
Introduction and Overview
An OptionsWindow dialogue object is used to provide a standard, organised
manner to allow configuration of the options for an application or
document through a dialogue box.

As applications grow in complexity, so their configuration requirements
will grow. Many methods for configuring large numbers of options have
been used throughout the life of RISC OS, with varying degrees of success.
Whilst there will always be applications which have specific requirements
for their configuration, it is advantageous to standardise the style of
configuration tools on a particular form.

The form which is most functional and which has been standardised upon
by a number of applications, best known of which was Browse has been
used. This is a single window interface using a number of panes selected
through radio buttons.

UUser inser intterferfacacee

A OptionsWindow dialogue takes the following form:

The OptionsWindow Dialogue
The

OptionsWindow
Dialogue

The user interface provided by the OptionsWindow conforms to that
declared in the StyleGuide and used by modern RISC OS applications. The
window components perform the following functions :

● Selecting a radio icon causes the currently displayed pane to be
hidden and replaced by the appropriate pane.

● The 'Set' button, where present, will cause the current settings from
all panes to be configure.
If Select is used to choose the 'Set' button, the window will be closed.
If Adjust is used to choose the 'Set' button, the window remains open.

● The 'Cancel' button, where present, will cause the settings shown
within the panes to be reset to the current configuration.

OptionsWindow Dialogue box class

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

If Select is used to choose the 'Cancel' button, the window will be
closed.
If Adjust is used to choose the 'Cancel' button, the window remains
open.

● The 'Save' button, where present, will cause the current settings from
all panes to be configured and the settings written to disc.
If Select is used to choose the 'Save' button, the window will be closed.
If Adjust is used to choose the 'Save' button, the window remains
open.

● The 'Default' button, where present, will cause the current settings in
all panes to be set to the defaults but not configured.
The operation is the same for Select and Adjust.

● The 'Enter' key will trigger the operation of the button designated as
the default button in the options window - the lowest of the buttons.
The window will be closed.

● The 'Escape' key will trigger the operation of the button designated as
the cancel button in the options window - the second lowest of the
buttons (Default is never used for this operation). If no button is
present, the default operation is selected.
The window will be closed.

● Help text is provided for all buttons and radio icons.
● Where modifications have been made to the settings, the title bar will

indicate this with an asterisk.
● Each pane is considered independant of its siblings. No settings

within one pane affect the settings in another pane.

Introduction and Overview

2

Technical details
The OptionsWindow object consists of a Window controlled by
OptionsWindow and a number of pane Window objects, supplied by the
application. These panes are referred to as components of the
OptionsWindow object, and are dealt with as such in method operations on
the object and events returned by the object.

AAttributttributeses

A OptionsWindow object has the following attributes which are specified in
its object template and can be manipulated at run-time by the client
application:

AttributesAttributes DescriptionDescription

flags flags for this component
Bit(s)Bit(s) MeaningMeaning

0 indicates that the pane Windows will not be
monitored for 'Modified' events automatically.

1 indicates that the object has a 'Set' button.

2 indicates that the object has a 'Cancel' button.

3 indicates that the object has a 'Save' button.

4 indicates that the object has a 'Default' button.

title alternative title to use instead of 'Options'
(0 means use default title)

windowlist this is a comma-separated string which lists the names of the
panes which should be automatically attached to the
OptionsWindow.

MManipulaanipulating a Oting a OpptionstionsWindoWindow objectw object

Creating and deleting a OptionsWindow object

An OptionsWindow object is created using SWI Toolbox_CreateObject.

When this object is created it will automatically attach any the objects listed
in the Template (see ?TOOLINTRO.HTML#24528).

An OptionsWindow object is deleted using SWI Toolbox_DeleteObject.

OptionsWindow Dialogue box class

3

The setting of the non-recursive delete bit will prevent the attached panes
from being deleted with the OptionsWindow object.

Showing a OptionsWindow object

When an OptionsWindow object is displayed on the screen using SWI
Toolbox_ShowObject it has the following behaviour:

ShoShow typew type PPositionosition

0 (default) the underlying window is shown centred in the screen.

