
Introduction and Overview
The ZLib module provides a shared interface to the ZLib compression
library. It provides a simple SWI interface, and a direct library replacement
interface. The simple SWI interface looks the same as that for Squash will
act as such. The direct replacement interface provides a number of SWIs
which may be accessed as is they were the original C routines.

To complement the SWI interface, a C library is also provided as a set of
veneer functions to allow the ZLib library to be called as if it had been
statically linked.

The 'zlib' compression library provides lossless in-memory compression
and decompression functions, including integrity checks of the
uncompressed data. Compression can be done in a single step if the buffers
are large enough (for example if an input file is mmap'ed), or can be done by
repeated calls of the compression function. In the latter case, the caller
must provide more input and/or consume the output (providing more
output space) before each call.

ZLib

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Terminology
ZLib (q.v. RFC 1950) is a standard, freely available library produced by Jean-
loup Gailly and Mark Adler which provides compression based on the
standard 'deflate' algorithm (q.v. RFC 1951). In addition, the ZLib library
(and module) supports the GZip compression algorithm (q.v. RFC 1952)
with extensions for RISC OS file information.

Terminology

2



Technical Details
The ZLib module provides two primary interfaces for the programmer. The
first of these is a Squash-like interface to the ZLib library. Applications
which already support the use of Squash can be changed to use ZLib by
simply changing the SWIs that are called.

The second interface that the module provides is that of a direct
replacement for the ZLib C library. Because this is provided as a SWI
interface, this means that it is accessible to applications written in any
language.

ZLib SZLib SWI inWI intterferfacacee

This SWIs that the module provides have equivilent (or similar) names to
those of the C interface. A C interface library is provided to interact with the
ZLib module such that it should not be necessary to use these calls directly
from C.

InInfformaormational Stional SWIWIss

The informational calls are not related to providing compression. These
SWIs are the CRC32, Adler32 and Version SWIs.

GZip SGZip SWIWIss

The GZip calls provide GZip file compression. GZip files are compressed
containers for a single file of data. GZip files contain additional information
about the file they contain. This additional information is used to store RISC
OS-specific file data such as the filetype, and datestamp.

ZLib SZLib SWIWIss

The ZLib calls provide deflate format data compression. Data compressed
by the deflate algorithm is extractable by equivilent deflate decompressors.
No additional data is included within the compressed data about its source.
If further meta-data is required, it should be included in the output format
in some application specific format. Zip files are one such example of a
deflate format encapsulation.

ZLib

3



DDaata fta formaormatsts

Stream Control Block

In order to function, a 'stream control block' must be provided to the ZLib
SWIs. This control block is a private structure which can be manipulated by
both the client and the ZLib module. Initially, the table should be set to 0
before being called (except where indicated).

Technical Details

4



OOffsetffset NameName ContentsContents

+0 next_in Pointer to the next available input byte. This value
should be zero initially, and be updated by both the
client and the ZLib module as data is processed.

+4 avail_in Amount of input data available for use by the ZLib
module. This value should be zero initially, and be
updated by both the client and the ZLib module as data
is processed.

+8 total_out Total number of bytes read so far.

+12 next_out Pointer to the next output byte. This value should be
zero initially, and be updated by both the client and the
ZLib module as data is processed.

+16 avail_out Amount of space in the output buffer for use by the
ZLib module. This value should be zero initially, and be
updated by both the client and the ZLib module as data
is processed.

+20 total_out Total number of bytes output so far.

+24 msg Pointer to the last error message, or 0 if no error has
been generated.

+28 state Private value, controlled by the ZLib module. The client
should not modify this value.

+32 zalloc Address of memory allocator function, or 0 for ZLib to
control memory allocation.

+36 zfree Address of memory free function, or 0 for ZLib to
control memory allocation.

+40 opaque Opaque handle to pass to allocator and free functions.

+44 data_type ZLib module's guess of the type of the data :
VValuealue MeaningMeaning

0 Binary

1 ASCII

2 Unknown

+48 adler Adler-32 value for uncompressed data processed so
far.

+52 reserved Reserved for future expansion. Must be zero.

Flush types

Where data is being written to a stream, a 'flush type' is provided to describe
what sort of operations should be performed on writing the data. Flushing
may degrade compression for some compression algorithms and so it

ZLib

5



should be used only when necessary.

TTypeype NameName MeaningMeaning

0 Z_NO_FLUSH Do not flush data, but just write data as
normal to the output buffer. This is the
normal way in which data is written to the
output buffer.

1 Z_PARTIAL_FLUSH Obsolete. You should use Z_SYNC_FLUSH
instead.

2 Z_SYNC_FLUSH All pending output is flushed to the output
buffer and the output is aligned on a byte
boundary, so that the decompressor can get
all input data available so far.

