI ColourTrans_ReturnGCOL (on page 18)
Given palette entry, return nearest GCOL

SWI ColourTrans_ReturnOppGCOL (on page 28)
Given palette entry, return furthest GCOL

SWI ColourTrans_ReturnColourNumber (on page 22)
Given palette entry, return nearest colour number

SWI ColourTrans_ReturnOppColourNumber (on page 32)
Given palette entry, return furthest colour number

SWI ColourTrans_ReturnGCOLForMode (on page 24)
Given palette entry, mode and palette pointer, return nearest GCOL

Technical Details

6



SWI ColourTrans_ReturnOppGCOLForMode (on page 34)
Given palette entry, mode and palette pointer, return furthest GCOL

SWI ColourTrans_ReturnColourNumberForMode (on page 26)
Given palette entry, mode and palette pointer, return nearest colour
number

SWI ColourTrans_ReturnOppColourNumberForMode (on page 36)
Given palette entry, mode and palette pointer, return furthest colour
number

Palette pointers

Where a palette pointer is used, certain conventions apply:

● a palette pointer of -1 means the current palette is used
● a palette pointer of 0 means the default palette for the specified

mode.

Modes

Similarly, where modes are used:

● mode -1 means the current mode.

Best fit colour

These calls use a simple algorithm to find the colour in the palette that most
closely matches the high resolution colour specified in the palette entry. It
calculates the distance between the colours, which is a weighted least
squares function. If the desired colour is (Rd, Bd, Gd) and a trial colour is
(Rt, Bt, Gt), then:

distance = redweight × (Rt-Rd)2 + greenweight × (Gt-Gd)2 + blueweight ×

(Bt-Bd)2

where redweight = 2, greenweight = 4 and blueweight = 1. These weights are
set for the most visually effective solution to this problem. (In RISC OS 2,
the weights used were 2, 3 and 1 respectively.)

SeSetting a ctting a colourolour

SWI ColourTrans_SetGCOL (on page 20) will act like ColourTrans_

ColourTrans

7



ReturnGCOL, except that it will set the graphics system GCOL to be as close
to the colour you requested as it can. Note that ECF patterns will not yet be
used in monochrome modes to reflect grey shades, as they are with
Wimp_SetColour.

Similarly, SWI ColourTrans_SetOppGCOL (on page 30) will set the graphics
system GCOL with the opposite of the palette entry passed.

ConConvversionersion

To convert between the GCOL and colour number format in 256 colour
modes, the SWIs SWI ColourTrans_GCOLToColourNumber (on page 38)
and SWI ColourTrans_ColourNumberToGCOL (on page 39) can be used.

SpritSprites and Fes and Fonontsts

SWI ColourTrans_SelectTable (on page 13) will set up a translation table in
the buffer. SWI ColourTrans_SelectGCOLTable (on page 16) will set up a list
of GCOLs in the buffer. See the chapter entitled Pixel translation table for a
definition of these tables (although the latter call does not in fact relate to
sprites).

SWI ColourTrans_ReturnFontColours (on page 40) will try and find the best
set of logical colours for an anti-alias colour range. SWI
ColourTrans_SetFontColours (on page 42) also does this, but sets the font
manager plotting colours as well. It calls Font_SetFontColours, or
Font_SetPalette in 256 colour modes - but it works out which logical colours
to use beforehand. See the chapter entitled Colours (on page 0) for details of
using colours and anti-aliasing colours; see also the descriptions of the
relevant commands later in the same chapter, in SWI Font_SetFontColours
(on page 0) and SWI Font_SetPalette (on page 0).

UUsing osing other palether paletttte Se SWIWIss

If a program has changed the palette, then SWI
ColourTrans_InvalidateCache (on page 44) must be called. This will reset its
internal cache. This applies to Font_SetFontColours or Wimp_SetPalette or
VDU 19 or anything like that, but not to mode change, since this is detected
automatically.

Under RISC OS 2 you must also call this SWI if output has been switched to
a sprite, and ColourTrans is to be called while the output is so redirected.
You must then call it again after output is directed back to the screen. Later
versions of RISC OS automatically do this for you.

Technical Details

8

artifacts/docs/html/fontmanager.html#section_colours
artifacts/docs/html/fontmanager.html#swi_font_setfontcolours
artifacts/docs/html/fontmanager.html#swi_font_setfontcolours
artifacts/docs/html/fontmanager.html#swi_font_setpalette


Colour calibrColour calibraationtion

Colour calibration is performed by ColourTrans using a calibration table
that maps from device colours to standard colours.

The palette in RISC OS maps logical colours to device colours (also known
as physical colours). When you ask RISC OS to select a colour for you, it
takes this palette and uses a calibration table to convert the device colours
to standard colours, giving a (transient) palette that maps logical colours to
standard colours. It then chooses the closest standard colour to the one that
you have specified.

Calibration tables

A calibration table is a one-to-one map that fills the device colour space, but
does not necessarily fill the standard colour space. In fact, it consists of
three separate mappings: one for each component of the device space (red,
green and blue on a monitor, for example). Each mapping consists of a
series of device component/ standard colour pairs.

The pairs are stored as 32-bit words, in the form &BBGGRRDD, where DD
is the amount of the device component (from 0 to 255), and BBGGRR is the
standard colour corresponding to that amount. The two other device
components are presumed to be zero.