1 (full spec) fully specified window position in R3:
OOffsetffset ContentsContents

+0 visible area minimum x coordinate

+4 visible area maximum y coordinate

2 (topleft) specifying the top left corner in R3 :
OOffsetffset ContentsContents

+0 visible area minimum x coordinate

+4 visible area maximum y coordinate

Manipulating OptionsWindow panes

The application can either supply a list of Window objects which will be
automatically attached to the OptionsWindow when it is created, or attach
pane Window objects at run time. When automatically attached, the panes
will be given ascending component numbers, starting at 0.

The panes used in the OptionsWindow can be controlled through a number
of methods provided by the OptionsWindow object:

● OptionsWindow_AddPane (on page 9)
● OptionsWindow_RemovePane (on page 10)
● OptionsWindow_SelectPane (on page 11)
● OptionsWindow_EnumeratePanes (on page 14)

Reading the state of the OptionsWindow dialogue

The OptionsWindow object has only one piece of state information, the
'modified flag. It can be manipulated with:

● OptionsWindow_SetModified (on page 12)
● OptionsWindow_GetModified (on page 13)

Technical details

4

MModificaodification checkstion checks

The OptionsWindow will monitor the panes currently displayed for changes
to the standard gadgets. In particular, the gadget monitors :

● OptionButton_StateChanged
● RadioButton_StateChanged
● WritableField_ValueChanged
● Slider_ValueChanged
● Adjuster_Clicked
● NumberRange_ValueChanged
● StringSet_ValueChanged
● ColourSwatch_ColourChanged

⚠ FIXME: Link these with references

Any of these events occurring on a pane Window will cause the
OptionsWindow to be marked as modified automatically. This behaviour
can be disabled through a flag in the OptionsWindow template. Any changes
which are caused by events outside these, for example through a FontDBox
object attached to the window, will need to be notified a method call to the
OptionsWindow.

PPane Windoane Window objectsw objects

Each Pane window must conform to a number of very simple requirements :

● It must have a window foreground of 'transparent'.
This will cause the title bar and window borders to be removed.

● It must have a title which will be used on the radio icon to select the
window.
Although the title is not used for the Window, it will still be present
and its use on the radio icon allows the radio icons to be
internationalised easily.

● The extent of the window must cover the extent used by the options
within the window.
The window will automatically be extended to fill the space required
by the largest of the panes, and the main window's options and
buttons.

● As a consequence of the above, there must be no gadgets outside the
apparent visible area of the Window as these may be exposed when
the window is extended.

● It is recommended that the title be one or two words, preferably
including a noun describing the area to be configured.

OptionsWindow Dialogue box class

5

Other than this, the Window can contain any gadget which it requires.

AAction Buttction Buttonsons

The buttons displayed on the OptionsWindow object can be controlled
through the flags given in the Object template. The options which can be
used on the OptionsWindow are :

● Set
● Cancel
● Save
● Default

These are independant of one another, but certain combinations make little
sense. In particular, no buttons or just a Default button will actually cause
the Cancel button to be included on the dialogue. Without this Cancel
button, the window would not be closable by the user.

UUser eser evvenentsts

The OptionsWindow is intended to use modular configuration panes. That
is, the changes to panes are requested, or applied individually. This should
reduce the processing required to just those panes which have been
accessed by the user.

A typical example of this is that when showing an OptionsWindow for the
first time, the first pane will be selected. As the pane is selected, an event
will be sent to the application to request that it update the pane with the
current settings. The application should only update that single pane. When
a new pane is selected (either by the user or through a method call), an
event will be delivered for that pane.

When the user selects 'Set', the application will be sent a number of events to
read the settings from them. This will only occur for the panes which have
been made visible. Once set, all the panes will be marked as not having been
seen and will not be reset.

When the 'Default' button is pressed, all the panes must be updated with the
default settings, and events will be sent to the application to that effect.

The 'Save' operation is a combination of the 'Set' operation for each pane
which had been visible and a save event for the entire settings; that is, the
application will receive a number of events to read the settings, followed by
a save event.

At any time, the dialogue may be closed by the user, either by pressing the

Technical details

6

'Save', 'Set' or 'Cancel' buttons, or by the relevant key press. This will result in
an event being delivered to inform the application that the dialogue has
been completed. No operation should be performed on the configuration on
receipt of this event, but any associated objects should be deleted or at least
hidden by the application.