3 Z_FULL_FLUSH All output is flushed as with Z_SYNC_FLUSH,
and the compression state is reset so that
decompression can restart from this point if
previous compressed data has been damaged
or if random access is desired. Using
Z_FULL_FLUSH too often can seriously
degrade the compression. SWI
ZLib_InflateSync (on page 46) will locate
points in the compression string where a full
has been performed.

4 Z_FINISH Notifies the module that the input has now
been exhausted. Pending input is processed,
pending output is flushed and calls return
with Z_STREAM_END if there was enough
output space.

Compression levels

For compression calls, the compression level can be specified. This
determines how much work is performed on trying to compress the input
data. Lower compression levels indicate lesser compression, and greater
speed. Higher levels indicate greater compression, but lesser speed.

LevLevelel NameName MeaningMeaning

0 Z_NO_COMPRESSION No compression should be used at
all.

1 Z_BEST_SPEED Minimal compression, but greatest
speed.

9 Z_BEST_COMPRESSION Maximum compression, but slowest.

-1 Z_DEFAULT_COMPRESSION Select default compression level.

Technical Details

6



Compression strategy

For compression calls, the compression strategy can be specified. This
determines what type of processing is performed on the input data. If set
incorrectly, the compression strategy will produce lesser compression
ratios, but does not affect the correctness of the data.

StrategyStrategy NameName MeaningMeaning

0 Z_DEFAULT_STRATEGY The default strategy is the most
commonly used. With this strategy,
string matching and huffman
compression are balanced.

1 Z_FILTERED This strategy is designed for filtered
data. Data which consists of mostly
small values, with random
distribution should use Z_FILTERED.
With this strategy, less string
matching is performed.

2 Z_HUFFMAN_ONLY This strategy performs no string
matching, only the huffman encoding
is performed.

Compression method

The compression method determines what algorithm is used to perform the
compression. Presently only Z_DEFLATED is supported.

MethodMethod NameName MeaningMeaning

8 Z_DEFLATED Use deflate algorithm

Memory level

The memory level determines how much memory should be allocated for
the internal compression state. The default value is 8.

LevLevelel MeaningMeaning

1 Uses minimal memory, but is slow and reduces the compression
ratio.

9 Uses maximum memory for optimal speed.

ZLib

7



Window bits

Whilst searching for matching strings in the input data, a 'window' is used
on to the previous data. This window is used to determine where matches
occur. The value of the 'window bits' parameter is the base two logarithm of
the size of the window. It should be in the range 9 to 15 for this version of
the library. Larger values result in better compression at the expense of
memory usage.

ZLib return code

Most ZLib SWIs return a 'return code'. This declares the state that the SWI
encountered during the operation.

CodeCode NameName MeaningMeaning

0 Z_OK No failure was encountered, the operation
completed without problem.

1 Z_STREAM_END No failure was encountered, and the input
has been exhausted.

2 Z_NEED_DICT A preset dictionary is required for the
decompression of the data.

-1 Z_ERRNO An internal error occurred

-2 Z_STREAM_ERROR The stream structure was inconsistant

-3 Z_DATA_ERROR Input data has been corrupted (for
decompression).

-4 Z_MEM_ERROR Memory allocation failed.

-5 Z_BUF_ERROR There was not enough space in the output
buffer.

-6 Z_VERSION_ERROR The version supplied does not match that
supported by the ZLib module.

Technical Details

8



SWI calls

ZLib_Compress
(SWI &53AC0)

Simple Squash-like compression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

0 Continue previously started operation

1 More input remains after this call

2 Reserved, must be 0

3 Return workspace required

4 Workspace is not bound to an application

5-10 Reserved, must be 0
R1 - R5 = dependant on flags

OOn en exitxit
R0 - R5 = dependant on flags

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

ZLib

9



UUsese

This SWI is similar to SWI Squash_Compress (on page 0), providing a drop
in replacement for the Squash module but using ZLib compression. There
are two variants of this SWI - with bit 3 set, and with bit 3 clear. Normally,
this call will be made first with bit 3 set to read the workspace size, and then
with bit 3 clear to perform the decompression.

RRelaelatted Sed SWIWIss
SWI ZLib_Decompress (on page 14)
SWI Squash_Decompress (on page 0)

SWI calls

10

artifacts/docs/html/squash.html#swi_squash_compress
artifacts/docs/html/squash.html#swi_squash_decompress


ZLib_Compress bit 3 set
Read workspace

(SWI &53AC0)
Simple Squash-like compression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

3 Return workspace required
R1 = input size, or -1 to omit maximum output size

OOn en exitxit
R0 = required workspace size
R1 = maximum output size, or -1 if it cannot be determined or was not

asked for

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to read the size of the buffers to use for ZLib compression
via the Squash-like interface.

