
Contents
Introduction

About this documentation 7

Introduction 7
Collection areas 8

Functional specs
Cut and paste specification 10

1. Overview 10
2. Outstanding Issues 12
3. Technical Background 13
4.User Interface 14
5. Programming Interface and Data
Interchange 32
6. Data Formats 90
7. Dependencies 91
8. Acceptance Test 92
9. Non Compliances 94
10. Development Test Strategy 95
11. Product Organisation 96
12. Future Enhancements 97
13. Glossary 98
14. References 102
15. History 103

URI Handler specification 105

Overview 105
Deliverable 'product' 106
Programmer's interface 107
Performance targets 133

URL Fetcher specification 137

Overview 137
Outstanding issues 139
Client to URL module interface 140
Protocol module to URL module interface 170
URL module to protocol module interface 175
URL module service calls 183
URL module *-commands 188

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

URL errors 190
Performance targets 192
Glossary 193
References 194

Browser Plug-in Protocol specification 196

Overview 196
Outstanding issues 197
Technical background 198
User interface 199
Programmer interface 200
Data interchange 207
Data formats 241
External dependencies 243
Acceptance test 244
Non-compliances 245
Development test strategy 246
Glossary 247
References 248

Nested Window Manager specification 253

Overview 253
Technical Background 254
User Interface 255
Programmer's interface 260
Filter Entry Points 281
References 287

3rd Party
CryptRandom module 290

Introduction 290
Overview 291
Technical details 292
SWIs 294

RISC OS 5
Drive Hints 300

Introduction 300
Technical details 301
UpCalls 302

RISC OS Select

Kernel

I/O
Pointer devices 306

Introduction and overview 306
Technical details 307
SWI calls 309
Software vectors 313

Desktop
Icon bar file drags 320

Introduction 320
Technical details 321
System variables 322
Wimp messages 323

Icon border filters 326

Introduction 326
Overview 327
Technical details 328
SWI calls 334
Entry points 337

Wimp
Iconbar priorities 348

Introduction 348
Technical details 349

Hardware
Hardware timer device driver
(TimerManager) 352

Introduction 352
Overview 353
Technical details 354
SWI calls 356

NVRAM vector 365

Introduction 365
Technical details 366
Software vectors 367

Time
Real Time Clock 372

Introduction 372
Service calls 373
SWI calls 374

Real Time Clock vector 377

Introduction 377
Software vectors 378

System clock 384

Introduction 384

Networking
ShareFS module 386

Introduction 386
System variables 387
Service calls 388
SWI calls 389
Wimp messages 395

Internet address collision 398

Introduction 398
Service calls 399

DCI Driver Link Status 401

Introduction 401
Service calls 402

RouterDiscovery 405

Introduction 405
Service calls 406
SWI calls 409

DHCPClient 417

Introduction 417
Service calls 418
SWI calls 422
*Commands 426

ZeroConf 429

Introduction 429
Service calls 430
SWI calls 432

Graphics
Graphics modes specification 438

Introduction and Overview 438
Technical details 439

Image file renderer 447

Introduction and Overview 447
Technical Details 449
Service calls 456
SWI calls 459
Error Messages 475
Entry Points 489
*Commands 501

Video drivers 505

Introduction and Overview 505
Technical details 506
Software vectors 510
Entry points 615

Programmer
PathUtils 619

Introduction 619
SWI calls 620
*Commands 624

Indexes
Commands 628
SWIs 629

... by number 632
UpCalls 635

... by number 636
Messages 637

... by number 638
Services 639

... by number 640
Vectors 641

... by number 643
SysVars 645
Entry points 646
Errors 647

... by number 648
VDU codes 649
TBox methods 650

... by number 651
TBox messages 652

... by number 653

These documents are not necessarily complete.
Consult individual documents and authors for details of their completeness.

About these documents

Introduction
The documentation in this collection is a staging area for
documentation that does not yet have any home. It is intended to
hold documents which are partially complete, or which are useful but
yet ready for acceptance into general documentation.

Collection areas
There are different areas in this collection, which are intended to
arbitrarily divide the content into their source or intended use. The
structure here is not intended to be indicative of the final structure of
the documentation.

Functional specs ('acorn')

This area is intended to contain functional specifications from the
Acorn era which have not yet made it to PRM documentation.
Functional specifications contain references to design and
implementation decisions and discussion of problems with the system
which are not appropriate for the reference manuals. However they
are important steps along to way to creating documentation,

3rd Party documentation ('3rdparty')

This area contains 3rd party documentation from a variety of sources
to provide a staging point before these documents are made more
widely available.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 29 Aug 2021 Gerph Initial version

● Created to hold cut
and paste, and
demonstrate
indexing.

2 07 Oct 2021 Gerph Added 3rd party
Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org

Cut-and-Paste

1. Overview
1.1 This Document

This document supersedes the cut-and-paste and drag-and-drop
protocol application notes [1] and [2], and specifies the cut-and-paste
/ drag-and-drop abilities to be added to the Wimp, plus the Clipboard
module that supports the Wimp (and whose facilities will also be of
use to future applications intended to support the protocols).

Key terms are defined and some familiar terms are also redefined
more precisely in the glossary (§13), and the reader is recommended
to read this first.

Where information is fundamentally new in this specification - non-
obvious consequences of and clarifications and extensions to the
existing protocol, the relevant section is underlined to bring attention
to the fact.

The document may be slightly weighted towards text-handling
applications, but this is because the user interface is generally more
complicated in such cases. It is expected that the reader be able to
extrapolate meanings to apply to any possible fundamental type of
data.

1.2 Cut-and-Paste

Global-clipboard-based or cut-and-paste data transfer involves data
being removed or copied from any document in the desktop to a
notional "clipboard", then pasted from the clipboard into the same
document, or any other document in the desktop, whether managed
by the same application or not. On the way, data translation is
performed in such a way as to minimise the information loss about
the data.

This interface involves three operations, cut, copy and paste, which
may be performed in any order. Any one data transfer will require at
least two of these operations, in addition to the choice of the original
selection and the destination point; the process is somewhat clumsy
(and unintuitive, since the clipboard is hidden from view), so this is
the least preferred technique of the two described in this document.
However, it must still be provided, as it does allow some operations
which cannot be achieved in any other way, and can perform other
operations faster than by drag-and-drop.

1.3 Drag-and-Drop

Drag-and-drop is similar to cut-and-paste, but with the cut/copy
performed by pressing a mouse button, and the paste by releasing
the button at the destination. Full drag-and-drop compliance
combines the features of conventional, simple drag-and-drop, as
commonly used in Save dialogue boxes, with the data translation
abilities of the global clipboard, and overcomes the abstract nature of
the global clipboard by the displaying throughout the drag a
bounding box, dithered sprite/object or representation of the
insertion point.

The user interface is simpler to use - consisting typically of two
mouse drags (one to select and one to move or copy), with a
requirement for at most one keypress (the Shift key swaps the
meaning of copying and moving). However, the programming
interface is more complicated, because continuously negotiated
transferable data types, destination positioning and rendering of
objects and pointers are required in addition to everything needed
for cut-and-paste. This complexity is possibly responsible for the low
implementation rate of the protocol to date.

1.4 General

The Clipboard module is primarily to enable cut-and-paste and drag-
and-drop to be reliably implemented for writable icons, which are
handled automatically by the Wimp. (The fundamental problem is
that the established cut-and-paste and drag-and-drop systems are
Wimp-message-based, and the Wimp itself is poorly equipped to send
and receive messages.)

However, the module is secondarily to handle the complex protocols
on behalf of any application that chooses to do so - and in the
process, producing a more uniform user interface. This is to be the
preferred method of implementing the protocols in future, although
in special cases, the tasks it performs can be split into four separate
areas, any combination of which can be taken advantage of by the
same application:

● clipboard management - supporting cut and copy operations
● clipboard procurement - supporting paste operations
● sending drag-and-drop data
● receiving drag-and-drop data

2. Outstanding Issues
2.1 Bounding Box Discrepancies

It is possible that data may have different "real life" bounding boxes
in different data types - for example, a DrawFile sprite object may be
transformed and/or scaled, and thus have a different bounding box to
the underlying sprite. Thus if a transformed sprite object were
dragged from Draw to a sprite editor window, the bounding box
would not represent the final position of the sprite.

3. Technical Background
3.1 This Document

Some important pre-existing technical terms are rigorously defined in
the context of cut-and-paste / drag-and-drop in the Glossary in §13,
along with some new terms introduced in this document.

Where technical background information is relatively straightforward
(no more than one or two short paragraphs), it is included alongside
the appropriate part of §4 or §5, for ease of reference.

3.2 Previous Documents

Simple drag-and-drop operations, such as those employed by Save
dialogue boxes, do not employ any inter-task negotiation during the
drag, and use the plain DataSave/DataLoad protocol during the drop,
as described in the Programmer's Reference Manual [3].

The Style Guide [4] first indicates selection models, then describes an
overview of cut-and-paste and drag-and-drop behaviour, before
referring the reader to the relevant Support Group Application Notes
[1] and [2].

3.3 Previous Applications

Old-style selection model / copy-and-move implementations are still
in existence, especially so in the case of text editors, (e.g. Zap,
StrongEd, SrcEdit) which have often followed Edit's example. Such
schemes typically involve only three actions to perform an operation
(select region, position caret, move/copy keypress) rather than the
four (select region, cut/copy keypress, position caret, paste
keypress), but have the disadvantage that they can present both a
caret and a selection to the user at the same time, which is
potentially confusing. Old behaviour will remain deprecated, but new
cut-and-paste / drag-and-drop applications must be able to interact
with tasks that use it.

Other applications may support just cut-and-paste, or just drag-and-
drop. Drag-and-drop will be the favoured technique in future, due to
the simpler actions required (select region, drag region), but cut-and-
paste must also be supported as well, to cater for cases when drag-
and-drop cannot be used (e.g. when copying on to a menu tree).

Some aspects (e.g. pointer shape, window) of applications already
written to the application note guidelines (e.g. DataPower,
EasiWriter/TechWriter) are already inconsistent, due to the lack of
detail in the application notes. Applications will in future be
encouraged to follow the more detailed specification herein.

4.User Interface
4.1 Selection

4.1.1 Protocol

4.1.1.1 Rendering

Selection is rendered either by a recolouring an object (with its
photographic negative or otherwise) or by drawing a bounding box,
typically in red, and optionally with one or more "handles" for
resizing and/or rotating operations as appropriate:

It should be emphasised that a caret must never appear within the
same window as a selection at any time, not even during the
selecting drag. Placing a new caret or selection removes any caret or
selection previously active in the same window. (The definition of a
window for these purposes is a top-level window and its panes and all
their child windows.)