The format of the table is:

WWordord MeaningMeaning

0 Number of pairs of component 1 (n1)

1 Number of pairs of component 2 (n2)

2 Number of pairs of component 3 (n3)

3 n1 words giving pairs for component 1

3 + n1 n2 words giving pairs for component 2

3 + n1 + n2 n3 words giving pairs for component 3

The length of the table is therefore 3 + n1 + n2 + n3 words.

Within each of the three sets of mappings, the words must be sorted in
ascending order of device component. To fill the device colour space, there
must be entries for device components of 0 and 255, so there must be at
least two pairs for each component.

As an example, a minimal calibration table might be:

ColourTrans

9



WWordord MeaningMeaning

&00000002 2 pairs of red component

&00000002 2 pairs of green component

&00000002 2 pairs of blue component

&02010300 Device colour &000000 corresponds to standard colour
020103

&0203FDFF Device colour &0000FF corresponds to standard colour
0203FD

&02010300 Device colour &000000 corresponds to standard colour
020103

&03FC02FF Device colour &00FF00 corresponds to standard colour
03FC02

&02010300 Device colour &000000 corresponds to standard colour
020103

&FF0302FF Device colour &FF0000 corresponds to standard colour
FF0302

(Both device and standard colours are given in the format &BBGGRR)

The default mapping for the screen is that device colours and standard
colours are the same. This produces the same effect as earlier uncalibrated
versions of ColourTrans.

To convert a specific device colour to a standard colour, ColourTrans splits
the device colour into its three component parts. Then, for each component,
it uses linear interpolation between the two device components
'surrounding' the required device component. The standard colours thus
obtained for each component are then summed to give the final calibrated
standard colour.

Colour calibration is not available in RISC OS 2.

Technical Details

10



Service Calls

Service_CalibrationChanged
(Service Call &5B)

Screen calibration is changed

OOn enn entrytry
R1 = &5B (reason code)

OOn en exitxit
R1 = Must be preserved. This service call should not be claimed

RAll preserved

UUsese

This service is issued by the ColourTrans module when the
ColourTrans_SetCalibration SWI has been issued.

It is noticed by the Palette utility in the desktop, which broadcasts a
Message_PaletteChange.

This service call is not used by RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_SetCalibration (on page 46)

ColourTrans

11



Service_InvalidateCache
(Service Call &82)

Broadcast whenever the cache is flushed within ColourTrans

OOn enn entrytry
R1 = &82 (reason code)

OOn en exitxit
RAll preserved

UUsese

This service is broadcast whenever the cache is flushed within ColourTrans.
You should never claim it.

This service call is not used by RISC OS 2.

RRelaelatted APIed APIss
None

Service Calls

12



SWI Calls

ColourTrans_SelectTable
(SWI &40740)

Sets up a translation table in a buffer

OOn enn entrytry
R0 = source mode, or -1 for current mode, or (if = 256) pointer to sprite, or

(if > 256) pointer to sprite area
R1 = source palette pointer, or -1 for current palette, or (if R0 >= 256)

pointer to sprite name/sprite in area pointed to by R0 (as specified by
bit 0 of R5)

R2 = destination mode, or -1 for current mode
R3 = destination palette pointer, or -1 for current palette, or 0 for default

for the mode
R4 = pointer to buffer, or 0 to return required size of buffer
R5 = flags (used if R0 >= 256):

Bit(s)Bit(s) MeaningMeaning

0 R1 = pointer to sprite; else R1 = pointer to sprite name

1 use current palette if sprite doesn't have one; else use default

2 use R6 and R7 to specify transfer function

24-31 format of table:
VValuealue MeaningMeaning

0 return Pixel translation table

1 return physical palette table

other reserved

other Reserved, must be zero
R6 = pointer to workspace for transfer function (if R0 >= 256, and bit 2 of

R5 is set)
R7 = pointer to transfer function (if R0 >= 256, and bit 2 of R5 is set)

OOn en exitxit
R0 - R3 preserved

R4 = required size of buffer (if R4 = 0 on entry), or preserved
R5 - R7 preserved

ColourTrans

13



InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call sets up a translation table in a buffer - that is, a set of colour
numbers as used by scaled sprite plotting. You may specify the source mode
palette either directly, or (except in RISC OS 2) by specifying a sprite. See
the chapter entitled SWI Pixel translation table for details of such tables.

You should use this call rather than any other to set up translation tables for
sprites, as it copes correctly with sprites that have a 256 colour palette.

If bit 2 of the flags word in R5 is set, then R6 and R7 are assumed to specify
a transfer routine, which is called to preprocess each palette entry before it
is converted. The entry point of the routine (as specified in R7) is called with
the palette entry in R0, and the workspace pointer (as specified in R6) in
R12. The palette entry must be returned in R0, and all other registers
preserved.

In RISC OS 2, R0 must be less than 256, and so R5 - R7 are unused.
Consequently, to use a sprite as the source you first have to copy its palette
information out from its header. Furthermore, you cannot find the required
size of the buffer by setting R4 to 0 on entry.

If R0 is 256 on entry, it is assumed not to point to a sprite area, but R1 is still
assumed to point to a sprite. This special value is useful if you need to use
sprites that are not held in a sprite area. For example, Draw uses it for
sprites that are held in a DrawFile without a preceding sprite area control
block.