RRelaelatted Sed SWIWIss
SWI ZLib_Decompress (on page 14)
SWI Squash_Decompress (on page 0)

ZLib

11

artifacts/docs/html/squash.html#swi_squash_decompress


ZLib_Compress bit 3 clear
Compress

(SWI &53AC0)
Simple Squash-like compression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

0 Continue previously started operation

1 More input remains after this call

3 Return workspace required

4 Workspace is not bound to an application
R1 = pointer to workspace
R2 = pointer to input data
R3 = length of input data
R4 = pointer to output buffer
R5 = length of output buffer

OOn en exitxit
R0 = status of decompression process :

VValuealue MeaningMeaning

0 Operation is complete

1 Input has been exhausted

2 Output space has been exhausted
R1 preserved
R2 = pointer to first unused byte of input data
R3 = size of unused data in input buffer
R4 = pointer to first unused byte of output buffer
R5 = size of unused data in output buffer

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

SWI calls

12



PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to compress data to a buffer.

RRelaelatted Sed SWIWIss
SWI ZLib_Decompress (on page 14)
SWI Squash_Decompress (on page 0)

ZLib

13

artifacts/docs/html/squash.html#swi_squash_decompress


ZLib_Decompress
(SWI &53AC1)

Simple Squash-like decompression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

0 Continue previously started operation

1 More input remains after this call

2 Assume all output will fit into the buffer

3 Return workspace required

4 Workspace is not bound to an
application

5-10 Reserved, must be 0
R1 - R5 = dependant on flags

OOn en exitxit
R0 - R5 = dependant on flags

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

SWI calls

14



UUsese

This SWI is similar to SWI Squash_Compress (on page 0), providing a drop
in replacement for the Squash module but using ZLib decompression. There
are two variants of this SWI - with bit 3 set, and with bit 3 clear. Normally,
this call will be made first with bit 3 set to read the workspace size, and then
with bit 3 clear to perform the decompression.

RRelaelatted Sed SWIWIss
SWI ZLib_Compress (on page 9)
SWI Squash_Compress (on page 0)

ZLib

15

artifacts/docs/html/squash.html#swi_squash_compress
artifacts/docs/html/squash.html#swi_squash_compress


ZLib_Decompress bit 3 set
Read workspace

(SWI &53AC1)
Simple Squash-like decompression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

3 Return workspace required
R1 = input size, or -1 to omit maximum output size

OOn en exitxit
R0 = required workspace size
R1 = maximum output size, or -1 if it cannot be determined or was not

asked for

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to read the size of the buffers to use for ZLib
decompression via the Squash-like interface.

RRelaelatted Sed SWIWIss
SWI ZLib_Compress (on page 9)
SWI Squash_Compress (on page 0)

SWI calls

16

artifacts/docs/html/squash.html#swi_squash_compress


ZLib_Decompress bit 3 clear
Decompress

(SWI &53AC1)
Simple Squash-like decompression

OOn enn entrytry
R0 = Flags :

Bit(s)Bit(s) MeaningMeaning

0 Continue previously started operation

1 More input remains after this call

3 Return workspace required

4 Workspace is not bound to an
application

R1 = pointer to workspace
R2 = pointer to input data
R3 = length of input data
R4 = pointer to output buffer
R5 = length of output buffer

OOn en exitxit
R0 = status of decompression process :

VValuealue MeaningMeaning

0 Operation is complete

1 Input has been exhausted

2 Output space has been exhausted
R1 preserved
R2 = pointer to first unused byte of input data
R3 = size of unused data in input buffer
R4 = pointer to first unused byte of output buffer
R5 = size of unused data in output buffer

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

ZLib

17



PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to decompress data from a buffer.

RRelaelatted Sed SWIWIss
SWI ZLib_Compress (on page 9)
SWI Squash_Compress (on page 0)

SWI calls

18

artifacts/docs/html/squash.html#swi_squash_compress


ZLib_CRC32
(SWI &53AC2)

Calculate a CRC32 checksum for a given data buffer (crc32)

OOn enn entrytry
R0 = CRC-32 continuation value
R1 = pointer to start of block, or 0 to read the initial value to supply as a

continuation value.
R2 = pointer to end of block

OOn en exitxit
R0 = CRC-32 value for block

R1 - R2 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to update a running CRC-32 checksum with data from a
buffer. The returned CRC-32 value should be passed back to the this SWI if
the checksum needs updating further. ZLib_CRC32 is a slower call than
OS_CRC, but more reliable.