However, if during (or immediately after) the selection process, the
selection would have to be drawn with zero width (i.e. for text
selections, when the two ends snap to the same character boundary),
a caret must be displayed instead. It is helpful to consider the caret
as a zero-width selection; only one selection may be present within
one window at a time, so the exclusivity of the caret and selection is
an extension of this concept.

When either a caret or a selection is placed in a document, the
window must gain the input focus. This will happen automatically for
a Wimp-drawn user caret, but in the case of application-drawn carets
and selections, the application must position the Wimp caret in the
window, but marked as invisible, in order to achieve the same effect.
Simply changing the window border colour (as is possible in Wimps
since RISC OS 4) is not acceptable.

When a caret or selection is placed in a different drag-and-drop
window, the old selection must be redrawn as a shaded selection, not
left as is or removed entirely. The caret must be removed entirely (or
optionally redrawn as a shadow caret); if the application uses a
Wimp-drawn user caret, the caret will be removed for it

automatically. The LoseCaret and GainCaret events must not be used
to determine when this is necessary, as the Wimp may "borrow" the
caret temporarily while a menu is open. A Wimp message exists to
indicate when removal or redraw of the caret and selection is
necessary, and must be used in preference to the events (see §5.1.1).

Note that a selection may also be non-shaded but not have the input
focus if an application not adhering to the cut-and-paste / drag-and-
drop protocols had grabbed the Wimp caret (and therefore the input
focus). Similarly, non-Wimp-drawn carets may be deprived of the
input focus under similar circumstances while neither being
removed, nor being replaced with a shadow caret.

4.1.1.2 Mouse Events

Non-contiguous selections (just about everything except text and DTP
documents) will continue to be handled as described in the Style
Guide [4], with the proviso that clicking Select over an already-
selected object must not deselect anything, as a Select click event
always precedes the Select drag event which initiates a drag-and-
drop operation. Appropriate action must also be taken to un-shade
shaded selections when necessary.

On the other hand, a more detailed behaviour for contiguous
selections must be adhered to in future. In summary:

● Select click outside the selection (or when there is no
selection, or at one end of a selection): position the caret at
the pointer position, and flag the next Select drag as
creating a selection.

● Select click on a selection: if the selection was shaded, un-
shade it. Make sure the window has the input focus. Flag
the next Select drag as being a drag-and-drop drag.

● Select click in a "dead" region of a window (e.g. in a page
border): un-shade any selection or replace any shadow
caret with the caret, if either exists. Make sure the window
has the input focus. Optionally, flag the next Select drag as
causing an window scroll operation (as Impression,
TechWriter etc. do as present), but certainly not as starting
a selection or drag-and-drop operation.

● Select drag-start event: remove the caret, and set the
selection from the old caret position to the current pointer
position. Alternatively, start the drag-and-drop operation
(see §4.4.1). The exact meaning is determined by the flag
that was set at the Select click stage.

● During Select drag: if creating a selection, adjust the most
recently touched end of the selection to the pointer position
at regular intervals; autoscroll the window if necessary,
using the SWI Wimp_AutoScroll introduced in the RISC OS
4 Wimp. For what to do during a drag-and-drop drag, see

§4.4.1.
● Select double-click: select a word (as defined in the Style

Guide), irrespective of whether the click is on an existing
selection or not.

● Select click-drag (button pressed, then released, then
pressed again within the double-click limits, then held or
moved according to the drag limits): equivalent to a normal
selection-delimiting drag, except that the selection limits
are rounded to word boundaries (excluding whitespace at
either end).

● Adjust click when there is no caret or selection: position the
caret at the pointer position, unless there was a shadow
caret, in which case, position the caret where the shadow
caret was. Set a flag to indicate that there was no caret or
selection before the Adjust click (the shadow caret doesn't
count); do not rely on the fact that there is no selection
displayed when the drag event is generated to flag this, as a
zero-width selection may have been displayed as a caret
instead.

● Adjust click when there is a caret: remove the caret, and set
the selection from the old caret position to the current
pointer position.

● Adjust click when there is a selection: grow or shrink the
selection so that the nearest end of the selection moves to
the pointer position. (Remember to un-shade the selection
and/or gain the input focus if necessary.)

● Adjust click in a "dead" region of a window: the same as
Select in these circumstances.

● Adjust drag-start event: unless there was no caret or
selection before the preceding Adjust click, adjust the most
recently touched end of the selection to the pointer
position.

● During Adjust drag: unless there was no caret or selection
before the preceding Adjust click, adjust the most recently
touched end of the selection to the pointer position at
regular intervals; autoscroll the window if necessary, using
SWI Wimp_AutoScroll.

Other operations (including Adjust double-clicks, higher-multiple-
clicks and combinations with shifting keys) are left to the application
to respond to as it sees fit - they might select a line of text, or select
something in another layer, or whatever. Typically, higher-multiple
clicks of Select will select progressively larger blocks of text. For
single-line items such as writable icons, three clicks means select the
entire line. Once the maximum number of clicks is reached, the next
click is interpreted as for a single click, so for writable icons, a
quadruple-click sets the position of the caret.

In order to make selections over a larger area than can be displayed
in a window, during selecting drags of contiguous selections and

select box drags of non-contiguous selections, autoscrolling can be
implemented. However, since there is rarely a meaning to making a
selection spanning several windows, there is only one meaning to
moving the pointer off the window, and so there must be no need for
a pause over the autoscrolling zone to precede commencement of
scrolling, as this would merely slow down the user's actions.

4.1.1.3 Keypresses

There are some special keypresses relating to cut-and-paste that
affect the selection. Obviously, these only apply to selections that
have the input focus (and therefore never apply to a shaded
selection). The keypresses are:

● Ctrl-Z: clear the selection (i.e. undraw the highlights), and
place the caret (if appropriate) at the right-hand end of the
old selection (or the left-hand end in a right-to-left
language).

● Ctrl-V or Insert: delete (not cut) the selected data, and
place the caret (if appropriate) at the end of the newly
inserted text.

● Ctrl-X, Backspace or Delete: cut the selected data and place
the caret (if appropriate) where the selection was.

● Ctrl-K: delete (not cut) the selected data and place the caret
(if appropriate) where the selection was.

Then there are a number of special behaviours for textual regions:

● Left-arrow/up-arrow: clear the selection, and process the
keypress as though the caret had been at the left of the
selection.

● Right-arrow/down-arrow: clear the selection, and process
the keypress as though the caret had been at the right of
the selection.

● Any other repositioning keypresses (Home, Tab etc.) behave
along similar lines, as appropriate to the application.

● Any other keypresses that would normally insert one or
more characters: perform a cut operation, then position the
caret where the selection was, and process the keypress as
normal.

Any other keypresses must not affect the selection.

During drags (both those that set a selection and those that copy or
move one), no keypresses that would normally affect the selection
must be acted upon.

4.1.1.4 Scope

When a caret or selection is placed in the same window where one

already exists, the old one is removed (not just re-rendered as a
shaded selection). In order for this to be consistent with the use of
input focus colouring of windows, all carets and selections must be
unique within a group of windows characterised thus: a top-level
(non-nested) window, all its panes, and all windows nested within the
window or one of its panes. If a task does its own selection handling
but the window or one of its panes also uses writable icons, the task
will need to monitor caret/selection updates to the writable icons in
order to deselect its own selections.

Carets and selections must not be preserved when a window is
closed, deleted or iconized (check for Open_Window_Requests with
handle-to-open-behind of -3 to detect iconization). The Wimp takes
care of everything for Wimp-drawn carets, and automatically removes
the input focus in any case. If a selection can be made in a dialogue
box opened from a menu, then the task must act as though the
window were being closed when receiving Message_MenusDeleted,
as tasks are not sent the usual Close_Window_Request for such
windows.

When the window is being closed or deleted, application-drawn
carets and selections must be marked as absent, but when it the
window is being iconized, carets and selections drawn by the
application must be flagged as a shadow caret (if supported) or a
shaded selection, respectively, ready for the next redraw request.

4.1.2 Clipboard Module

The Clipboard is not involved in the selection process.

4.1.3 Writable Icons

Up to one writable icon selection may exist in each window, and the
selection will only be un-shaded if the window has the input focus.

4.1.3.1 Rendering

Carets within writable icons will be Wimp colour 11 (red),
irrespective of the background colour of the icon. This will be
achieved by using (Wimp colour 11 EOR background colour),
calculated in GCOL space, as the colour to EOR on to the icon.

Selections and shaded selections will be drawn by switching the
foreground and background colours, then fading them if appropriate.
A gap of 4 OS units will be left before the top and bottom borders (if
any) of the icon. Therefore, a typical writable icon will look like this
in its three states:

Using this method is better than EORing a block of colour, especially
in the shaded selection case, where the anti-aliasing of the text is
destroyed by an EOR operation. It also means that non-standard
writable icons are catered for sensibly as well with no extra effort:

In the past, during writable icon redraws caused by scrolling of the
icon (caused, for example, by repositioning of the caret), there has
been a certain amount of flicker, both of the text, and of the caret
itself, especially for large writable icons. This will be exaggerated
substantially if the same technique is used to draw selections; to
reduce flicker in both cases, a new algorithm will be written to deal
with icon updates following caret / selection / ghost caret changes,
utilising block copies wherever possible.

4.1.3.2 Scrolling

Icons where the text is less wide than the icon are relatively simple;
the text has a fixed position, irrespective of caret and selection
position. But it is likely that where the text is wider than the icon,
occasions will arise where the user needs access to areas of the text
string that are normally hidden, in order to set one or both ends of a
selection. The matter is similar to the requirement for icon scrolling
to position the ghost caret during a drag-and-drop selection (see
§4.4).

So, while the user is delimiting a selection, or when a ghost caret is
displayed in the icon, an autoscrolling scheme will be followed,
directly analogous to that used for windows in Wimp_AutoScroll.

Note in particular:

● The speed of scrolling is proportional to the distance the

pointer has moved beyond the inside edge of the
autoscrolling "pause" zone. This is because this scheme
allows fine user control of both acceleration and
deceleration.

● When delimiting a selection, autoscrolling will start as soon
as the pointer enters the "pause" zone - i.e. a pause time of
zero is used. Conversely, to start autoscrolling during a
drag-and-drop operation, the pointer must be held over the
pause zone for the configured pause time. This matches the
equivalent behaviour for autoscrolling of windows.