RRelaelatted Sed SWIWIss
SWI ColourTrans_GenerateTable (on page 78)

SWI Calls

14



RRelaelatted ved vectectorsors
ColourV

ColourTrans

15



ColourTrans_SelectGCOLTable
(SWI &40741)

Sets up a list of GCOLs in a buffer

OOn enn entrytry
R0 = source mode, or -1 for current mode, or (if >= 256) pointer to sprite

area
R1 = source palette pointer, or -1 for current palette, or (if R0 >= 256)

pointer to sprite name/sprite in area pointed to by R0 (as specified by
bit 0 of R5)

R2 = destination mode, or -1 for current mode
R3 = destination palette pointer, or -1 for current palette, or 0 for default

for the mode
R4 = pointer to buffer
R5 = flags (used if R0 >= 256):

Bit(s)Bit(s) MeaningMeaning

0 R1 = pointer to sprite; else R1 = pointer to sprite name

1 use current palette if sprite doesn't have one; else use default

2-31 Reserved, must be zero

OOn en exitxit
R0 - R5 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

SWI Calls

16



UUsese

This call, given a source mode and palette (either directly, or - except in
RISC OS 2 - from a sprite), a destination mode and palette, and a buffer, sets
up a list of GCOLs in the buffer. The values can subsequently be used by
passing them to GCOL and Tint.

In RISC OS 2, R0 must be less than 256, and so R5 is unused. Consequently,
to use a sprite as the source you first have to copy its palette information
out from its header.

RRelaelatted ved vectectorsors
ColourV

ColourTrans

17



ColourTrans_ReturnGCOL
(SWI &40742)

Gets the closest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry

OOn en exitxit
R0 = GCOL

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, returns the closest GCOL in the current
mode and palette.

It is equivalent to ColourTrans_ReturnGCOLForMode for the given palette
entry, with parameters of -1 for both the mode and palette pointer.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

RRelaelatted Sed SWIWIss
SWI ColourTrans_SetGCOL (on page 20)
SWI ColourTrans_ReturnColourNumber (on page 22)
SWI ColourTrans_ReturnGCOLForMode (on page 24)
SWI ColourTrans_ReturnOppGCOL (on page 28)

SWI Calls

18



RRelaelatted ved vectectorsors
ColourV

ColourTrans

19



ColourTrans_SetGCOL
(SWI &40743)

Sets the closest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry
R3 = flags
R4 = GCOL action

OOn en exitxit
R0 = GCOL
R2 = log2 of bits-per-pixel for current mode
R3 = initial value AND &80
R4 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, works out the closest GCOL in the current
mode and palette, and sets it.

Bit(s)Bit(s) MeaningMeaning

7 Set: set background colour

Clear: set foreground colour

8 Set: use ECFs to give a better approximation to the colour

Clear: don't use ECFs

SWI Calls

20



The remaining bits of R3 and the top three bytes of R4 are reserved, and
should be set to zero to allow for future expansion. Bit 8 of R3 is ignored in
RISC OS 2, which does not support ECF patterns with this call.

Note that if you are using ECF-generating calls, you cannot use the returned
GCOL to reselect the pattern; you must instead repeat this call.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOL (on page 18)
SWI ColourTrans_SetOppGCOL (on page 30)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

21



ColourTrans_ReturnColourNumber
(SWI &40744)

Gets the closest colour for a palette entry

OOn enn entrytry
R0 = palette entry

OOn en exitxit
R0 = colour number

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, returns the closest colour number in the
current mode and palette.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOL (on page 18)
SWI ColourTrans_ReturnColourNumberForMode (on page 26)
SWI ColourTrans_ReturnOppColourNumber (on page 32)

SWI Calls

22



RRelaelatted ved vectectorsors
ColourV

ColourTrans

23



ColourTrans_ReturnGCOLForMode
(SWI &40745)

Gets the closest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry
R1 = destination mode, or -1 for current mode
R2 = palette pointer, or -1 for current palette, or 0 for default for the mode

OOn en exitxit
R0 = GCOL
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, a destination mode and palette, returns the
closest GCOL.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

24



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOL (on page 18)
SWI ColourTrans_SetGCOL (on page 20)
SWI ColourTrans_ReturnColourNumberForMode (on page 26)
SWI ColourTrans_ReturnOppGCOLForMode (on page 34)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

25



ColourTrans_ReturnColourNumberForMode
(SWI &40746)

Gets the closest colour for a palette entry

OOn enn entrytry
R0 = palette entry
R1 = destination mode, or -1 for current mode
R2 = palette pointer, or -1 for current palette, or 0 for default for the mode

OOn en exitxit
R0 = colour number
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, a destination mode and palette, returns the
closest colour number.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

26



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnColourNumber (on page 22)
SWI ColourTrans_ReturnGCOLForMode (on page 24)
SWI ColourTrans_ReturnOppColourNumberForMode (on page 36)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

27



ColourTrans_ReturnOppGCOL
(SWI &40747)

Gets the furthest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry

OOn en exitxit
R0 = GCOL

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, returns the furthest GCOL in the current
mode and palette.