RRelaelatted Sed SWIWIss
SWI ZLib_Adler32 (on page 20)
SWI OS_CRC

ZLib

19



ZLib_Adler32
(SWI &53AC3)

Calculate an Adler32 checksum for a given data buffer (adler32)

OOn enn entrytry
R0 = Adler-32 continuation value
R1 = pointer to start of block, or 0 to read the initial value to supply as a

continuation value.
R2 = pointer to end of block

OOn en exitxit
R0 = Adler-32 value for block

R1 - R2 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to update a running Adler-32 checksum with data from a
buffer. The returned Adler-32 value should be passed back to the this SWI if
the checksum needs updating further. Adler-32 is a faster checksum to
calculate than CRC-32.

RRelaelatted Sed SWIWIss
SWI ZLib_CRC32 (on page 19)
SWI OS_CRC

SWI calls

20



ZLib_Version
(SWI &53AC4)

Return the version of ZLib in use (zlib_version)

OOn enn entrytry
None

OOn en exitxit
R0 = pointer to read only version string

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to read the version number of the ZLib library in use.

RRelaelatted APIed APIss
None

ZLib

21



ZLib_ZCompress
(SWI &53AC5)

Compress a source buffer (compress)

OOn enn entrytry
R0 = pointer to output buffer for compressed data
R1 = length of output buffer
R2 = pointer to input buffer of uncompressed data
R3 = length of input buffer

OOn en exitxit
R0 = ZLib return code
R1 = length of output buffer used

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to compress a block of data in a single call. The output
buffer must be at least 0.1% larger than the input, plus 12 bytes.

RRelaelatted Sed SWIWIss
SWI ZLib_ZCompress2 (on page 23)
SWI ZLib_ZUncompress (on page 24)

SWI calls

22



ZLib_ZCompress2
(SWI &53AC6)

Compress a source buffer (compress2)

OOn enn entrytry
R0 = pointer to output buffer for compressed data
R1 = length of output buffer
R2 = pointer to input buffer of uncompressed data
R3 = length of input buffer
R4 = compression level

OOn en exitxit
R0 = ZLib return code
R1 = length of output buffer used

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is equivilent to ZLib_Compress, but allows the compression level
to be specified.

RRelaelatted Sed SWIWIss
SWI ZLib_ZCompress (on page 22)
SWI ZLib_ZUncompress (on page 24)

ZLib

23



ZLib_ZUncompress
(SWI &53AC7)

Compress a source buffer (uncompress)

OOn enn entrytry
R0 = pointer to output buffer for uncompressed data
R1 = length of output buffer
R2 = pointer to input buffer of compressed data
R3 = length of input buffer

OOn en exitxit
R0 = ZLib return code
R1 = length of output buffer used

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI decompresses a buffer of data in a single call. The destination
buffer must be large enough for the decompressed data.

RRelaelatted Sed SWIWIss
SWI ZLib_ZCompress (on page 22)

SWI calls

24



ZLib_DeflateInit
(SWI &53AC8)

Initialise a stream for compression (deflateInit)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = compression level
R2 = pointer to ZLib version string expected ("1.1.4" at time of writing)
R3 = length of control block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to initialise the ZLib compression algorithm. You should
clear the workspace block to zeros. zalloc and zfree may point to routines to
allocate and free memory. If these are not set then memory is allocated on a
per application basis in the global dynamic area. zalloc and zfree will be
entered within a C environment (ie APCS applies) with a small stack, in SVC
mode. Because of this, you cannot use longjmp, use functions that require
large amounts of stack space, or perform any non-SVC mode operation.
Contact RISCOS Ltd if you wish to use this feature but are unsure how it will
affect your code.

ZLib

25



RRelaelatted Sed SWIWIss
SWI ZLib_InflateInit (on page 27)
SWI ZLib_DeflateInit2 (on page 29)
SWI ZLib_InflateInit2 (on page 31)

SWI calls

26



ZLib_InflateInit
(SWI &53AC9)

Initialise a stream for decompression (inflateInit)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = pointer to ZLib version string expected ("1.1.4" at time of writing)
R2 = length of control block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to initialise the ZLib stream decompression algorithm. You
should clear the workspace block to zeros. zalloc and zfree may point to
routines to allocate and free memory. If these are not set then memory is
allocated on a per application basis in the global dynamic area. zalloc and
zfree will be entered within a C environment (ie APCS applies) with a small
stack, in SVC mode. Because of this, you cannot use longjmp, use functions
that require large amounts of stack space, or perform any non-SVC mode
operation. Contact RISCOS Ltd if you wish to use this feature but are unsure
how it will affect your code.