● While document windows are generally of a comparable
size, hence the similar pause zone widths, the size of
writable icons can vary dramatically from icon to icon -
compare, for example, a writable icon that is part of a
numeric field, with the URL at the top of a web browser
window. Scrolling speeds that would suit a small icon would
be painfully slow for a very large one, and usable speeds for
a large icon would scroll a small icon far too quickly.
Therefore, the scrolling speed of a writable icon when the
pointer is at one end will be proportional to its width.
However, it is also desirable that the scrolling speed ramp
up at the same rate, irrespective of icon size; these two
constraints imply that a fixed proportion of the width of any
icon needs to be allocated as the autoscroll pause zone - we
will use 1/4 of the width at each end, as illustrated to scale
below:

Below, the autoscrolling zone is cross-hatched; the autoscrolling
pause zone is the intersection of the autoscrolling zone with the icon
bounding box:

4.1.3.3 Mouse Events

Mouse events in writable icons will follow the general behaviour, as
specified in §4.1.1.2, but with a couple of slight changes. The
definition of a word will match that used for Shift-arrow navigation,
i.e. treating both spaces and the '.' character as word delimiters.

On the second click of a double click with Adjust, the selection
established by the first Adjust click will be extended outwards at both
ends to include complete words.

Clicks with either Select or Adjust will not affect the text origin,
unless they are setting the caret position (which will still be centred
as far as possible, for consistency with old Wimps). Neither double-
click operation will affect the text origin either, unless a scroll was
caused by the first click of the two.

During a drag, while the pointer is over the central zone between the
autoscrolling zones, no scrolling occurs. The autoscrolling zones act
just like those of windows. After each scroll step (not before), the
selection end is determined by the closest character boundary to the
pointer.

When a drag starts, any movement of the text which was performed
at the time of the click event is undone. This is necessary because
otherwise we have introduced a relative movement between the text
and the pointer which was not intended by the user, and the
alternative (moving the pointer) is less in the style of the RISC OS
user interface. Consider, for example, if the user clicks Select at the
right hand end of an icon where there is a lot of text further to the
right which is clipped out of view: if the user starts dragging to the
left, but as a result of the initial click, the text had jumped quickly to
the left of the pointer and so the user is now creating a selection to
its right; worse still, if the pointer is still over the autoscrolling zone,
the initial character may start scrolling off the left of the icon, leaving
a large selection in the opposite direction to that intended by the
user!

4.1.3.4 Keypresses

These will in general be handled as in §4.1.1.3. Note in particular:

● Only keypresses as specified in the validation string would
normally insert characters, so any others (except Ctrl-X and
its synonyms, of course) will not cut any selected text.

● Whenever a keypress (including Ctrl-X and synonyms)
causes the caret to be repositioned, a traditional, centred
caret will be used.

● When a paste is performed, and so an entirely new selection
is set, the selection will be centred within the icon (unless it
is wider than the icon, in which it will be right-aligned).

4.1.3.5 Wimp Selections and Menus

When the pointer moves over a writable menu item, or when a
dialogue box containing writable icons is opened from a menu, the
Wimp automatically places the caret in the menu item, or the first
writable icon, respectively. The Wimp remembers the position of the
caret before it does this, and then returns the caret to its old location
afterwards.

This behaviour will be extended to check for Wimp selections that
have the input focus before the caret is placed. If the same selection
still exists afterwards (i.e. a selection has not been made within the
menu structure in the meantime), then the input focus will be
returned to it.

Note that selections cannot be made in writable menu items, as any
clicks are considered as choices from the menu tree before being
considered as requests to set the caret position, let alone setting a
selection. Also note that drags cannot be made to an icon in a menu
structure, as the click that starts the drag will close the menu
structure before the drag begins!

Cut and paste will work as specified for writable icons in dialogue
boxes in menu trees, and pasting (but obviously not cut or copy) will
work for writable menu items.

4.1.3.6 Password icons

Cutting, copying and dragging from a password icon, or pasting or
dragging into one, is not permitted for security reasons. To give the
user some feedback, the Wimp issues a system beep if the user
attempts to do so. Selecting text in a password icon is permitted,
although the only action that can be performed on it is deletion.

4.1.3.7 Application-altered Indirected Data

On occasions, the text of a writable icon is altered by code other than
the Wimp's writable icon handling code (and as a prerequisite, the
text data has to be indirected). A common example of this is the

writable numeric range, where adjuster arrows may be used to alter
the value inside the accompanying writable icon.

Altering the data does not, in itself, cause any screen updates to be
done; applications have to force a redraw of the icon for the new
value to be displayed. During the redraw, the caret is redrawn, but
only using the last work-area-origin-relative co-ordinates calculated
the last time the caret was positioned. If the new data requires a
different text origin, the caret will then appear incorrectly positioned.
To cater for this, nearly if not all applications set the position of the
caret again, as well as forcing a redraw of the icon.

A similar situation could arise with selections (and even ghost carets)
- but since no existing applications know about selections, they will
not be able to cater for the "feature" in the API. For example,
suppose the value 99 was selected in a centred numeric range, then
the up-arrow was pressed; the result would be as below:

To work around this, separate checksums will be kept for the text of
the icon currently containing the selection and the ghost caret. Each
time an icon is redrawn, a new checksum is calculated, and if the
checksum has changed, the selection or ghost caret will be removed.
This is because the change to the text has probably invalidated the
selected text anyway.

A variant on this approach will be used to fix the equivalent long-
standing bug in the case of carets. One potential fix which we have to
reject is to simply remove the caret when the text changes, because
in many cases the application already has its own workaround
whereby it reapplies the caret, so with each change of the text, the
window's title bar would flicker due to losing and re-gaining the input
focus. Instead, the Wimp will recalculate the caret position, assuming
the same index into the string is required - unless the icon's numeric
flag (icon flag bit 20) is set, in which the caret will be kept at the
same index from the end of the string, to preserve the decimal place
being edited. This way, future applications need not include the
workaround at all.

4.1.3.8 Scope

In addition to the rules in §4.1.1.4., any combination of caret, ghost
caret and selection must be removed when an icon is deleted. Also,
when a menu is closed, any selection in a dialogue box linked to the
menu must be removed (the caret already is removed in these cases).

It will not be possible for any caret, selection or ghost caret to be
placed in a writable icon that is shaded. If any caret, selection or
ghost caret is present in a writable icon when it becomes shaded,
they will be removed.

The Wimp selection and both carets will be removed when the Wimp
font is changed, but this will be the responsibility of the task that is
changing the font - namely !Configure (or more precisely, a configure
plug-in).

If an icon is resized using Wimp_ResizeIcon, any of the caret, ghost
caret and selection which are present in the icon will be marked
absent (although no redrawing will occur immediately, because
Wimp_ResizeIcon expects to be followed by a separate redraw
operation anyway).

4.1.3.9 Draggable-Writable (Type 14) Icons

Type 14 (draggable) writable icons are much rarer than standard,
type 15 writable icons, and in the past, have only differed in that drag
events are reported to the task. Some applications (such as Fresco)
have taken advantage of these icons to implement a simpler form of
drag-and-drop; such behaviour would be broken if the steps
described above were employed for type 14 icons. Type 14 icons
could also be a useful special case, where sub-units of the
information in the icon have no meaning on their own, and where
only the entire text can logically be dragged-and-dropped.

Therefore, all of the rest of §4.x.3 and §5.x.3 (with the exception of
developments specific to carets, such as the bugfix in §4.1.3.7) will
only apply to type 15 writable icons.

4.2. Cut and Copy

4.2.1. Protocol

"Cut" and "Copy" menu options, if provided, must be placed as
described in the Style Guide; the options must be shaded if there is
currently no selection in the window.

A cut operation must be performed when the task receives a Ctrl-X,
Backspace or Delete keypress (i.e. Wimp key codes &008, &018 and
&07F) or when "Cut" is chosen from the menu. When a keypress
suitable for inserting data is received, or when data is dragged-and-
dropped on to the selection's window, or pasted when a selection is
active, the selection must also be cut prior to performing the raw
operation.

A copy operation must be performed when "Copy" is chosen from the
menu, or when the task receives a Ctrl-C keypress (Wimp key code

&003) - but not when Wimp key code &18B is received, because
although it resulted from a press of the "Copy" key on the
Archimedes, A30x0, A4000 and A5000, on all other machines it will
be generated by the "End" key.

Both cut and copy will cause a copy of the selected data to be placed
on the clipboard overwriting any data already there. (See §13 for a
definition of clipboard in this context.) No attempt must be made to
render the clipboard; it is a hidden, abstract entity. The data on the
clipboard is of indeterminate data type; a data type to use for the
transfer is negotiated between the clipboard owner and the pasting
task at paste-time, and may involve either or both tasks performing
data translation.

The only difference between cut and copy is that the selected data
must be removed from the main document in the case of a cut
operation. The selection remains unchanged in the case of a copy
operation (i.e. it is not deselected).

If the data cut or copied to the clipboard is of type text, the newlines
(if any) must be represented by ASCII &0A.

4.2.2. Clipboard Module

The use, or not, of the Clipboard module to handle cut and copy
operations will not affect the cut or copy user interfaces, even though
this entails some complication of the programming interface (see
§5.2.2).

4.2.3. Writable Icons

Keypresses will be honoured as described in §4.2.1 - although
individual icons don't and shouldn't have menus, so the description of
performing cuts and copies via a menu is inappropriate. The data
held in the writable icon will always be plain text, and the exported
data can only be the same, so management of the clipboard can and
will be delegated to the Clipboard (and as a consequence of this, a
Message_ClaimEntity 4 will be issued by the Clipboard every time
data is cut or copied to the clipboard from a writable icon, including
those in menu structures).

4.3. Paste

4.3.1. Protocol

A"Paste" menu option, if provided, must be placed as described in the
Style Guide; the option must be shaded if there is no data on the
clipboard suitable for pasting into the document, even though this
may entail a slight delay before opening of the submenu while the

application interrogates the current owner of the clipboard.

The keypresses Ctrl-V and Insert (Wimp key codes &016 and &1CD)
are both equivalent to choosing "Paste" from the menu.

If there is a selection present in the window before the paste
operation, it must be deleted before the paste takes place; swapping
the clipboard contents and the selection would prevent the same data
being pasted multiple times. The new data is inserted at the caret, or
where the old selection was positioned, and the pasted data is
automatically selected, so that the user can immediately cut it again,
should it be so desired.

If the data pasted from the clipboard is of type text, any instances of
ASCII &0A, &0D, or both codes adjacently in either order must be
treated equally, as a single newline.

4.3.2. Clipboard Module

The use, or not, of the Clipboard module to handle paste operations
will not affect the paste user interface.

4.3.3. Writable Icons

Keypresses will be honoured as described in §4.3.1 - although
individual icons don't and shouldn't have menus, so the description of
performing pastes via a menu is inappropriate. Handling the protocol
for obtaining the pasted data will be delegated to the Clipboard.