It is equivalent to ColourTrans_ReturnOppGCOLForMode for the given
palette entry, with parameters of -1 for both the mode and palette pointer.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOL (on page 18)
SWI ColourTrans_SetOppGCOL (on page 30)
SWI ColourTrans_ReturnOppColourNumber (on page 32)
SWI ColourTrans_ReturnOppGCOLForMode (on page 34)

SWI Calls

28



RRelaelatted ved vectectorsors
ColourV

ColourTrans

29



ColourTrans_SetOppGCOL
(SWI &40748)

Sets the furthest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry
R3 = 0 for foreground, or 128 for background
R4 = GCOL action

OOn en exitxit
R0 = GCOL
R2 = log2 of bits-per-pixel for current mode
R3 = initial value AND &80
R4 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, works out the furthest GCOL in the current
mode and palette, and sets it.

The top three bytes of R3 and R4 should be zero, to allow for future
expansion.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

30



RRelaelatted Sed SWIWIss
SWI ColourTrans_SetGCOL (on page 20)
SWI ColourTrans_ReturnOppGCOL (on page 28)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

31



ColourTrans_ReturnOppColourNumber
(SWI &40749)

Gets the furthest colour for a palette entry

OOn enn entrytry
R0 = palette entry

OOn en exitxit
R0 = colour number

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, returns the furthest colour number in the
current mode and palette.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnColourNumber (on page 22)
SWI ColourTrans_ReturnOppGCOL (on page 28)
SWI ColourTrans_ReturnOppColourNumberForMode (on page 36)

SWI Calls

32



RRelaelatted ved vectectorsors
ColourV

ColourTrans

33



ColourTrans_ReturnOppGCOLForMode
(SWI &4074A)

Gets the furthest GCOL for a palette entry

OOn enn entrytry
R0 = palette entry
R1 = destination mode or -1 for current mode
R2 = palette pointer, or -1 for current palette, or 0 for default for the mode

OOn en exitxit
R0 = GCOL
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, a destination mode and palette, returns the
furthest GCOL.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

34



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOLForMode (on page 24)
SWI ColourTrans_ReturnOppGCOL (on page 28)
SWI ColourTrans_SetOppGCOL (on page 30)
SWI ColourTrans_ReturnOppColourNumberForMode (on page 36)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

35



ColourTrans_ReturnOppColourNumberForMode
(SWI &4074B)

Gets the furthest colour for a palette entry

OOn enn entrytry
R0 = palette entry
R1 = destination mode or -1 for current mode
R2 = palette pointer, or -1 for current palette, or 0 for default for the mode

OOn en exitxit
R0 = colour number
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a palette entry, a destination mode and palette, returns the
furthest colour number.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

36



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnColourNumberForMode (on page 26)
SWI ColourTrans_ReturnOppColourNumber (on page 32)
SWI ColourTrans_ReturnOppGCOLForMode (on page 34)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

37



ColourTrans_GCOLToColourNumber
(SWI &4074C)

Translates a GCOL to a colour number

OOn enn entrytry
R0 = GCOL

OOn en exitxit
R0 = colour number

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call changes the value passed from a GCOL to a colour number.

You should only call this SWI for 256 colour modes; the results will be
meaningless for any others.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ColourNumberToGCOL (on page 39)

RRelaelatted ved vectectorsors
ColourV

SWI Calls

38



ColourTrans_ColourNumberToGCOL
(SWI &4074D)

Translates a colour number to a GCOL

OOn enn entrytry
R0 = colour number

OOn en exitxit
R0 = GCOL

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call changes the value passed from a colour number to a GCOL.

You should only call this SWI for 256 colour modes; the results will be
meaningless for any others.

RRelaelatted Sed SWIWIss
SWI ColourTrans_GCOLToColourNumber (on page 38)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

39



ColourTrans_ReturnFontColours
(SWI &4074E)

Finds the best range of anti-alias colours to match a pair of palette entries

OOn enn entrytry
R0 = font handle, or 0 for the current font
R1 = background palette entry
R2 = foreground palette entry
R3 = maximum foreground colour offset (0 - 14)

OOn en exitxit
R0 preserved
R1 = background logical colour (preserved if in 256 colour mode)
R2 = foreground logical colour
R3 = maximum sensible colour offset (up to R3 on entry)

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given background and foreground colours and the number of
anti-aliasing colours desired, finds the maximum range of colours that can
sensibly be used. So for the given pair of palette entries, it finds the best fit
in the current palette, and then inspects the other available colours to
deduce the maximum possible amount of anti-aliasing up to the limit in R3.

If anti-aliasing is desirable, you should set R3 = 14 on entry; otherwise set R3
= 0 for monochrome.

SWI Calls

40



The values in R1 - R3 on exit are suitable for passing to
Font_SetFontColours. You can also include them in a font string in a control
(18) sequence, although we don't recommend this as the printer drivers do
not properly support this feature.

Note that in 256 colour modes, you can only set 16 colours before
previously returned information becomes invalid. Therefore, if you are
using this SWI to obtain information to subsequently pass to the font
manager, do not use more than 16 colours.

Also note that in 256 colour modes, the font manager's internal palette will
be set, with all 16 entries being cycled through by ColourTrans.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

See SWI Font_SetFontColours (on page 0) of the The Font Manager (on page
0) for further details of the parameters used in this call.