ZLib

27



RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateInit2 (on page 29)
SWI ZLib_InflateInit2 (on page 31)

SWI calls

28



ZLib_DeflateInit2
(SWI &53ACA)

Initialise a stream for compression with control over parameters
(deflateInit2)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = compression level
R2 = compression method
R3 = window bits for history buffer
R4 = memory level
R5 = compression strategy
R6 = pointer to ZLib version string expected ("1.1.4" at time of writing)
R7 = length of control block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is similar to ZLib_DeflateInit, but provides much greater control
than that SWI.

ZLib

29



RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_InflateInit (on page 27)
SWI ZLib_InflateInit2 (on page 31)

SWI calls

30



ZLib_InflateInit2
(SWI &53ACB)

Initialise a stream for decompression with control over parameters
(inflateInit2)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = window bits
R2 = pointer to ZLib version string expected ("1.1.4" at time of writing)
R3 = length of control block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is similar to ZLib_InflateInit, but provides much greater control
than that SWI.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_InflateInit (on page 27)
SWI ZLib_DeflateInit2 (on page 29)

ZLib

31



ZLib_Deflate
(SWI &53ACC)

Continue a stream compression (deflate)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = flush type

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. next_in and
avail_in are read and updated after data has been processed. You should
empty the output buffer when data appears there (next_out and
avail_out will have been updated).

ZLib_Deflate performs one or both of the following actions:

● Compress more input starting at next_in and update next_in and
avail_in accordingly. If not all input can be processed (because
there is not enough room in the output buffer), next_in and
avail_in are updated and processing will resume at this point for
the next call of ZLib_Deflate.

● Provide more output starting at next_out and update next_out and

SWI calls

32



avail_out accordingly. This action is forced if the parameter flush is
non zero. Forcing flush frequently degrades the compression ratio, so
this parameter should be set only when necessary (in interactive
applications). Some output may be provided even if flush is not set.

Before calling ZLib_Deflate, the client should ensure that at least one of the
actions is possible, by providing more input and/or consuming more
output, and updating avail_in or avail_out accordingly; avail_out
should never be zero before the call. The client may consume the
compressed output when it wants, for example when the output buffer is
full (avail_out == 0), or after each call of ZLib_Deflate. If deflate returns
Z_OK and with zero avail_out, it must be called again after making room
in the output buffer because there might be more output pending.

If the flush type is set to Z_SYNC_FLUSH, all pending output is flushed to
the output buffer and the output is aligned on a byte boundary, so that the
decompressor can get all input data available so far. In particular avail_in
is zero after the call if enough output space has been provided before the
call. Flushing may degrade compression for some compression algorithms
and so it should be used only when necessary.

If the flush type is set to Z_FULL_FLUSH, all output is flushed as with
Z_SYNC_FLUSH, and the compression state is reset so that decompression
can restart from this point if previous compressed data has been damaged
or if random access is desired. Using Z_FULL_FLUSH too often can
seriously degrade the compression.

If deflate returns with avail_out == 0, this function must be called again
with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (ZLib_Deflate returns with non-zero
avail_out).

If the flush type is set to Z_FINISH, pending input is processed, pending
output is flushed and ZLib_Deflate returns with Z_STREAM_END if there
was enough output space; if ZLib_Deflate returns with Z_OK, this function
must be called again with Z_FINISH and more output space (updated
avail_out) but no more input data, until it returns with Z_STREAM_END
or an error. After ZLib_Deflate has returned Z_STREAM_END, the only
possible operations on the stream are SWI ZLib_DeflateReset (on page 43)
or SWI ZLib_DeflateEnd (on page 35).

Z_FINISH can be used immediately after SWI ZLib_DeflateInit (on page 25)
if all the compression is to be done in a single step. In this case, avail_out
must be at least 0.1% larger than avail_in plus 12 bytes. If ZLib_Deflate does
not return Z_STREAM_END, then it must be called again as described
above.

ZLib

33



ZLib_Deflate sets adler to the adler32 checksum of all input read so far
(that is, total_in bytes).

ZLib_Deflate may update data_type if it can make a good guess about the
input data type (Z_ASCII or Z_BINARY). In doubt, the data is considered
binary. This field is only for information purposes and does not affect the
compression algorithm in any manner.

ZLib_Deflate returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if all input has been
consumed and all output has been produced (only when the flush type is set
to Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for
example if next_in or next_out was NULL), Z_BUF_ERROR if no progress
is possible (for example avail_in or avail_out was zero).