Pasted data must be available in text (data type &FFF) form, or else
the keypress will be ignored. Only text up to the first instance of
ASCII &00, &0A or &0D, or the length of the spare space in the data
buffer (plus the length of any selection), will be considered; if this
string contains other control characters, or characters forbidden by
the validation string, the operation will be faulted with a beep. In this
case, no characters are inserted and any pre-existing selection is
neither deselected nor deleted.

4.4. Drag

4.4.1. Protocol

4.4.1.1. General

When the user starts a drag-and-drop drag (which will always be with
the Select button, at least for text selections), the selection is not
deselected. When the drag ends, the new data is selected, which
means that, unless the drag was a move operation, or the destination
is in the same window as the source, the old selection will

subsequently be redrawn as a shaded selection.

If, during any drag operation, the Escape key is pressed, the drag
must be aborted. Any other keypresses during a drag must be
ignored (except of course for the status of the Shift key at the
beginning of the drag, which is responsible for exchanging the
meanings of copy and move operations).

4.4.1.2. Pointers

During a drag, the pointer shape is changed to the new standard
alternative pointer shape ptr_drop; this must be used instead of the
alternatives employed by DataPower, TechWriter and others. The new
pointer shape will be added to the Wimp's RAM sprite pool by the
Clipboard module, so that it is always available for tasks to use.

The new pointer retains the styling of the default pointer, plus the
handed-ness of it, while implying a lifting operation consistent with
the drop shadows added by the DragASprite and DragAnObject
modules, and yet is not completely dissimilar to the existing third
party pointers.

The ptr_drop pointer must remain in use throughout the drag
operation, with the sole exception of during an autoscroll, when the
Wimp's autoscroll pointers are used in preference - see §4.4.1.5.

4.4.1.3. Dragboxes

Linked to the pointer position, there will be at all times during the
drag either a representation of the (potential) drop position, or of the
original data, but not both. Which is used depends on both the
sending and (potentially-) receiving tasks, and on the type of data
being dragged: if the receiving task understands at least one of the
the data types, it will draw the drop position; if not, the sending task
is responsible for the representation of the original data.

The representation of the original data, when required, can take the
form of either a rotating-dash Wimp box of the same size as the
original selection, or of a DragASprite or DragAnObject rendering. As
ever, if the CMOS indicates as such, a dragbox must be used instead
of a DragASprite or DragAnObject drag. If a selection consisting of
multiple, non-contiguous objects is to be represented without using a
dragbox, the Wimp sprite "package" must be used, to match the
Filer's behaviour.

Whether a dragbox is to be used or not, the representation is (of
course) updated automatically by the Wimp to follow the pointer. The
box, sprite or object must always keep the same position relative to
the pointer's active point as the original bounding box did at the click
that started the drag - except that in the special case of the
"package" sprite, the sprite must always be centred over the
pointer's active point.

4.4.1.4. Ghost Carets

The representation of the drop position - known as the ghost caret -
has two typical forms. When the pointer is over a primarily textual
region, and the task understands at least one of the available data
types, the ghost caret can be displayed as a grey I-beam, "snapped"
to the nearest character boundary. When the pointer is over a layout-
based region, a grey bounding box, scaled according to the zoom
setting of the window, can be displayed, snapped to any grid,
guidelines, frame boundaries etc. as appropriate. The two are not
necessarily mutually exclusive; a DTP package might, for example,
want to display an I-beam when underneath a text drag, but a scaled
bounding box when underneath a sprite drag. If neither form is
appropriate, and the application knows of no other appropriate
rendering either, the sending task must be informed (or be allowed to
continue) to display the dragbox, sprite or whatever.

While the task that technically owns the drag continues to be the
sending task, the receiving task is responsible for drawing any ghost
caret. Therefore the ghost caret position is only updated at each pass
through the underlying message protocol, approximately four times a
second. In order to prevent the sending task's dragbox or sprite from
coexisting with the ghost caret, and thus cluttering the target area to
an unnecessary extent, provision is made in the protocol for the
receiving task to request that the drag be replaced with a "drag
point" (type 7) drag for as long as the receiving task is displaying a
ghost caret.

In textual documents, if during the drag, the pointer is positioned
over the original selection, the ghost caret must not be displayed -
the dragbox must be displayed instead. This is because dragging text

inside itself has no meaning.

4.4.1.5. Scrolling

During a drag, when the pointer is over a window that can scroll,
autoscrolling must be turned on using the SWI Wimp_AutoScroll. For
more details of the effect of this SWI, see [5], but note that unless the
pointer is held still near the edge of the window for a period, no
scrolling will occur. Since determination of the pause zone is
dependent upon positioning of panes etc., the activation and
deactivation of Wimp_AutoScroll is the responsibility of the receiving
task.

4.4.2. Clipboard Module

The use, or not, of the Clipboard module to handle drag operations
will not affect the drag user interface.

4.4.3. Writable Icons

Drags from writable icons will use the ptr_drop pointer, and a
rotating-dash dragbox matched in size to the selection. If the pointer
has not moved since the click, the drag will initially look like this
(with the dashes rotating):

Drags to writable icons (including drags within the same icon) will
use an I-beam ghost caret. The ghost-caret drawing facility of the
Wimp will also be made available to applications, in order to ensure
that all I-beam ghost carets are drawn to the same colour and design.
The colour used will be the ColourTransed version of palette entry
&80808000 (50.2% grey) in order to attain maximum contrast when
EORed over every possible colour.

If the pointer is dragged over the autoscrolling zone (as defined in
§4.1.3.2), the icon will be scrolled in order to let the ghost caret be
positioned in an out-of-sight part of the icon. This will happen even if
the selection fills the icon (meaning that the ghost caret cannot be
positioned anywhere in the icon) because there would be no visual
clues as to why the autoscrolling was not occurring in this case.

Window autoscrolling will not be initiated while the pointer is being
dragged over a writable icon. However, if autoscrolling of the icon's
window is already in progress and the pointer moves on to a writable

icon, the ghost caret will not be placed in the writable icon.

4.5. Drop

4.5.1. Protocol

4.5.1.1. Sending

When a drag-and-drop drag ends, the sending task attempts to
transfer data to the task under the pointer, or if a drag-and-drop
dialogue was in effect, to the receiving task (which can only be
different from the task under the pointer if the receiving task is
autoscrolling one of its windows). The data type actually transferred
is negotiated between the sending and receiving tasks at the time of
the drop; it may entail either or both tasks performing data
translation.

The decision whether to delete the original data when the drag ends
(i.e. whether to copy or move the selection) is based upon the state of
the Shift key when the drag began, and upon whether the pointer
position at the end of the drag is in the same window as at the start,
or not. Drags within a window move the data unless Shift is held
down; drags between windows copy the data unless Shift is held
down. Shift reverses the meaning of the drag, so within a region, the
selection is copied, and between regions, the selection is moved.

The destination task can also insist that the operation be a move
irrespective of the above; this is to allow for trashcan applications.
Drags to non-drag-and-drop applications (including the Filer) are
treated the same as drags to a different window.

In some circumstances, such as dropping data onto a directory
viewer, the filename used in the data transfer protocols will become
visible to the user. For these to be meaningful to the user, these
filenames should follow the convention of concatenating the source of
the data with the textual filetype, for example "IconText" or
"PaintSprite".

When generating data of type text that includes newline characters,
you must use ASCII &0A to terminate lines.

4.5.1.2. Receiving

To the destination task, a drop will appear the same as a non-drag-
and-drop DataSave (inter-application data transfer) operation, except
that the Wimp message is subtly marked (by virtue of having a non-
zero your_ref field) as having resulted from previous messaging (i.e.
the drag-and-drop dialogue). Assuming the task doesn't reject the
data as being unsuitable, this is sufficient for the task to know what

to do with the data:

If a drag-and-drop drop,

● If a ghost caret was being displayed, the insertion point is
set to the last known ghost caret position.

● Otherwise, the insertion point is set to the position specified
in the message (i.e. the pointer position), snapped if
necessary.

If a non-drag-and-drop drop,

● If a caret (shadow or not) or selection (shaded or not) is
being displayed, the insertion point is set there.

● Otherwise, the insertion point is set to the position specified
in the message, snapped if necessary.

If the insertion point thus determined lies on a selection (shaded or
not), the said selection must be cut to the clipboard. (This is the only
circumstance in which the clipboard is affected by a drag-and-drop
operation.) The new data is inserted, and is then selected itself.

If the insertion point lies on the source selection, no actions must be
taken. The selection remains selected.

Received text data must be correctly handled whether newlines (if
any) are indicated using ASCII &0A, &0D, or both characters in
either order.

4.5.2. Clipboard Module

The use, or not, of the Clipboard module to handle drop operations
will not affect the drop user interface.

4.5.3. Writable Icons

The requirements for acceptance of dropped data are the same as for
pasted data (see §4.3.3).

Text dragged from a writable icon is not terminated in any way - the
"file" length determines the amount of text. The leafname used for
icon-sourced text will be "IconText"; because the data transfer
message handling will be delegated to the Clipboard, there will be no
opportunity to change the leafname so as not to overwrite an existing
file of the same name.

5. Programming Interface and Data
Interchange

These two sections have been combined because any programming
interfaces being specified are intimately connected to data
interchange, and it makes no sense to discuss the programming
interfaces before the data interchange they relate to.

5.1. Selection

5.1.1. Protocol

Handling mouse and key events relating to and rendering of
selections is the responsibility of the task. The task may use
Wimp_SetCaretPosition to delegate drawing of the caret, but non-I-
beam carets and selections need to be drawn during window update
and redraw code. To give a window the input focus without displaying
the Wimp caret (for example, when setting a selection),
Wimp_SetCaretPosition must be called with R4 bit 25 set.

Whenever a cut-and-paste / drag-and-drop task gains either the caret
or the selection, it must broadcast the following event 17 Wimp
message with both flag bits 0 and 1 set:

Message_ClaimEntity
(&0000F)

This message is broadcast by a task claiming the cut-and-paste /
drag-and-drop caret, selection or clipboard

Message
Offset Contents
R1+12 your ref: 0
R1+20 Flags:

Bit(s) Meaning
0 Caret or selection being claimed
1 Caret or selection being claimed
2 Clipboard being claimed (see §5.2.1)

3-31 Reserved, must be zero

Source
Tasks

Destination
Tasks

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: confirm message definition attributes

A task must determine if it is gaining, or merely repositioning the
caret/selection by whether any other task has broadcast a
Message_ClaimEntity with bits 0 or 1 set, since the last time the task
in question broadcast such a message. Note in particular, this means
that a task must not consider the caret to have been lost when the
Wimp caret is grabbed by a non- cut-and-paste / drag-and-drop task.