RRelaelatted Sed SWIWIss
SWI ColourTrans_SetFontColours (on page 42)
SWI Font_SetFontColours (on page 0)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

41

artifacts/docs/html/fontmanager.html#swi_font_setfontcolours
artifacts/docs/html/fontmanager.html#section_the_font_manager
artifacts/docs/html/fontmanager.html#section_the_font_manager
artifacts/docs/html/fontmanager.html#swi_font_setfontcolours


ColourTrans_SetFontColours
(SWI &4074F)

Sets the best range of anti-alias colours to match a pair of palette entries

OOn enn entrytry
R0 = font handle, or 0 for the current font
R1 = background palette entry
R2 = foreground palette entry
R3 = maximum foreground colour offset (0 - 14)

OOn en exitxit
R0 preserved
R1 = background logical colour (preserved if in 256 colour mode)
R2 = foreground logical colour
R3 = maximum sensible colour offset (up to R3 on entry)

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call, given a pair of palette entries, finds the best available range of
anti-alias colours in the current palette, and sets the font manager to use
these colours. It is the recommended way to set font colours, as the printer
drivers properly support this call. A font string control (19) sequence uses
this call, and so may also be used when printing.

The colours are not calibrated in RISC OS 2, but are calibrated in later
versions.

SWI Calls

42



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnFontColours (on page 40)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

43



ColourTrans_InvalidateCache
(SWI &40750)

Informs ColourTrans that the palette has been changed by some other
means

OOn enn entrytry
None

OOn en exitxit
None

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call must be issued whenever the palette has changed since
ColourTrans was last called. This forces ColourTrans to update its cache.
Note that colour changes due to a mode change are detected; you only need
to use this if another of the palette change operations was used.

Under RISC OS 2 you must also call this SWI if output has been switched to
a sprite, and ColourTrans is to be called while the output is so redirected.
You must then call it again after output is directed back to the screen. For
example, the palette utility on the icon bar calls this SWI when you finish
dragging one of the RGB slider bars. Later versions of RISC OS
automatically do this for you.

SWI Calls

44



RRelaelatted ved vectectorsors
ColourV

ColourTrans

45



ColourTrans_SetCalibration
(SWI &40751)

Sets the calibration table for the screen

OOn enn entrytry
R0 = pointer to calibration table

OOn en exitxit
None

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call copies the calibration table pointed to by R0 into the RMA as the
new calibration table for the screen. If the call fails due to lack of room in
the RMA then the calibration will be set to the default calibration for the
screen, and the 'No room in RMA' error will be passed back. Another
possible error is 'Bad calibration table', given if the device component pairs
do not cover the full range &00 to &FF.

This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReadCalibration (on page 48)

SWI Calls

46



RRelaelatted ved vectectorsors
ColourV

ColourTrans

47



ColourTrans_ReadCalibration
(SWI &40752)

Reads the calibration table for the screen

OOn enn entrytry
R0 = 0 to read required size of table, or pointer to buffer

OOn en exitxit
R0 preserved
R1 = size of table (if R0 = 0 on entry)

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call reads the calibration table for the screen into the buffer pointed to
by R0, which should be large enough to contain the complete table. Ideally
you should first issue this call with R0=0 to read the size of the table, then
allocate space, and then issue this call again to read the table.

This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_SetCalibration (on page 46)

SWI Calls

48



RRelaelatted ved vectectorsors
ColourV

ColourTrans

49



ColourTrans_ConvertDeviceColour
(SWI &40753)

Converts a device colour to a standard colour

OOn enn entrytry
R1 = 24-bit device colour (&BBGGRR00 for the screen)
R3 = 0 to use the current screen calibration, or pointer to calibration table

to use

OOn en exitxit
R2 = 24-bit standard colour (&BBGGRR00)

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call allows applications to read, say, screen colours, and find the
standard colours to which they correspond.

This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertDevicePalette (on page 51)

RRelaelatted ved vectectorsors
ColourV

SWI Calls

50



ColourTrans_ConvertDevicePalette
(SWI &40754)

Converts a device palette to standard colours

OOn enn entrytry
R0 = number of colours to convert
R1 = pointer to table of 24-bit device colours
R2 = pointer to table to store standard colours
R3 = 0 to use the current screen calibration, or pointer to calibration table

to use

OOn en exitxit
R0 - R3 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call allows printer drivers to use the same calibration calculation code
for their conversions between device and standard colours as the screen
does. The printer device palette can be set up and then converted using this
call to the standard colours using the printer's calibration table. This call is
mainly provided to ease the load on the writers of printer drivers.

This call is not available in RISC OS 2.

ColourTrans

51



RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertDeviceColour (on page 50)

RRelaelatted ved vectectorsors
ColourV

SWI Calls

52



ColourTrans_ConvertRGBToCIE
(SWI &40755)

Converts RISC OS RGB colours to industry standard CIE colours

OOn enn entrytry
R0 = red component
R1 = green component
R2 = blue component

OOn en exitxit
R0 = CIE X tristimulus value
R1 = CIE Y tristimulus value
R2 = CIE Z tristimulus value

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts RISC OS RGB colours to industry standard CIE colours,
allowing easy interchange with other systems. The CIE standard that is
output is the XYZ tristimulus values.

All parameters are passed as fixed point 32 bit numbers, with 16 bits below
the point and 16 bits above the point. We suggest that you use numbers in
the range 0 - 1, for compatibility with other conversion SWIs such as
ColourTrans_ConvertRGBToCMYK.

This call is not available in RISC OS 2.