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateInit2 (on page 29)
SWI ZLib_DeflateEnd (on page 35)

SWI calls

34



ZLib_DeflateEnd
(SWI &53ACD)

Terminate a stream compression (deflateEnd)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI frees all the memory used by the compression algorithm,
discarding any unprocessed input or output.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateInit2 (on page 29)
SWI ZLib_Deflate (on page 32)

ZLib

35



ZLib_Inflate
(SWI &53ACE)

Continue decompressing a stream (inflate)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = flush type

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. next_in and
avail_in are read and updated after data has been processed. You should
empty the output buffer when data appears there (next_out and
avail_out will have been updated).

ZLib_Inflate performs one or both of the following actions:

● Decompress more input starting at next_in and update next_in and
avail_in accordingly. If not all input can be processed (because there
is not enough room in the output buffer), next_in is updated and
processing will resume at this point for the next call of ZLib_Inflate.

● Provide more output starting at next_out and update next_out and
avail_out accordingly. ZLib_Inflate provides as much output as

SWI calls

36



possible, until there is no more input data or no more space in the
output buffer (see below about the flush parameter).

Before the call of ZLib_Inflate, the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming
more output, and updating the next_in/next_out and
avail_in/avail_out values accordingly. The application can consume
the uncompressed output when it wants, for example when the output
buffer is full (avail_out == 0), or after each call of ZLib_Inflate. If this SWI
returns Z_OK and with zero avail_out, it must be called again after
making room in the output buffer because there might be more output
pending.

If R1 is set to Z_SYNC_FLUSH, ZLib_Inflate flushes as much output as
possible to the output buffer. The flushing behavior of inflate is not
specified for values of the flush parameter other than Z_SYNC_FLUSH and
Z_FINISH, but the current implementation actually flushes as much output
as possible anyway.

ZLib_Inflate should normally be called until it returns Z_STREAM_END or
an error. However if all decompression is to be performed in a single step (a
single call of ZLib_Inflate), the parameter flush should be set to Z_FINISH.
In this case all pending input is processed and all pending output is flushed ;
avail_out must be large enough to hold all the uncompressed data. (The
size of the uncompressed data may have been saved by the compressor for
this purpose.) The next operation on this stream must be inflateEnd to
deallocate the decompression state. The use of Z_FINISH is never required,
but can be used to inform inflate that a faster routine may be used for the
single ZLib_Inflate call.

If a preset dictionary is needed at this point (see
#swi_zlib_inflatesetdictionary below), ZLib_Inflate sets adler to the
Adler-32 checksum of the dictionary chosen by the compressor and returns
Z_NEED_DICT ; otherwise it sets adler to the Adler-32 checksum of all
output produced so far (that is, total_out bytes) and returns Z_OK,
Z_STREAM_END or an error code as described below. At the end of the
stream, ZLib_Inflate checks that its computed Adler-32 checksum is equal
to that saved by the compressor and returns Z_STREAM_END only if the
checksum is correct.

ZLib_Inflate returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if the end of the
compressed data has been reached and all uncompressed output has been
produced, Z_NEED_DICT if a preset dictionary is needed at this point,
Z_DATA_ERROR if the input data was corrupted (input stream not
conforming to the ZLib format or incorrect Adler-32 checksum),

ZLib

37



Z_STREAM_ERROR if the stream structure was inconsistent (for example if
next_in or next_out was NULL), Z_MEM_ERROR if there was not enough
memory, Z_BUF_ERROR if no progress is possible or if there was not
enough room in the output buffer when Z_FINISH is used. In the
Z_DATA_ERROR case, the application may then call SWI ZLib_InflateSync
(on page 46) to look for a good compression block.

RRelaelatted Sed SWIWIss
SWI ZLib_InflateInit (on page 27)
SWI ZLib_InflateInit2 (on page 31)
SWI ZLib_InflateEnd (on page 39)

SWI calls

38



ZLib_InflateEnd
(SWI &53ACF)

Terminate a decompression stream (inflateEnd)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI frees all the memory used by the decompression algorithm,
discarding any unprocessed input or output.

RRelaelatted Sed SWIWIss
SWI ZLib_InflateInit (on page 27)
SWI ZLib_InflateInit2 (on page 31)
SWI ZLib_Inflate (on page 36)

ZLib

39



ZLib_DeflateSetDictionary
(SWI &53AD0)

Initialise a string dictionary for a stream compression
(deflateSetDictionary)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = pointer to dictionary block (a stream of bytes)
R2 = length of dictionary block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to initialise a compression dictionary. The dictionary
consists of strings (byte sequences) that are likely to be encountered later in
the data to be compressed, with the most commonly used strings preferably
put towards the end of the dictionary.