When a task receives Message_ClaimEntity with either one or both of
bits 0 and 1 set, it must act as though both the caret and selection
have been claimed - and therefore redraw any selection as a shaded

selection, and either redraw the caret as a shadow caret, or remove
the caret entirely (the latter will be done automatically if the task
was using a Wimp-drawn user caret).

Note that the Wimp does not issue this message when positioning
either the caret or a selection within a menu structure.

5.1.2. Clipboard Module

The Clipboard is not involved in the selection process. However, any
programs planning to rely entirely on the Clipboard to manage its
cut-and-paste / drag-and-drop data transfer must still claim the caret
and selection as described in §5.1.1.

5.1.3. Writable Icons

5.1.3.1. Wimp_SetCaretPosition API

Wimp_SetCaretPosition will be extended to allow the following
entities to be created:

● Carets in writable icons that are not necessarily centred
when the text is wider than the icon.

● "User" ghost carets - i.e. ghost carets not in an icon. *
● Ghost carets in writable icons (not necessarily centred).

(See §5.4.3.)
● Selections in writable icons, centred when the text is wider

than the icon. *
● Selections in writable icons, not necessarily centred when

the text is wider than the icon.

Those entities above marked with an asterisk will also be made
available to tasks. Any calls using the API for the others will be
ignored, unless called using the internal Wimp routine. Below is the
complete new Wimp_SetCaretPosition API, including the existing
functionality, in a more digestible form than in the RISC OS 3 PRM.
This includes the calls for internal use only; although these are
internally distinguished by flags bit 28 being set, as far as the outside
world is concerned, both bits 28 and 29 remain "reserved, must be
zero".

Wimp_SetCaretPosition
(SWI &400D2)

Set up the data for a new caret, ghost caret or selection position, and
redraw it there

On entry
R0 - R6=contents varies by operation

On exit
R0preserved
R1preserved
R2preserved
R3preserved
R4preserved
R5preserved
R6undefined

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

This is SWI and has many use cases. The table below shows the
complete list of operations.

Action Description
0 To remove the caret / ghost caret / selection (on page 39)
1 To set a user caret / user ghost caret: (on page 40)
2 To set an icon caret, centred if possible, by known index

into the string (on page 41)
3 To set an icon caret and override the default Y position, size

or flags (on page 42)
4 To set an icon caret, centred if possible, by approximate

current position on screen (on page 43)
5 To set an icon caret / icon ghost caret, not necessarily

centred (on page 45)
6 To set an icon selection, centred if possible (on page 47)
7 To set an icon selection, not necessarily centred (on page

49)

The versions of the indexes into the string held internally, after an
icon caret is positioned by index, will in future be restricted to the
range { 0 <= index <= length } rather than just { index >= 0 }.
This is essentially a bugfix, and will affect the values returned by
Wimp_GetCaretPosition.

The Caret Flag

Flag bits 30/31 determine which entity the call refers to, and also
affect the other flag bit meanings:

Value Entity Meaning
0 Caret Bit(s) Meaning

0-15 height in OS units (0-65535)
16-23 colour (bits 20-23 ignored if a Wimp

colour number)
24 use a Wimp-drawn caret rather than the

Font Manager caret
25 do not draw the I-beam (caret is

invisible)
26 use bits 16-23 for colour (else defaults to

colour 11)
27 colour is a GCOL, otherwise a Wimp

colour number
28 use both R2 and R5 to position the caret

in an icon and override centring
behaviour (internal use only, must be
zero for external callers)

29 Reserved, must be zero
1 Ghost

Caret
Bit(s) Meaning

0-15 height in OS units (0-65535)
16-23 not used; must be zero (palette entry

&80808000 always used)
24 use a Wimp-drawn caret rather than the

Font Manager caret
25-27 not used; must be zero (cannot be

invisible, colour is fixed)
28 use both R2 and R5 to position the ghost

caret in an icon and override centring
behaviour (internal use only, must be
zero for external callers)

29 Reserved, must be zero

Value Entity Meaning
2 Selection Bit(s) Meaning

0-25 not used; must be zero (height and
colour determined by icon properties and
bit 26)

26 use shaded selection colour scheme (also
implies that the window containing the
selection should not be awarded the
input focus as the result of this call)

27 the window containing the selection
should not be awarded the input focus,
even if it is not shaded

28 use both R2 and R5/R6 to position the
selection in an icon and override centring
behaviour (internal use only, must be
zero for external callers)

29 Reserved, must be zero
3 Reserved

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 0
Remove

(SWI &400D2)
To remove the caret / ghost caret / selection

On entry
R0=-1
R2="TASK"
R3=caret flags (bits other than 30 and 31 reserved, must be zero)
R4=use bits 30 and 31 of R4 to determine which entity to remove,

otherwise remove the caret

On exit
R0preserved
R2= 0
R3preserved
R3preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

To remove the caret / ghost caret / selection.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 1
SetUserCaretOrUserGhostCaret

(SWI &400D2)
To set a user caret / user ghost caret:

On entry
R0=window handle
R1=x-offset of caret / ghost caret, relative to work area origin
R2=y-offset of caret / ghost caret, relative to work area origin
R3=caret flags (bits other than 30 and 31 reserved, must be zero)
R4=height of caret, and flags

On exit
R0preserved
R1preserved
R2preserved
R3preserved
R4preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

To remove the caret / ghost caret / selection.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 2
SetIconCaretByIndex

(SWI &400D2)
To set an icon caret, centred if possible, by known index into the
string

On entry
R0=window handle
R1=icon handle
R4=-1
R5=index of caret into string (must be >= 0)

On exit
R0preserved
R1preserved
R4preserved
R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant.

To set an icon caret, centred if possible, by known index into the
string

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 3
SetIconCaretAndFlags

(SWI &400D2)
To set an icon caret and override the default Y position, size or flags

On entry
R0=window handle
R1=icon handle
R3=y-offset of caret, relative to work area origin
R4=height of caret, and flags (bits 28-31 all clear)
R5=index of caret into string (must be >= 0)

On exit
R0preserved
R1preserved
R3preserved
R4preserved
R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant.

To set an icon caret and override the default Y position, size or flags

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 4
SetIconCaretByScreenPosition

(SWI &400D2)
To set an icon caret, centred if possible, by approximate current
position on screen

On entry
R0=window handle
R1=icon handle
R2=current x-offset of desired position, relative to work area origin
R3=current y-offset of desired position, relative to work area origin
R5=-1

On exit
R0preserved
R1preserved
R2preserved
R3preserved
R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

To set an icon caret, centred if possible, by approximate current
position on screen.

Note that if positioning the caret there causes the icon to scroll, the
final caret position may be very different to the specified position.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 5
SetIconCaretOrGhostCaret

(SWI &400D2)
To set an icon caret / icon ghost caret, not necessarily centred

On entry
R0=window handle
R1=icon handle
R2=new value of caret scrollx
R3=0 (reserved for future expansion)
R4=height of caret, and flags (bit 28 set, bit 30 set for ghost caret or

clear for caret, bit 31 clear)
R5=index of caret into string (must be >= 0)

On exit
R0preserved
R1preserved
R2preserved
R3preserved
R3preserved
R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

To set an icon caret / icon ghost caret, not necessarily centred. *

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 6
SetIconSelectionCentred

(SWI &400D2)
To set an icon selection, centred if possible

On entry
R0=window handle
R1=icon handle
R4=flags (bit 28 clear, bit 30 clear, bit 31 set)
R5=index of lower boundary into string
R6=index of upper boundary into string

On exit
R0preserved
R1preserved
R4preserved
R5preserved
R6undefined

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

To set an icon selection, centred if possible (or if the selection is
wider than the icon, right-aligned within the icon).

Note: no action is taken if R5 >= R6.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

Wimp_SetCaretPosition 7
SetIconSelection

(SWI &400D2)
To set an icon selection, not necessarily centred

On entry
R0=window handle
R1=icon handle
R2=new value of caret scrollx
R3=0 (reserved for future expansion)
R4=flags (bit 28 set, bit 30 clear, bit 31 set)
R5=index of lower boundary into string
R6=index of upper boundary into string

On exit
R0preserved
R1preserved
R2preserved
R3preserved
R4preserved
R5preserved
R6undefined

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

To set an icon selection, not necessarily centred.

Note: no action is taken if R5 >= R6.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)

5.1.3.2. Wimp_GetCaretPosition API

The complimentary SWI will be extended to allow for
Wimp_SetCaretPosition's new functionality:

Wimp_GetCaretPosition
(SWI &400D3)

Returns details of the state of the caret, ghost caret or writable icon
selection

On entry
R0=if R2 = "TASK", this is the entity to inspect (0 => caret, 1 =>

ghost caret, 2 => selection)
R1=block to fill with entity state
R2="TASK" => fill block with state of entity specified by R0 and R3,

else fill block with caret state
R3=if R0 = 2 and R2 = "TASK", this is either the handle of the

window to inspect, or -1 to inspect the window which currently
has the input focus and therefore also the only un-shaded
selection

On exit
R0corrupted
R1preserved
R2=0 if it was "TASK" on entry
R3preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

This call returns details of the state of the caret, ghost caret or
writable icon selection.

If the caret or ghost caret state is being returned, the block is filled
as follows:

Offset Contents
R1+0 window handle (or -1 if there is no [ghost] caret)
R1+4 icon handle (or -1 if a user [ghost] caret)
R1+8 x-offset of [ghost] caret, relative to work area origin
R1+12 y-offset of [ghost] caret, relative to work area origin
R1+16 height of [ghost] caret and flags (bit 28 clear)
R1+20 index of [ghost] caret into string (undefined if a user [ghost]

caret)

If the selection state is being returned, the block is filled as follows:

Offset Contents
R1+0 window handle (or -1 if there is no writable icon selection)
R1+4 icon handle (>= 0)
R1+8 x-offset of lower boundary of selection, relative to work area

origin
R1+12 width of selection
R1+16 y-offset of selection, relative to work area origin
R1+20 height of selection and flags (bit 28 clear)
R1+24 index of lower boundary into string
R1+28 index of upper boundary into string

Related SWIs
SWI Wimp_SetCaretPosition (on page 35)

5.2. Cut and Copy

5.2.1. Protocol

When a cut or copy operation is requested of an application, it must
copy the selected data to the clipboard. Under the raw protocol, each
task is responsible for allocating (and deallocating) the memory
necessary to store the clipboard. The clipboard must hold the data in
a form from which it can be translated to the maximum number of
other data types, which usually means it must be held in the
application's internal format.