OOpptionstionsWindoWindow tw templaemplatteses

The layout of a OptionsWindow template is shown below. Fields which have
types MsgReference and StringReference are those which will require
relocation when they are loaded from a resource file. If the template is
being constructed in memory, then these fields should be real pointers (i.e.
they do not require relocation).

For more details on relocation, see ?SUPPORT310.HTML#65428.

FFieldield Size in bSize in bytesytes TTypeype

flags 4 word

title 4 MsgReference

windowlist 4 StringReference

OOpptionstionsWindoWindow Wimp ew Wimp evvenent handlingt handling

WWimp evimp eventent AActionction

Open Window Show the dialogue box

Key Click if Escape, then cancel this dialogue
if Return pressed, perform the default action.

User Message Events as listed in Modification checks (on page 5)
Mark the object as modified
ActionButton_Selected
Perform the relevant operation for the button pressed
RadioButton_StateChanged
Change the pane displayed.

OptionsWindow Dialogue box class

7

Toolbox methods
The following methods are all invoked by calling SWI
Toolbox_ObjectMiscOp with:

VValuealue MeaningMeaning

R0 holding a flags word

R1 being a OptionsWindow Dialogue object id

R2 being the method code which distinguishes this method

R3-R9 potentially holding method-specific data

OptionsWindow_GetWindowID
(Method &0)

Read the Window ObjectId used for this object

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 0

OOn en exitxit
R0 = window object id for this OptionsWindow object

UUsese

This method returns the id of the underlying Window object used to
implement this OptionsWindow object.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_get_window_id (
unsigned int flags, ObjectId optionswindow, ObjectId
*window);

Toolbox methods

8

OptionsWindow_AddPane
(Method &1)

Add a new pane to the OptionsWindow object

OOn enn entrytry
R0 = flags (reserved, must be 0)
R1 = OptionsWindow object id
R2 = 1
R3 = new component id for pane
R4 = Window object id for new pane

OOn en exitxit
R1 - RR9 preserved

UUsese

This method add a new pane to the list of panes used by the
OptionsWindow. If this is the first pane and the OptionsWindow is shown,
the pane will be selected.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_add_pane (unsigned
int flags,
ObjectId optionswindow,
ComponentId new_componentid,
ObjectId new_panewindow
);

OptionsWindow Dialogue box class

9

OptionsWindow_RemovePane
(Method &2)

Remove an existing Pane from the OptionsWindow

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 2
R3 = component id of the pane to remove

OOn en exitxit
R1 - RR9 preserved

UUsese

This method removes a pane from those controlled by the OptionsWindow.
If the specified pane is currently selected, the OptionsWindow will revert to
the first pane.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_remove_pane (
unsigned int flags,
ObjectId optionswindow,
ComponentId component
);

Toolbox methods

10

OptionsWindow_SelectPane
(Method &3)

Selects a pane of the OptionsWindow object for display

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 3
R3 = component id of the pane to display

OOn en exitxit
R1 - RR9 preserved

UUsese

This method displays a given pane.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_select_pane (
unsigned int flags,
ObjectId optionswindow,
ComponentId component
);

OptionsWindow Dialogue box class

11

OptionsWindow_SetModified
(Method &4)

Change the modification details for the OptionsWindow object

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 1
R3 = value

OOn en exitxit
R1 - RR9 preserved

UUsese

This method sets whether the options have been modified or not. If the
value passed in R3 is 0, this indicates that the options is not modified; any
other value in R3 means the options have been modified.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_set_modified (
unsigned int flags, ObjectId optionswindow, int modified
);

Toolbox methods

12

OptionsWindow_GetModified
(Method &5)

Read the modification details for the OptionsWindow object

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 2

OOn en exitxit
R0 = modified state (0 = unmodified; non-0 = modified)

UUsese

This method returns whether the options have been modified or not.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_get_modified (
unsigned int flags, ObjectId optionswindow, int *modified
);

OptionsWindow Dialogue box class

13

OptionsWindow_EnumeratePanes
(Method &6)

Enumerate the panes used by the OptionsWindow

OOn enn entrytry
R0 = flags
R1 = OptionsWindow object id
R2 = 2
R3 = last pane component id, or -1 initially

OOn en exitxit
R0 = pane Window object id if R3 contains a valid component id
R3 = component id of this pane, or -1 if no more components

UUsese

This method enumerates the panes attached to the OptionsWindow.