ColourTrans

53



RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertCIEToRGB (on page 55)

RRelaelatted ved vectectorsors
ColourV

SWI Calls

54



ColourTrans_ConvertCIEToRGB
(SWI &40756)

Converts industry standard CIE colours to RISC OS RGB colours

OOn enn entrytry
R0 = CIE X tristimulus value
R1 = CIE Y tristimulus value
R2 = CIE Z tristimulus value

OOn en exitxit
R0 = red component
R1 = green component
R2 = blue component

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts industry standard CIE colours to RISC OS RGB colours,
allowing easy interchange with other systems. The CIE standard that is
accepted is the XYZ tristimulus values.

All parameters are passed as fixed point 32 bit numbers, with 16 bits below
the point and 16 bits above the point. We suggest that you use numbers in
the range 0 - 1, for compatibility with other conversion SWIs such as
ColourTrans_ConvertCMYKToRGB.

This call is not available in RISC OS 2.

ColourTrans

55



RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertRGBToCIE (on page 53)

RRelaelatted ved vectectorsors
ColourV

SWI Calls

56



ColourTrans_WriteCalibrationToFile
(SWI &40757)

Saves the current calibration to a file

OOn enn entrytry
R0 = flags
R1 = file handle of file to save calibration to

OOn en exitxit
R0 corrupted

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call saves the current calibration to a file. It does so by creating a list of
* Commands which will recreate the current calibration.

If bit 0 of R0 is clear then the calibration will only be saved if it is not the
default calibration. If bit 0 of R0 is set then the calibration will be saved
even if it is the default calibration.

This call is not available in RISC OS 2.

RRelaelatted ved vectectorsors
ColourV

ColourTrans

57



ColourTrans_ConvertRGBToHSV
(SWI &40758)

Converts RISC OS RGB colours into corresponding hue, saturation and
value

OOn enn entrytry
R0 = red component
R1 = green component
R2 = blue component

OOn en exitxit
R0 = hue
R1 = saturation
R2 = value

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts RISC OS RGB colours into corresponding hue, saturation
and value.

All parameters are passed as fixed point 32 bit numbers, with 16 bits below
the point and 16 bits above the point. Hue ranges from 0 - 360 with no
fractional element, whilst the remaining parameters are in the range 0 - 1
and may have fractional elements.

When dealing with achromatic colours, hue is undefined.

SWI Calls

58



This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertHSVToRGB (on page 60)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

59



ColourTrans_ConvertHSVToRGB
(SWI &40759)

Converts hue, saturation and value into corresponding RISC OS RGB
colours

OOn enn entrytry
R0 = hue
R1 = saturation
R2 = value

OOn en exitxit
R0 = red component
R1 = green component
R2 = blue component

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts hue, saturation and value into corresponding RISC OS
RGB colours.

All parameters are passed as fixed point 32 bit numbers, with 16 bits below
the point and 16 bits above the point. Hue ranges from 0 - 360 with no
fractional element, whilst the remaining parameters are in the range 0 - 1
and may have fractional elements.

An error is generated if both the hue and saturation are 0; for this reason we
recommend that when using this call 0 < hue <= 360.

SWI Calls

60



This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertRGBToHSV (on page 58)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

61



ColourTrans_ConvertRGBToCMYK
(SWI &4075A)

Converts RISC OS RGB colours into the CMYK model

OOn enn entrytry
R0 = red component
R1 = green component
R2 = blue component

OOn en exitxit
R0 = cyan component
R1 = magenta component
R2 = yellow component
R3 = key (black) component

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts RISC OS RGB colours into the CMY (cyan/magenta/
yellow) model with a K (key - ie black) additive, allowing easy preparation
of colour separations.

All parameters are passed as fixed point 32 bit numbers in the range 0 - 1,
with 16 bits below the point and 16 bits above the point. The 'K' acts as a
black additive and is a value equally subtracted or added to the given CMY
values.

This call is not available in RISC OS 2.

SWI Calls

62



RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertCMYKToRGB (on page 64)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

63



ColourTrans_ConvertCMYKToRGB
(SWI &4075B)

Converts from the CMYK model to RISC OS RGB colours

OOn enn entrytry
R0 = cyan component
R1 = magenta component
R2 = yellow component
R3 = key (black) component

OOn en exitxit
R0 = red component
R1 = green component
R2 = blue component

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call converts from the CMY (cyan/magenta/yellow) model with a K
(key - ie black) additive to RISC OS RGB colours, allowing easy conversion
from colour separations.

All parameters are passed as fixed point 32 bit numbers in the range 0 - 1,
with 16 bits below the point and 16 bits above the point. The 'K' acts as a
black additive and is a value equally subtracted or added to the given CMY
values.

This call is not available in RISC OS 2.

SWI Calls

64



RRelaelatted Sed SWIWIss
SWI ColourTrans_ConvertRGBToCMYK (on page 62)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

65



ColourTrans_ReadPalette
(SWI &4075C)

Reads either the screen's palette, or a sprite's palette

OOn enn entrytry
R0 = source mode, or -1 for current mode, or (if >= 256) pointer to sprite

area
R1 = source palette pointer, or -1 for current palette, or (if R0 >= 256)

pointer to sprite name/sprite in area pointed to by R0 (as specified by
bit 0 of R4)

R2 = pointer to buffer, or 0 to return required size in R3
R3 = size of buffer (if R2 <> 0)
R4 = flags (used if R0 >= 256):

Bit(s)Bit(s) MeaningMeaning

0 R1 = pointer to sprite; else R1 = pointer to sprite name

1 Return flashing colours; else don't

2-31 Reserved, must be zero

OOn en exitxit
R2 = pointer to next free word in buffer
R3 = remaining size of buffer

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

SWI Calls

66



UUsese

This call reads either the screen's palette, or a sprite's palette. It is the
recommended way of doing so. It provides a way for applications to enquire
about the palette and always read the absolute values, no matter what the
hardware is capable of.