In order to ensure that only one clipboard is active globally at a time,
it is necessary that when a cut or copy operation is performed, the
cutting/copying task broadcasts a Message_ClaimEntity (see §5.1.1)
with bit 2 set. Accordingly, when a task receives such a message, it
must deallocate the memory used to store its own clipboard (unless
of course, its own clipboard was not in use). The message must not
be sent if the same task already owned the clipboard.

5.2.2. Clipboard Module

One of the Clipboard's functions is to allocate and manage memory to
store the clipboard data for any participating tasks, following a cut or
copy operation.

However, the Clipboard has no intrinsic knowledge of how to
translate data between different formats, so it is essential that no
task uses the Clipboard for this purpose if it is able to translate data
on export. For example, none of Edit, Paint or Draw can exclusively
use the Clipboard for clipboard storage - Edit could export Basic
programs as a tokenised file, or as text; Paint can export both sprites
and palettes; and Draw can export text, sprites, JPEGs and PostScript
as well as DrawFiles.

Despite this, the raw protocol messaging involved at the pasting
stage is still not completely trivial, and so an alternative method will
be provided, whereby the task is still responsible for storing the
clipboard and translating the data when required, but the Clipboard
handles all the associated Wimp messaging. This also allows some
code sharing with the data-send end of the drop operation.

Clipboard_Put
(SWI &4E000)

Puts data on the clipboard, or initiates the data-send of a drop

On entry
R0=flags:

Bit(s) Meaning
0 Clear the clipboard (must be used when the application

exits, unless another task has since claimed the
clipboard using a Message_ClaimEntity 4)

1 Do not store the data, just the data length (and the
task handle) - when the data is required, the Clipboard
will send the clipboard-owning task a
Message_PutRequest stating the required data type,
see §5.3.2

2 R1 is a pointer to a data type list, otherwise R1 is the
data type

3-30 Reserved, must be zero
31 Flag reply messages as for the attention of the Wimp

R1=depending on flags bit 2, either the data type (in bits 0-11), or a
pointer to non-null list of data types that the task can translate
the data to (in no particular order), terminated by -1

R2=pointer to data (if flags bit 1 is clear)
R3=data length
R4=pointer to proposed leafname of data, null-terminated
R5=my_ref of Message_PutRequest which this is a reply to, or 0 if

this isn't a reply

On exit
R0 - R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

This SWI can be used for three main purposes:

● passing clipboard data to the Clipboard module to handle
on the application's behalf

● passing enough information about the clipboard to the
Clipboard so it can advertise on our behalf (or proxy) and
get back to the application if and when a paste operation
happens

● passing selection data to the Clipboard

The first and second cases can be initiated by the application, often
in response to a Ctrl-C or Ctrl-X keypress. In this case, R5 will be 0.
The first and third cases should be called in response to a
Message_PutRequest, which is sent to the application by the
Clipboard module if it called SWI Clipboard_Put (second case) or SWI
Clipboard_StartDrag respectively, and a paste or drop operation
(respectively) has been performed by the user.

Deleting the data in the main document following a cut operation
remains the task's responsibility. If a task is maintaining its own
clipboard storage area, it must release the memory when it receives
a Message_ClaimEntity 4 broadcast. When a task exits, if it is
maintaining the clipboard, or if Clipboard is maintaining the
clipboard for it, the task must call Clipboard_Put with flags bit 0 set,
for consistency with applications that do everything themselves.

The Clipboard broadcasts a Message_ClaimEntity 4 (unless the
Clipboard owns the clipboard already), and takes a copy of the data,
the leafname and the data type list, as appropriate. An error is
generated if any of the pointers are invalid.

Related SWIs
SWI Wimp_GetCaretPosition (on page 51)
SWI Wimp_SetCaretPosition (on page 35)

5.2.3. Writable Icons

The Wimp itself is not a Wimp task. One of the consequences of this
is that it has no task handle, and is as such not well suited to
handling Wimp messages. Because of this, it will make heavy use of
the Clipboard.

When the user types Ctrl-C or Ctrl-X in a writable icon, the Wimp will
call Clipboard_Put with all flags clear and a data type of &FFF. The
data will not be terminated; only the data length word will determine

the extent of the data.

5.3. Paste

5.3.1. Protocol

The application must first check to see if it owns the clipboard, and
use the data directly if so. If it does not own it, it must broadcast a
Message_DataRequest (message type 18):

Message_DataRequest
(&00010)

Broadcast by a task when it wishes to paste data from a clipboard
maintained by another task

Message
Offset Contents
R1+12 your_ref: 0
R1+20 destination window handle
R1+24 internal handle to indicate destination of data; may be icon

handle (see below)
R1+28 destination x co-ordinate
R1+32 destination y co-ordinate
R1+36 flags: All other bits are reserved and must be clear

Bit(s) Meaning
2 Send data from clipboard

R1+40 list of data types in receiver's order of preference,
terminated by -1 (may be null)

Source
Task

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: confirm message definition attributes

Flags bit 2 must be set when the message is sent. If the message is
received with flags bit 2 clear, the message must be ignored.

If an application receiving the message owns the clipboard, it must
choose the earliest data type in the list that it can provide, and if

none are possible (or the list is null) it must provide the data in its
original (native) format. It must reply using the normal
Message_DataSave protocol. Bytes 20-35 of the DataSave block must
be copied directly from the corresponding bytes of the
Message_DataRequest block (despite the discrepancy between icon
handle and internal handle), while the estimated size, data type and
leafname must be filled appropriately. The your_ref of the
Message_DataSave must be the my_ref of the Message_DataRequest.

Be aware that if the Wimp sees an incoming DataSave with a valid
icon handle at bytes 24-27 (i.e. less than the number of icons created
in the windows), it will assume that it is a request to paste into that
icon. Consequently, an application must be careful how it allocates its
internal handles for use in this message. For example, it could use
pointers into application space, which will be above &8000 and
therefore very unlikely to clash with an icon handle.

When the task that initiated the paste receives the
Message_DataSave, it must check the data type to ensure that it
knows how to deal with it - it may be the clipboard owner's native
format. If it cannot, it may back out of the transaction by ignoring the
message. Otherwise, it must continue with the conventional
DataSave protocol, preferably using memory data transfer.

If an application needs to find out whether there is data available to
paste, but does not actually want to receive the data (e.g. in order to
determine whether a "Paste" menu option should be shaded), it must
broadcast a Message_DataRequest as described above. If no task
replies (i.e. the message bounces) then there is no clipboard data
available. If a Message_DataSave is received, then the application
must ignore it (i.e. fail to reply), which will cause the operation to be
silently aborted by the other task. The data type field of the
Message_DataSave can then be used to determine whether the data
being offered by the other task is in a suitable format to be pasted.

Related SWIs
SWI Clipboard_GetDataType (on page 68)
SWI Clipboard_Put (on page 54)

Related messages
Message_Paste (on page 64)
Message_PutRequest (on page 62)

5.3.2. Clipboard Module

5.3.2.1. The Complete Paste Process

During the paste process, the Clipboard behaves to conventional
drag-and-drop tasks exactly like any other clipboard owner, and
responds to Message_DataRequests as described above.

It also provides an alternative interface to the pasting process,
involving much less messaging. It involves SWI Clipboard_Get and
the messages Message_PutRequest and Message_Paste. However, as
before, if a task is managing its own clipboard, it must use the data
directly in preference (although this will now only be in cases where
the data can be translated on export).

Clipboard_Get
(SWI &4E001)

Requests data from the clipboard, using the Clipboard as a proxy

On entry
R0=flags:

Bit(s) Meaning
0-30 Reserved, must be zero

31 Flag reply messages as for the attention of the Wimp
(this bit must only be set by the Wimp)

R1=destination window handle
R2=destination icon handle (-1 if none)
R3=destination x co-ordinate
R4=destination y co-ordinate
R5=pointer to list of data types that the task is interested in

receiving, in order of preference, terminated by -1 (may be a
null list if the native format is required)

On exit
R0 - R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

The Clipboard takes an internal copy of the data type list. If it owns
the clipboard itself, it replies immediately with a Message_Paste. If a
task has registered itself with the Clipboard using a bit-1-set SWI
Clipboard_Put, the Clipboard sends a Message_PutRequest to the
clipboard owner, and uses the data copied from the details in the
following SWI Clipboard_Put to construct a Message_Paste.
Alternatively, if a conventional drag-and-drop task owns the
clipboard, the Clipboard will send a Message_DataRequest and
handle all the Message_DataSave etc. messaging, before sending a
Message_Paste to the pasting task, thus creating a uniform interface.

Related SWIs
SWI Clipboard_GetDataType (on page 68)
SWI Clipboard_Put (on page 54)

Related messages
Message_DataRequest (on page 57)
Message_PutRequest (on page 62)

Message_PutRequest
(&4E000)

Requests that clipboard or selection data be sent to the Clipboard

Message
Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Flags bit 0 to use in Clipboard_Put
1 Flags bit 1 to use in Clipboard_Put
2 Flags bit 2 to use in Clipboard_Put (note this also

determines whether a single data type, or a data
type list pointer is required in R3)

3 Send the clipboard (otherwise send the selection)
4 Delete the selection after sending the data

5-30 Reserved, must be zero
31 Message is for the attention of the Wimp, other

tasks must ignore it
R1+24 destination window handle
R1+28 destination icon handle (-1 if none)
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 pointer to list of data types that the destination task is

interested in receiving, in order of preference, terminated
by -1 (may be a null list if the native format is required) -
now held in the Clipboard's workspace

Source
Clipboard

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: confirm message definition attributes

This message requests that clipboard or selection data be sent to the
Clipboard.

Message_PutRequest is sent exclusively by the Clipboard. Any task
receiving the message must reply before the next Wimp_Poll using
SWI Clipboard_Put with, preserving flags bit 0-2 and 31.

The message is used both for providing the data in a paste operation
(when data translation has to be delayed until paste-time) and in a
drop operation, so care must be taken to send the data from either
the internal clipboard or the selection, respectively. Bit 4 caters for
move-drags (see §5.4.2).

The data type chosen must be the first one in the list that it can
provide, or the native data type if none (or if the list is null). The data
must be translated prior to calling Clipboard_Put (unless bit 2 is set),
as it is at that stage that the Clipboard takes an internal copy of the
data. The leafname must be built as described in §4.5.1.1.