The dictionary should consist of strings (byte sequences) that are likely to
be encountered later in the data to be compressed, with the most commonly
used strings preferably put towards the end of the dictionary. Using a
dictionary is most useful when the data to be compressed is short and can
be predicted with good accuracy ; the data can then be compressed better
than with the default empty dictionary.

SWI calls

40



Depending on the size of the compression data structures selected by
ZLib_DeflateInit or ZLib_DeflateInit2, a part of the dictionary may in effect
be discarded, for example if the dictionary is larger than the window size in
ZLib_Deflate or ZLib_Deflate2. Thus the strings most likely to be useful
should be put at the end of the dictionary, not at the front.

Upon return of this function, adler is set to the Adler-32 value of the
dictionary; the decompressor may later use this value to determine which
dictionary has been used by the compressor. (The Adler32 value applies to
the whole dictionary even if only a subset of the dictionary is actually used
by the compressor.)

ZLib_DeflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR
if a parameter is invalid (such as NULL dictionary) or the stream state is
inconsistent (for example if ZLib_Deflate has already been called for this
stream). ZLib_DeflateSetDictionary does not perform any compression: this
will be done by ZLib_Deflate.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)

ZLib

41



ZLib_DeflateCopy
(SWI &53AD1)

Copy the compression state (deflateCopy)

OOn enn entrytry
R0 = pointer to destination #subsubsection_stream_control_block
R1 = pointer to source #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to take a copy of the current compression state. This might
be useful if you are attempting to filter the data in one of a number of ways.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateReset (on page 43)

SWI calls

42



ZLib_DeflateReset
(SWI &53AD2)

Reset the internal compression state (deflateReset)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is equivilent to ZLib_DeflateEnd followed by ZLib_DeflateInit.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateEnd (on page 35)

ZLib

43



ZLib_DeflateParams
(SWI &53AD3)

Modifies the compression parameters (deflateParams)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = compression level
R2 = compression strategy

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is updates the compression level and strategy. You may do this
part way through compression.

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateInit (on page 25)
SWI ZLib_DeflateInit2 (on page 29)

SWI calls

44



ZLib_InflateSetDictionary
(SWI &53AD4)

Initialise a string dictionary for a decompression stream
(inflateSetDictionary)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block
R1 = pointer to dictionary block (a stream of bytes)
R2 = length of dictionary block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to initialise a decompression dictionary. The dictionary
must be the same as that used to compress the data
(ZLib_DeflateSetDictionary).

RRelaelatted Sed SWIWIss
SWI ZLib_DeflateSetDictionary (on page 40)

ZLib

45



ZLib_InflateSync
(SWI &53AD5)

Re-synchronise decompression stream (inflateSetDictionary)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI will skip invalid data until a full flush point is found. This may be
useful if you have data which is likely to be corrupted, is periodically
synchronised and the data 'lost' is unimportant. An example might be a
stream of graphical or audio data.

RRelaelatted APIed APIss
None

SWI calls

46



ZLib_InflateReset
(SWI &53AD6)

Reset the decompression stream state (inflateReset)

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is equivilent to ZLib_InflateEnd followed by ZLib_InflateInit.

RRelaelatted Sed SWIWIss
SWI ZLib_InflateInit (on page 27)

ZLib

47



ZLib_GZOpen
(SWI &53AD7)

Open a GZip file for reading or writing (gzopen)

OOn enn entrytry
R0 = pointer to filename
R1 = pointer to the 'mode' of file operation. This consists of two parts; the

access type and the modifiers. Only one access type may be used, but
multiple modifiers may be added to the end.

AAccess typeccess type MeaningMeaning

rb Open for reading

wb Open for writing
ModifierModifier MeaningMeaning

0-9 compression level

h Huffman compression only

f Data is 'filtered' (small values, randomly distributed)

f RISC OS type information attached
R2 = load address of file (if 'R' and 'wb' used)
R3 = exec address of file (if 'R' and 'wb' used)
R4 = length address of file (if 'R' and 'wb' used)
R5 = attributes address of file (if 'R' and 'wb' used)

OOn en exitxit
R0 = opaque GZip handle
R2 = load address of file (if 'R' and 'rb' used)
R3 = exec address of file (if 'R' and 'rb' used)
R4 = length address of file (if 'R' and 'rb' used)
R5 = attributes address of file (if 'R' and 'rb' used)

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

SWI calls

48



RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI opens a file for accessing GZip compressed data. The 'R' extension
is intended for compressing RISC OS files completely losslessly. Expanding
such files on other systems will result in the loss of RISC OS type
information only; the file data itself will be intact.