DeclarDeclaraationstions
extern _kernel_oserror *optionswindow_enumerate_panes (
unsigned int flags,
ObjectId optionswindow,
ComponentId last_component,
ObjectId *window,
ComponentId *component
);

Toolbox methods

14

Toolbox events
The OptionsWindow object generates the following Toolbox events:

OptionsWindow Dialogue box class

15

OptionsWindow_DialogueCompleted
(Event &100280)

Notification that a OptionsWindow object is no longer visible

MMessageessage
OOffsetffset ContentsContents

R1+8 &100280

R1+12 flags (none yet defined)

UUsese

This Toolbox event is raised after the OptionsWindow object has been
hidden, either by the user Select clicking on the buttons, or the equivilent
keyboard operation. It allows the client to tidy up its own state associated
with this dialogue.

DeclarDeclaraationstions
typedef struct
{
ToolboxEventHeader hdr;
} OptionsWindowDialogueCompletedEvent;

Toolbox events

16

OptionsWindow_FillInPaneDefault
(Event &100281)

Request that the application fill in a pane with the default settings

MMessageessage
OOffsetffset ContentsContents

R1+8 &100281

R1+12 flags (none yet defined)

R1+16 pane object id

UUsese

This Toolbox event is raised to request that the application fill in a pane
with the default settings. The application's Id Block will be filled in with the
OptionsWindow object id and pane component number.

DeclarDeclaraationstions
typedef struct
{
ToolboxEventHeader hdr;
ObjectId pane_window;
} OptionsWindowFillInPaneEvent;

OptionsWindow Dialogue box class

17

OptionsWindow_FillInPaneCurrent
(Event &100282)

Request that the application fill in a pane with the current settings

MMessageessage
OOffsetffset ContentsContents

R1+8 &100282

R1+12 flags (none yet defined)

R1+16 pane object id

UUsese

This Toolbox event is raised to request that the application fill in a pane
with the current settings. The application's Id Block will be filled in with the
OptionsWindow object id and pane component number.

DeclarDeclaraationstions
typedef struct
{
ToolboxEventHeader hdr;
ObjectId pane_window;
} OptionsWindowFillInPaneEvent;

Toolbox events

18

OptionsWindow_ConfigurePane
(Event &100283)

Request that the application read the settings from an OptionsWindow pane

MMessageessage
OOffsetffset ContentsContents

R1+8 &100283

R1+12 flags (none yet defined)

R1+16 pane object id

UUsese

This Toolbox event is raised to request that the application read the details
from a pane and apply them to the current settings. The application's Id
Block will be filled in with the OptionsWindow object id and pane
component number.

DeclarDeclaraationstions
typedef struct
{
ToolboxEventHeader hdr;
ObjectId pane_window;
} OptionsWindowConfigurePaneEvent;

OptionsWindow Dialogue box class

19

OptionsWindow_Save
(Event &100284)

Request that the application save all settings

MMessageessage
OOffsetffset ContentsContents

R1+8 &100284

R1+12 flags (none yet defined)

UUsese

This Toolbox event is raised to request that the application save its settings.
The application's Id Block will be filled in with the OptionsWindow object
id.

DeclarDeclaraationstions
typedef struct
{
ToolboxEventHeader hdr;
} OptionsWindowSaveEvent;

Toolbox events

20

Document information
Maintainer(s):Maintainer(s): RISCOS Ltd <developer@riscos.com>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 07 Jun 2004 ROL First version

DDisclaimerisclaimer:: Copyright © Pace Micro Technology plc, 2001.
Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in
any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, or stored in any retrieval system of any
nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the
publisher.

OptionsWindow Dialogue box class

21

mailto:developer@riscos.com

	OptionsWindow Dialogue box class
	Introduction and Overview
	User interface

	Technical details
	Attributes
	Manipulating a OptionsWindow object
	Creating and deleting a OptionsWindow object
	Showing a OptionsWindow object
	Manipulating OptionsWindow panes
	Reading the state of the OptionsWindow dialogue

	Modification checks
	Pane Window objects
	Action Buttons
	User events
	OptionsWindow templates
	OptionsWindow Wimp event handling

	Toolbox methods
	Toolbox events
	Document information
	First version