All palette entries are returned as true 24bit RGB, passing through the
calibration if required. In 256 colour modes the palette is returned fully
expanded (ie 256 palette entries, rather than the base 16 entries used by
VIDC).

This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_WritePalette (on page 68)

RRelaelatted ved vectectorsors
ColourVPaletteV

ColourTrans

67



ColourTrans_WritePalette
(SWI &4075D)

Writes to either the screen's palette, or to a sprite's palette

OOn enn entrytry
R0 = -1 to write current mode's palette, or pointer to sprite area
R1 = -1 to write current palette, else ignored (if R0 = -1); or (if R0 >= 0)

pointer to sprite name/sprite in area pointed to by R0 (as specified by
R4)

R2 = pointer to palette to write
R3 reserved (must be zero)

R4 = flags (used if R0 >= 0):
Bit(s)Bit(s) MeaningMeaning

0 R1 = pointer to sprite; else R1 = pointer to sprite name

1 flashing colours; else not present

2-31 Reserved, must be zero

OOn en exitxit
None

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call writes to either the screen's palette, or to a sprite's palette.

256 colour palettes are first compacted to the base 16 entries used by VIDC -
but only if the compacted palette expands via the tint mechanism to the

SWI Calls

68



original palette. Otherwise the full 256 colours are written.

This call is not available in RISC OS 2.

RRelaelatted Sed SWIWIss
SWI ColourTrans_ReadPalette (on page 66)

RRelaelatted ved vectectorsors
ColourVPaletteV

ColourTrans

69



ColourTrans_SetColour
(SWI &4075E)

Changes the foreground or background colour to a GCOL number

OOn enn entrytry
R0 = GCOL number
R3 = flags:

Bit(s)Bit(s) MeaningMeaning

7 set background, else foreground

9 set text colour
R4 = GCOL action

OOn en exitxit
RAll preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call changes the foreground or background colour to a GCOL number
(as returned from ColourTrans_ReturnGCOL). You should only use it for
GCOL numbers returned for the current mode.

If bit 9 of R3 is set on entry, then this call sets the text colours rather than
the graphics colours.

This call is not available in RISC OS 2.

SWI Calls

70



RRelaelatted Sed SWIWIss
SWI ColourTrans_ReturnGCOL (on page 18)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

71



ColourTrans_MiscOp
(SWI &4075F)

This SWI call is for internal use only. You must not use it in your own code.

SWI Calls

72



ColourTrans_WriteLoadingsToFile
(SWI &40760)

Writes a * Command to a file that will set the ColourTrans error loadings

OOn enn entrytry
R1 = file handle

OOn en exitxit
RAll preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call writes a * Command to the specified file that will set the error
loadings within the ColourTrans module. This call is mainly provided to
support desktop saving of the loadings.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

RRelaelatted ved vectectorsors
ColourV

ColourTrans

73



ColourTrans_SetTextColour
(SWI &40761)

Changes the text foreground or background colour to a GCOL number

OOn enn entrytry
R0 = palette entry
R3 = flags word:

Bit(s)Bit(s) MeaningMeaning

7 set background colour; else set foreground colour

0-6 Reserved, must be zero

8-31 Reserved, must be zero

OOn en exitxit
R0 = GCOL
R3 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call changes the text foreground or background colour to the GCOL
number (as returned from ColourTrans_ReturnGCOL) that is closest to the
specified palette entry. You should only use it for GCOL numbers returned
for the current mode.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

SWI Calls

74



RRelaelatted Sed SWIWIss
SWI ColourTrans_SetOppTextColour (on page 76)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

75



ColourTrans_SetOppTextColour
(SWI &40762)

Changes the text foreground or background colour to a GCOL number

OOn enn entrytry
R0 = palette entry
R3 = flags word:

Bit(s)Bit(s) MeaningMeaning

7 set background colour; else set foreground colour

0-6 Reserved, must be zero

8-31 Reserved, must be zero

OOn en exitxit
R0 = GCOL
R3 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call changes the text foreground or background colour to the GCOL
number (as returned from ColourTrans_ReturnGCOL) that is furthest from
the specified palette entry. You should only use it for GCOL numbers
returned for the current mode.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

SWI Calls

76



RRelaelatted Sed SWIWIss
SWI ColourTrans_SetTextColour (on page 74)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

77



ColourTrans_GenerateTable
(SWI &40763)

Sets up a translation table in a buffer

OOn enn entrytry
R0 = source mode, or -1 for current mode, or (if = 256) pointer to sprite, or

(if > 256) pointer to sprite area
R1 = source palette pointer, or -1 for current palette, or (if R0 >= 256)

pointer to sprite name/sprite in area pointed to by R0 (as specified by
bit 0 of R5)

