
Introduction and Overview
SharedSoundBuffer is a module for playing raw data using the
SharedSound module. It requires SharedSound version 1.0 or later.

The module has been designed so it is easy to play sounds from any
application.

SharedSoundBuffer

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Technical Details
In order to play audio data, SharedSoundBuffer is called in the background
by SharedSound. This allows the module to continue in, and out of the
desktop. Data may be passed during callbacks, allowing the system as a
whole to run independent on any foreground application.

When streaming, an application must feed data to SharedSoundBuffer in a
timely fashion. Data is supplied as arbitrary sized blocks, which are
consulted in the order in which they were presented to the module. If the
player runs out of data it will pause until some more data is supplied. Blocks
are copied by SharedSoundBuffer, so they must only be kept for the
duration of the call to AddBlock.

When the end of a buffer is reached, the player will continue seamlessly to
the next buffer. The data should be frame-aligned, i.e. each block supplied
should be a multiple of four bytes, but it is not necessary to ensure that they
are a multiple of the SharedSound fill buffer.

A base handle is provided, this is always present and has a stream handle of
zero. This does not need to be opened, and cannot be closed, and should be
used by programs which only output short, atomic samples. It should not be
used by programs which multi-task between adding blocks, otherwise other
programs may intersperse their data in with it. It should also not be used by
background routines for the same reasons.

Technical Details

2



SWI calls

SharedSoundBuffer_OpenStream
(SWI &55FC0)

Opens a stream

OOn enn entrytry
R0 = flags :

Bit(s)Bit(s) MeaningMeaning

0-31 Reserved, must be 0.
R1 = pointer to name for stream

OOn en exitxit
R0 = handle of created stream

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to open a stream prior to passing blocks. The handle
returned is a 32 bit opaque word, which will never be zero. The handle zero
is reserved for the base handle.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_CloseStream (on page 4)
SWI SharedSoundBuffer_AddBlock (on page 5)

SharedSoundBuffer

3



SharedSoundBuffer_CloseStream
(SWI &55FC1)

Closes and stops a stream immediately

OOn enn entrytry
R0 = stream handle

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to close a stream, stopping playback and freeing any
memory associated with it immediately. This is in contrast with SWI
SharedSoundBuffer_StreamEnd (on page 14), which continues playback
until all data has drained.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_OpenStream (on page 3)
SWI SharedSoundBuffer_StreamEnd (on page 14)

SWI calls

4



SharedSoundBuffer_AddBlock
(SWI &55FC2)

Adds a block to a stream's queue

OOn enn entrytry
R0 = stream handle
R1 = pointer to block
R2 = block size, in bytes

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to add a block to be queued.

If the queue is full, the error Error_AudioQueueFull (on page 15) is returned
and the block is not added. It will also clear the appropriate bit in the
current poll word.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_OpenStream (on page 3)

SharedSoundBuffer

5



SharedSoundBuffer_PollWord
(SWI &55FC3)

Sets up the buffer pollword

OOn enn entrytry
R0 = stream handle
R1 = flags :

Bit(s)Bit(s) MeaningMeaning

0 VValuealue EffectEffect

0 Supply the poll word

1 Use the poll word specified

1-31 Reserved, must be 0.
R1 = if bit 0 of R0 set:

pointer to word
R2 = if bit 0 of R0 set:

bit number to set

OOn en exitxit
R0 = if bit 0 of R0 clear on entry:

pointer to opaque poll word

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

SWI calls

6



UUsese

This SWI sets up the poll word used by the specified stream. The poll word
bit will be set when blocks are removed from the buffer, it will be cleared
when a block cannot be fitted into the buffer. If the poll word is supplied by
the module, it should be treated as an opaque word, and only compared
with zero.

The poll word can be changed as often as is necessary.

SharedSoundBuffer

7



SharedSoundBuffer_Volume
(SWI &55FC4)

Set the volume of output

OOn enn entrytry
R0 = stream handle
R1 = Volume, as two unsigned 16 bit values packed into a 32 bit word

&LLLLRRRR

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call sets the volume of the stream.

RRelaelatted APIed APIss
None

SWI calls

8



SharedSoundBuffer_SampleRate
(SWI &55FC5)

Set the sample rate

OOn enn entrytry
R0 = stream handle
R1 = new sample rate in 1024th Hz steps

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to set the sample rate of the data being played.

RRelaelatted APIed APIss
None

SharedSoundBuffer

9



SharedSoundBuffer_ReturnSSHandle
(SWI &55FC6)

Return the internal SharedSound handle

OOn enn entrytry
R0 = stream handle

OOn en exitxit
R0 = current SharedSound handle

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to read the low-level SharedSound handle currently in use
by the stream. This is a dynamic value, i.e. it may change at any time
throughout the lifetime of a stream. Wherever possible you must use the
defined SharedSoundBuffer calls.

RRelaelatted APIed APIss
None

SWI calls

10



SharedSoundBuffer_SetBuffer
(SWI &55FC7)

Set the stream buffer limit

OOn enn entrytry
R0 = stream handle
R1 = buffer limit in bytes

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to set the maximum amount of data which may be buffered
for that stream at any time.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_BufferStats (on page 12)

SharedSoundBuffer

11



SharedSoundBuffer_BufferStats
(SWI &52E08)

Find out information about the buffer

OOn enn entrytry
R0 = stream handle

OOn en exitxit
R0 = number of unplayed bytes

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to find out how many bytes are left unplayed in the buffer.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_SetBuffer (on page 11)

SWI calls

12



SharedSoundBuffer_Pause
(SWI &55FC9)

Pauses playback

OOn enn entrytry
R0 = stream handle
R1 = flags :

Bit(s)Bit(s) NameName MeaningMeaning

0 Resume Resumes playback.

1-31 Reserved, must be
0.

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to pause or resume playback. While paused, sound output
is silenced, but blocks will be retained and may be added, up to the usual
limits.

RRelaelatted APIed APIss
None

SharedSoundBuffer

13



SharedSoundBuffer_StreamEnd
(SWI &55FCA)

Closes a stream

OOn enn entrytry
R0 = stream handle

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to close a stream, allowing output to continue and
retaining memory buffers until they are finished. The stream handle must
not be used after this has been called.

RRelaelatted Sed SWIWIss
SWI SharedSoundBuffer_CloseStream (on page 4)

SWI calls

14



Errors

Error_AudioQueueFull
(Error &81A140)

Audio queue full

UUsese

This error is returned by SWI SharedSoundBuffer_AddBlock (on page 5)
when the block passed would cause there to be more data buffered than the
threshold set with SWI SharedSoundBuffer_SetBuffer (on page 11). The
block passed is not added to the queue.

SharedSoundBuffer

15



Document information
Maintainer(s):Maintainer(s): John Duffell <jd@eh.org>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 JD First XML monitored version

● First XML version of the document.
RRelated:elated: None

DDisclaimerisclaimer:: This document is, to the best of my knowledge, a correct
representation of the API of SharedSoundBuffer.

Document information

16

mailto:jd@eh.org

	SharedSoundBuffer
	Introduction and Overview
	Technical Details
	SWI calls
	Errors
	Document information
	First XML monitored version