Related SWIs
SWI Clipboard_Get (on page 60)
SWI Clipboard_Put (on page 54)

Related messages
Message_DataRequest (on page 57)
Message_DataTypeIs (on page 70)

Message_Paste
(&4E001)

Informs the task being pasted to or dropped upon that the data is
ready to be received

Message
Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Clipboard couldn't find any clipboard after a

Clipboard_Get call - take no further action
1-30 Reserved, must be zero

31 Message is for the attention of the Wimp, other
tasks must ignore it

R1+24 destination window handle
R1+28 destination icon handle (-1 if none) or internal handle if

initiated by a Message_DataRequest
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 data type
R1+44 pointer to data, or 0 if flag bit 0 set
R1+48 data length
R1+51 pointer to proposed leafname of data, null-terminated, or 0

if flag bit 0 set

Source
Clipboard

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

⚠ FIXME: confirm message definition attributes

This message informs the task being pasted to or dropped upon that
the data is ready to be received.

This message is also sent exclusively by the Clipboard. The data type
must first be checked for suitability, then the data must be copied
before the next Wimp_Poll, as the Clipboard will free up the memory
unless it was itself the owner of the clipboard (the task must not
attempt to determine whether this is the case).

Note that the Clipboard stores data in its own application slot, and
this is where the pointer at R1+44 lies, so in order to copy the data,
you must use Wimp_TransferBlock. The Clipboard's task handle
(required by Wimp_TransferBlock) may be obtained from R1+4.

Related SWIs
SWI Clipboard_Get (on page 60)
SWI Clipboard_GetDataType (on page 68)
SWI Clipboard_Put (on page 54)

Related messages
Message_DataTypeIs (on page 70)
Message_PutRequest (on page 62)

5.3.2.2. Interactions

The five possible interactions during a paste operation are outlined
below. The solid lines refer to the complete paste process, and the
dotted lines refer to clipboard data type determination, as described
in §5.3.2.3. Lines are diagonal where a task switch is performed (i.e.
for the sending of messages rather than the use of SWIs). Note that
the "clipboard-owning task" is the task that most recently performed
a cut or copy operation - strictly speaking, if the task is cooperating
with the Clipboard, the Clipboard is the clipboard owner.

Interaction method 1

Interaction method 2

Interaction method 3

Interaction method 4

Interaction method 5

In the fifth case, it is necessary for the Clipboard to ack the
Message_DataRequest so that it doesn't bounce while the
Message_PutRequest is delivered to the clipboard-owning task.

5.3.2.3. Clipboard Data Type Determination

Since the Clipboard is responsible for performing the traditional data
transfer protocol, tasks that use the Clipboard need another way in
which to determine whether they can use the current clipboard data.
This will be provided by the Clipboard using the SWI
Clipboard_GetDataType and the message Message_DataTypeIs.

Clipboard_GetDataType
(SWI &4E002)

Requests data type of the clipboard, using the Clipboard as a proxy

On entry
R0=flags:

Bit(s) Meaning
0-30 Reserved, must be zero

31 Flag reply messages as for the attention of the Wimp
(this bit must only be set by the Wimp, even though
there are currently no plans for it to do so at present)

R1=destination window handle
R2=destination icon handle (-1 if none)
R3=destination x co-ordinate
R4=destination y co-ordinate
R5=pointer to list of data types that the task is interested in

receiving, in order of preference, terminated by -1 (may be a
null list if the native format is required)

On exit
R0 - R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

Requests data type of the clipboard, using the Clipboard as a proxy.

The Clipboard takes an internal copy of the data type list. If it owns
the clipboard itself, it replies immediately with a

Message_DataTypeIs. If a task has registered itself with the
Clipboard using a bit-1-set SWI Clipboard_Put, the Clipboard sends a
Message_PutRequest to the clipboard owner, and uses the (single)
data type returned in the following SWI Clipboard_Put to construct a
Message_DataTypeIs. Alternatively, if a conventional drag-and-drop
task owns the clipboard, the Clipboard will send a
Message_DataRequest, but fail to reply to the subsequent
Message_DataSave; the data type from the Message_DataSave is
used in the Message_DataTypeIs, thus creating a uniform interface.

Related SWIs
SWI Clipboard_Get (on page 60)

Related messages
Message_DataTypeIs (on page 70)

Message_DataTypeIs
(&4E002)

Informs a task of the data type of the clipboard

Message
Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Clipboard couldn't find any clipboard after a

Clipboard_GetDataType call
1-30 Reserved, must be zero

31 Message is for the attention of the Wimp, other
tasks must ignore it

R1+24 destination window handle
R1+28 destination icon handle (-1 if none)
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 data type

Source
Clipboard

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: confirm message definition attributes

This message informs a task of the data type of the clipboard (subject
to the data type list passed to the preceding SWI
Clipboard_GetDataType).

Related SWIs
SWI Clipboard_GetDataType (on page 68)

5.3.3. Writable Icons

The Wimp will use the Clipboard to obtain data when it needs to be
pasted. It will (effectively) install a temporary post-poll filter on the
task owning the icon, in order to detect the flags-bit-31-set
Message_Paste that follows a Clipboard_Get SWI call. The message
event will not be claimed, so that a task can be kept informed about
what is being done to its icons - but the task must not change the
contents of the icon, because the Wimp will already have done so.

Since the Wimp will only export text from writable icons, and as such
will have used the bit-1-clear version of Clipboard_Put, it will not
have to respond to Message_PutRequests (except as a result of a
drag-and-drop, see §5.4.2).

The Wimp will not call Clipboard_GetDataType, so need not respond
to Message_DataTypeIs.

5.4. Drag and Drop

5.4.1. Protocol

During a traditional drag operation, no messaging takes place until
the drop. However, during a drag-and-drop drag, a dialogue is set up
between the dragging (sending) task and the potentially-receiving
(claiming) task - which, in general, is the task owning the window
under the pointer at any given time.

5.4.1.1. Responsibilities

The sending task's responsibilities include:

● checking the status of the Shift key at the beginning of the
drag

● setting the pointer shape to ptr_drop at the beginning of the
drag, resetting the pointer shape to ptr_drop when the
claiming task has finished with using an alternative pointer
shape, and setting it back to ptr_default at the end of the
drag

● calling Wimp_DragBox, DragASprite_Start/Stop or
DragAnObject_Start/Stop, as appropriate, at the beginning
and end (abortion or completion) of the drag, and whenever
the claiming task starts or stops requiring that the dragged
object be removed from view (during such a period, a type 7
Wimp_DragBox "dragpoint" must be used instead)

● contacting the claiming task every 0.25 seconds, stating the

screen position and "real life" bounding box of the data and
the data types in which it is available

● initiating the drop when the drag ends
● deleting the selected data after a successful drop if (drag

was within the same window AND Shift was not held down)
OR (drag was between windows or to a type-15 writable
icon in any window AND Shift was held down) OR the
destination is a trashcan application

● aborting the drag (and informing the claiming task as such)
when the user presses Escape (which means the sending
task must retain the input focus throughout the drag)

The claiming task's responsibilities include:

● updating the ghost caret according to the data passed from
the sending task, provided at least one available data type
can be used (and telling the sending task to remove the
dragged object if a ghost caret is being displayed)

● automatically scrolling the window if the pointer is paused
near the edge of a document window (and changing the
pointer to reflect as such at the beginning of the autoscroll -
changing it back at the end is the sending task's
responsibility)

● letting the sending task know its preferred ordering of data
types, so that the sending task can work out which data
type to send during the drop

● letting the sending task know if it the claiming task is a
trashcan (i.e. that the source data must be deleted)

A task must only claim the drag if it can do something useful with the
handles and co-ordinates passed to it - typically a response would be
made when the pointer is over a text area or in the autoscrolling
pause zone, but not when over a "dead" area like a page border, and
not when over a writable icon (except that being over an
autoscrolling pause zone takes precedence over being over a dead
zone or icon).

In practice, the claiming task can choose to continue to be involved in
the dialogue, even when the pointer is no longer over one of its
windows. This is to allow autoscrolling to continue, even when the
pointer is dragged outside the window being autoscrolled (although
this must not occur if the pointer has been moved smoothly over the
window boundary without pausing over the window's autoscrolling
activation zone). In fact, the default behaviour is for the dialogue to
continue between the same two tasks, until the claiming task bows
out by letting the sending task's message bounce. The claiming task,
being the one handling the autoscrolling, is of course the one that
knows best when this is necessary.

5.4.1.2. Messaging

Message_Dragging
(&00011)

This message is sent by a sending task to a (prospective) claiming
task at intervals of 0.25 second, carrying context-sensitive
information about the drag

Message
Offset Contents
R1+12 your_ref: my_ref of last Message_DragClaim (or 0 if there

was no claimant last time, or if this is the first
Message_Dragging)

R1+20 destination window handle (constructed from
Wimp_GetPointerInfo)

R1+24 destination icon handle (constructed from
Wimp_GetPointerInfo)

R1+28 destination x co-ordinate (constructed from
Wimp_GetPointerInfo)

R1+32 destination y co-ordinate (constructed from
Wimp_GetPointerInfo)

R1+36 flags:
Bit(s) Meaning

1 Sending data from selection (for information only,
receiver must ignore)

2 Sending data from clipboard - i.e. from a clipboard-
displaying window (for information only, receiver
must ignore)

3 Source data will be deleted (for information only,
and unfortunately is incorrect when generated by
DataPower; receiver must ignore)

4 Drag is being aborted, do not respond to this
message All other bits are reserved and must be
clear

31 All other bits are reserved and must be clear
R1+40 xmin, ymin, xmax, ymax (4 bytes each): bounding box of

data, relative to pointer, measured in millipoints (1/72000th
of an inch), not scaled according to the zoom factor(s) of the
source window; xmin > xmax means data has no bounding
box, or bounding box is unknown

R1+56 list of available data types in no particular order,
terminated by -1 (must not be null)

Source
Task

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: confirm message definition attributes

This message is sent by a sending task to a (prospective) claiming
task at intervals of 0.25 second, carrying context-sensitive
information about the drag.

The sending task sends a Message_Dragging, and the claiming task
replies with a Message_DragClaim, as follow

Related messages
Message_DragClaim (on page 75)

Message_DragClaim
(&00012)

This message is sent by a claiming task to the sending task in
response to a Message_Dragging, carrying context-sensitive
information about the drag

Message
Offset Contents
R1+12 your_ref: my_ref of last Message_Dragging
R1+20 flags:

Bit(s) Meaning
0 A pointer shape other than ptr_drop is in use
1 Claiming task requires the absence of the Wimp

dragbox / DragASprite sprite / DragAnObject
object

3 Claiming task is a trashcan application, so the
source data must be deleted irrespective of
Message_Dragging's flags bit 3 (else deletion of
the source data is determined by sending task)
All other bits are reserved and must be clear

R1+24 list of available data types in receiver's order of preference,
terminated by -1 (may be null)

Source
Task

Destination
Task

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

⚠ FIXME: confirm message definition attributes

This message is sent by a claiming task to the sending task in
response to a Message_Dragging, carrying context-sensitive
information about the drag. It must only be issued if the claiming
task is interested in at least one available data type.