R2 = destination mode, or -1 for current mode
R3 = destination palette pointer, or -1 for current palette, or 0 for default

for the mode
R4 = pointer to buffer, or 0 to return required size of buffer
R5 = flags:

Bit(s)Bit(s) MeaningMeaning

0 R1 = pointer to sprite; else R1 = pointer to sprite name

1 use current palette if sprite doesn't have one; else use default

2 use R6 and R7 to specify transfer function

24-31 format of table:
VValuealue MeaningMeaning

0 return Pixel translation table

1 return physical palette table

other reserved

other Reserved, must be zero
R6 = pointer to workspace for transfer function (if bit 2 of R5 is set)
R7 = pointer to transfer function (if bit 2 of R5 is set)

OOn en exitxit
R0 - R3 preserved

R4 = required size of buffer (if R4 = 0 on entry), or preserved
R5 - R7 preserved

InIntterruperruptsts
Interrupts are enabled
Fast interrupts are enabled

SWI Calls

78



PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call is exactly the same as ColourTrans_SelectTable (see SWI
ColourTrans_SelectTable (on page 13)), except that it assumes that R5
always contains a valid flags word.

This call is not available in RISC OS 2, nor in RISC OS 3 (version 3.00).

RRelaelatted Sed SWIWIss
SWI ColourTrans_SelectTable (on page 13)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

79



* Commands

*ColourTransLoadings
Sets the red, green and blue weightings used when trying to match colours

SSynyntaxtax
*ColourTransLoadings <redweight> <greenweight>
<blueweight>

PPararameamettersers
<redweight> - red weighting used when trying to match colours

<greenweight> - green weighting used when trying to match colours

<blueweight> - blue weighting used when trying to match colours

UUsese

*ColourTransLoadings sets the red, green and blue weightings used when
trying to match colours (as described in Finding a colour (on page 2)).

The main purpose of this command is to enable the Task Manager to save
the calibration when a desktop save is done. You should not use it yourself.

This command is not available in RISC OS 2, nor in RISC OS 3 (version
3.00).

ExExamplesamples
*ColourTransLoadings &2 &4 &1

RRelaelatted Sed SWIWIss
SWI ColourTrans_WriteLoadingsToFile (on page 73)

RRelaelatted ved vectectorsors
ColourV

* Commands

80



*ColourTransMap
Sets up a calibration table from its parameters

SSynyntaxtax
*ColourTransMap <RRGGBBDD> <RRGGBBDD> <RRGGBBDD>
<RRGGBBDD> <etc.>

PPararameamettersers
<RRGGBBDD> - 8 hex digits, such that &RRGGBBDD is the number to be

placed in the calibration table

UUsese

*ColourTransMap sets up a calibration table from its parameters. The
number of parameters passed for each component must have been
specified in a previous *ColourTransMapSize command.

The main purpose of this command is to enable the Task Manager to save
the calibration when a desktop save is done.

This command is not available in RISC OS 2.

ExExamplesamples
*ColourTransMap 01000000 FF0000FF 00020000 00FE00FF etc.

RRelaelatted * ced * commandsommands
*ColourTransMapSize (on page 82)

RRelaelatted Sed SWIWIss
SWI ColourTrans_WriteCalibrationToFile (on page 57)

RRelaelatted ved vectectorsors
ColourV

ColourTrans

81



*ColourTransMapSize
Sets how parameters will be passed in the next *ColourTransMap
command

SSynyntaxtax
*ColourTransMapSize <n1> <n2> <n3>

PPararameamettersers
<n1> - number of parameters to be passed in *ColourTransMap for

component 1

<n2> - number of parameters to be passed in *ColourTransMap for
component 2

<n3> - number of parameters to be passed in *ColourTransMap for
component 3

UUsese

*ColourTransMapSize sets the number of parameters that will be passed in
the next *ColourTransMap command for each component. It hence also
sets the size of the resultant calibration table, which will be (3 + n1 + n2 + n3)
words long. The values n1, n2 and n3 are given in the reverse order to a
standard calibration table.

The main purpose of this command is to enable the Task Manager to save
the calibration when a desktop save is done.

This command is not available in RISC OS 2.

ExExamplesamples
*ColourTransMapSize 8 10 8

RRelaelatted * ced * commandsommands
*ColourTransMap (on page 81)

RRelaelatted Sed SWIWIss
SWI ColourTrans_WriteCalibrationToFile (on page 57)

* Commands

82



RRelaelatted ved vectectorsors
ColourV

ColourTrans

83



Document information
Maintainer(s):Maintainer(s): RISCOS Ltd <developer@riscos.com>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 ROL Initial version

DDisclaimerisclaimer:: Copyright © Pace Micro Technology plc, 2001.
Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in
any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, or stored in any retrieval system of any
nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the
publisher.

Document information

84

mailto:developer@riscos.com

	ColourTrans
	Introduction
	Overview
	Definition of terms
	Finding a colour
	Setting a colour
	Conversion
	Sprites and Fonts
	Using other palette SWIs
	Wimp
	Printing
	Colour calibration

	Technical Details
	Colours
	GCOL
	Colour number
	Palette entry

	Finding a colour
	Palette pointers
	Modes
	Best fit colour

	Setting a colour
	Conversion
	Sprites and Fonts
	Using other palette SWIs
	Colour calibration
	Calibration tables


	Service Calls
	SWI Calls
	* Commands
	Document information
	Initial version