RRelaelatted Sed SWIWIss
SWI ZLib_GZRead (on page 50)
SWI ZLib_GZWrite (on page 51)
SWI ZLib_GZFlush (on page 52)
SWI ZLib_GZClose (on page 53)
SWI ZLib_GZSeek (on page 55)
SWI ZLib_GZTell (on page 57)
SWI ZLib_GZEOF (on page 58)

ZLib

49



ZLib_GZRead
(SWI &53AD8)

Read data from a GZip file (gzread)

OOn enn entrytry
R0 = opaque GZip handle
R1 = pointer to destination buffer
R2 = amount of data to read

OOn en exitxit
R0 = number of bytes read

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI reads data from a previously opened GZip file.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZWrite (on page 51)

SWI calls

50



ZLib_GZWrite
(SWI &53AD9)

Write data to a GZip file (gzwrite)

OOn enn entrytry
R0 = opaque GZip handle
R1 = pointer to source buffer
R2 = amount of data to write

OOn en exitxit
R0 = number of bytes written

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI writes data to a previously opened GZip file.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)

ZLib

51



ZLib_GZFlush
(SWI &53ADA)

Flush all pending data to a GZip file (gzflush)

OOn enn entrytry
R0 = opaque GZip handle
R1 = flush type

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI writes data to a previously opened GZip file.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_Deflate (on page 32)

SWI calls

52



ZLib_GZClose
(SWI &53ADB)

Close a GZip file (gzclose)

OOn enn entrytry
R0 = opaque GZip handle

OOn en exitxit
R0 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI closes a previously opened GZip file.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)

ZLib

53



ZLib_GZError
(SWI &53ADC)

Close a GZip file (gzclose)

OOn enn entrytry
R0 = opaque GZip handle

OOn en exitxit
R0 = pointer to last error message string
R1 = ZLib return code

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI returns the last error message returned by a GZip operation.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)
SWI ZLib_GZWrite (on page 51)
SWI ZLib_GZFlush (on page 52)
SWI ZLib_GZSeek (on page 55)

SWI calls

54



ZLib_GZSeek
(SWI &53ADD)

Move to a specific location in a GZip file (gzseek)

OOn enn entrytry
R0 = opaque GZip handle
R1 = position in decompressed data in bytes
R2 = type of seek to perform :

TTypeype MeaningMeaning

0 Set absolute position (position = R1)

1 Set relative position (position = R1 + current
position)

OOn en exitxit
R0 = new position in file

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI changes the pointer within a GZip file. The position specified is
located such that byte number R1 had just been read from the file. The
operation cannot be performed on files being written.

ZLib

55



RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)
SWI ZLib_GZTell (on page 57)

SWI calls

56



ZLib_GZTell
(SWI &53ADE)

Return the current position in a GZip file (gztell)

OOn enn entrytry
R0 = opaque GZip handle

OOn en exitxit
R0 = current position in decompressed data in bytes

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI returns the current position in the decompressed data in bytes as
an offset from the start of the data.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)
SWI ZLib_GZSeek (on page 55)

ZLib

57



ZLib_GZEOF
(SWI &53ADF)

Check whether the end of file has been reached (gztell)

OOn enn entrytry
R0 = opaque GZip handle

OOn en exitxit
R0 = 1 if EOF condition has been reached, 0 otherwise

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI checks whether the end of the file has been reached.

RRelaelatted Sed SWIWIss
SWI ZLib_GZOpen (on page 48)
SWI ZLib_GZRead (on page 50)

SWI calls

58



ZLib_TaskAssociate
(SWI &53AE0)

Change Wimp Task association for a stream

OOn enn entrytry
R0 = pointer to #subsubsection_stream_control_block

OOn en exitxit
R0 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This SWI is used to associate a ZLib stream with a task. When associated,
the tasks death will cause the memory allocated to the stream to be released
automatically. If dissociated, the stream will never be freed unless the
deflateEnd or inflateEnd calls are issued.

By default all streams are associated with the task with which they were
created and destroyed automatically should that task terminate. You may
wish to disable this operation using this SWI.

RRelaelatted APIed APIss
None

ZLib

59



Document information
Maintainer(s):Maintainer(s): Charles Ferguson <gerph@gerph.org>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 Gerph Initial version
2 Gerph Updates for 1.1.4

DDisclaimerisclaimer:: © Gerph.

Document information

60

mailto:gerph@gerph.org

	ZLib
	Introduction and Overview
	Terminology
	Technical Details
	ZLib SWI interface
	Informational SWIs
	GZip SWIs
	ZLib SWIs

	Data formats
	Stream Control Block
	Flush types
	Compression levels
	Compression strategy
	Compression method
	Memory level
	Window bits
	ZLib return code


	SWI calls
	Document information
	Initial version
	Updates for 1.1.4