Related messages
Message_Dragging (on page 73)

Tasks are free to use internal routines to keep track of drags within
or between windows that it owns, avoiding the performance overhead
of all the messaging, as long as the user interface is indistinguishable
from that which would result otherwise. Note in particular, that if the
pointer is found to be over a type-15 writable icon, messaging must
be turned back on as though the pointer was over a window owned
by another task; this is so that the Wimp can collaborate in the
dragging dialogue. Fortunately, the only application which currently
uses this optimisation is Easi/TechWriter, where all the writable icons
are in transient (or pseudo-transient) dialogue boxes, so this problem
will never be visible, provided new implementations of drag-and-drop
in applications follow these revised guidelines.

5.4.1.3. Use

In event-driven terms, the sending and claiming tasks must follow the
behaviour outlined below in order to implement every aspect of the
protocol. Explanatory comments are italicised (and are all new in this
specification).

"Message type 17/18" means "use message type 17 unless
drag_finished is 'true', when you must use message type 18". This is
an optimisation, because we're not interested if Message_Dragging
bounces from a non-drag-and-drop task, until the end of the drag,
when we will want to send the data by simple data transfer.

Sending task:

● At drag start,
● enable null events every 0.25 seconds;
● call Wimp_DragBox (with a drag type of 5),

DragASprite_Start or DragAnObject_Start as
appropriate (remember to use the dragbox if CMOS
states that dragged sprites/objects must not be used);

● program pointer shape to ptr_drop;
● set shift_pressed to indicate current status of the

Shift keys;
● set claimant to 'none' (-1 is a suitable invalid task

handle for this purpose);
● set drag_finished to 'false';
● set drag_aborted to 'false';
● set lastref to 'none' (0 is suitable for this purpose).

● At drag abort (when Escape pressed during a drag),
● disable null events;
● call Wimp_DragBox -1, DragASprite_Stop or

DragAnObject_Stop as appropriate (or
Wimp_DragBox -1 if old_dragclaim_flags has bit 1
set);

● program pointer shape to ptr_default;
● set drag_finished and drag_aborted to 'true';
● proceed as for a null event...

● At drag end (when User_Drag_Box event is received),
● disable null events;
● if necessary, call DragASprite_Stop or

DragAnObject_Stop;
● program pointer shape to ptr_default;
● set drag_finished to 'true';
● proceed as for a null event...

● At null events,
● construct Message_Dragging using data from

Wimp_GetPointerInfo and the value of drag_aborted;
● if claimant is 'none', send message type 17/18 to

window owner with your_ref = 0;
● else, send message type 18 to claimant with your_ref

= lastref.
● When Message_DragClaim is received,

● if drag_finished is 'true',
● drag has ended successfully while a claim is in

force
● if drag_aborted is 'false' (this comparison is

not strictly necessary, since the claiming task
is not supposed to reply when the drag is
being aborted),
● initiate enhanced drop operation (send

Message_DataSave to claimant, using
first possible data type in the list, or the
native data type if none are possible,
and using your_ref = my_ref of the
Message_DragClaim, then delete the
source data if shift_pressed and the new
window/icon handles (or the trashcan
flag bit in Message_DragClaim) indicate
as such.

● else,
● drag is continuing AND (a claim is in force, or

a claim is starting)
● if lastref != 'none',

● claim is continuing, not just starting

● if old_dragclaim_flags bit 0 is set, but
the new Message_DragClaim flags bit 0
is clear, program the pointer shape to
ptr_drop;

● if old_dragclaim_flags bit 1 is set, but
the new Message_DragClaim flags bit 1
is clear, call Wimp_DragBox (with a drag
type of 5), DragASprite_Start or
DragAnObject_Start as appropriate.

● if old_dragclaim_flags bit 1 is clear, but
the new Message_DragClaim flags bit 1
is set, call DragASprite_Stop or
DragAnObject_Stop if necessary, then
call Wimp_DragBox with a drag type of
7.

● else,
● claim is just starting
● if Message_DragClaim flags bit 1 is set,

call DragASprite_Stop or
DragAnObject_Stop if necessary, then
call Wimp_DragBox with a drag type of
7.

● set claimant to task handle in
Message_DragClaim;

● set lastref to my_ref of Message_DragClaim;
● set old_dragclaim_flags to flags word from

Message_DragClaim.
● When Message_Dragging bounces,

● if claimant is not 'none',
● claimant is releasing claim (including when

claimant doesn't reply because the drag is
aborting)

● if drag_finished is 'false',
● if old_dragclaim_flags bit 0 is set,

program the pointer shape to ptr_drop;
● if old_dragclaim_flags bit 1 is set, call

Wimp_DragBox (with a drag type of 5),
DragASprite_Start or
DragAnObject_Start as appropriate.

● set claimant to 'none';
● set lastref to 'none';
● resend Message_Dragging as message type 17/

18 to the window owner (preserving the flags,
and with your_ref = 0).

● else,
● (no claimant is in effect AND drag has

finished) OR the drag is aborting
● if drag_finished is 'true' (this comparison is not

strictly necessary, since drag_aborted also
implies drag_finished),

● if drag_aborted is 'false',
● initiate simple drop operation

(send Message_DataSave to
window owner, using native data
type and your_ref = 0).

Claiming task:

● At initialisation,
● set claiming to 'false'.

● When Message_Dragging is received,
● if claiming is 'false',

● if flags bit 4 is clear,
● start claim
● set claiming to 'true' and autoscrolling

to 'false';
● if pointer is in the autoscroll pause zone,

● set pausing to 'true';
● set old_pointer_x, old_pointer_y

and old_pointer_time to the x and
y from Message_Dragging and
the current monotonic time;

● program pointer to autoscroll-
pause shape, and set
pointer_altered to 'true';

● else,
● set pausing to 'false' and

pointer_altered to 'false';
● if the data type is suitable, draw the

ghost caret (I-beam or bounding box)
and set ghost_caret to 'true', else set
ghost_caret to 'false';

● reply with Message_DragClaim
(message type 17), using
pointer_altered and ghost_caret to
determine the flags.

● else,
● if flags bit 4 is clear AND (claiming task owns

the window/icon handle in Message_Dragging
OR autoscrolling is 'true'),
● update claim
● if pausing is 'true',

● if current pointer x or y differs
from old_pointer_x or
old_pointer_y, set old_pointer_x,
old_pointer_y and
old_pointer_time to the current
pointer x and y and monotonic
time;

● if pointer has left autoscroll

pausing zone,
● set pausing and

pointer_altered to 'false';
● else,

● if (current monotonic time -
old_pointer_time) >=
pause_time (typically 0.5
seconds), set autoscrolling
to 'true' and pausing to
'false', and program the
pointer to its autoscroll-
active shape;

● else if autoscrolling is 'false',
● if pointer is in the autoscroll

pause zone,
● set pausing to 'true';
● set old_pointer_x,

old_pointer_y and
old_pointer_time to the x
and y from
Message_Dragging and the
current monotonic time;

● program pointer to
autoscroll-pause shape,
and set pointer_altered to
'true';

● else,
● set pausing to 'false' and

pointer_altered to 'false';
● else (i.e. autoscrolling is 'true'),

● if pointer is over the window, but
not in the autoscroll pause zone,
● set autoscrolling and

pointer_altered to 'false';
● else,

● scroll the window by an
amount proportional to the
distance from the pointer
to the inside edge of the
autoscroll pause zone;

● if the window cannot be
scrolled any further in this
direction (or can be
scrolled in neither
direction if a 2D scroll), set
autoscrolling to 'false', set
pausing to 'true' and
program the pointer to its
autoscroll-pausing shape;

● if ghost_caret is 'true', update ghost

caret - unless the work-area-relative
position is unchanged, undraw the old
ghost caret and draw the new ghost
caret;

● reply with Message_DragClaim
(message type 17), using
pointer_altered and ghost_caret to
determine the flags.

● else,
● release claim
● set claiming to 'false';
● if ghost_caret is 'true', undraw the old

ghost caret;
● let Message_Dragging bounce (i.e. don't

reply to it).
● When Message_DataSave is received,

● if you_ref != 0,
● if claiming is 'true',

● this was an enhanced (full drag-and-
drop) drop - the claim was never
released set claiming to 'false';

● if ghost_caret is 'true', undraw the old
ghost caret;

● import data to the last ghost caret
position using conventional data
transfer protocol (preferably using
memory data transfer).

● else,
● this is part of the paste protocol
● continue as for simple drop...

● else,
● this was a simple drop
● import data to position from

Message_DataSave using conventional data
transfer protocol (preferably using memory
data transfer).

5.4.2. Clipboard Module

5.4.2.1. Use

The Clipboard module, in conjunction with the SWI Wimp_AutoScroll,
will reduce the coding required to implement drag-and-drop to the
following, a great improvement on §5.4.1.3. Note that, unlike the
clipboard maintenance and paste protocols, the drag and drop
protocols use one-to-one messages rather than broadcast messages,
so the Clipboard needs to make use of filters in order to translate
between the protocols. (An assumption has been made that the
receiving task wishes to use an I-beam ghost caret - this does not
have to be the case, but Wimp_SetCaretPosition's new facility for

drawing ghost carets requires simpler but different code from that in
§5.4.1.3.)

Sending task:

● At drag start,
● ensure sending window has the input focus;
● call SWI Clipboard_StartDrag.

● When Message_PutRequest is received,
● if flags bits 3 and 31 are clear,

● this is a PutRequest for the selection, rather
than the task-managed clipboard

● translate selected data to the first possible
data type in the list, or leave as the native data
type if none are possible;

● call Clipboard_Put to send the data;
● if flags bit 4 of the Message_PutRequest was

set, delete the selection.

Claiming task:

● At initialisation,
● set claiming to 'false'.

● When Message_Dragging is received,
● if claiming is 'false',

● if flags bit 4 is clear,
● start claim
● set claiming to 'true';
● call Wimp_AutoScroll;
● call Wimp_SetCaretPosition to position

the ghost caret if at least one available
data type is suitable;

● reply with Message_DragClaim
(message type 17), with flags bit 0 clear,
and flags bit 1 set if a ghost caret is
being displayed.

● else,
● if flags bit 4 is clear AND (claiming task owns

the window handle in Message_Dragging OR
Wimp_AutoScroll indicates scrolling is in
progress),
● update claim
● call Wimp_SetCaretPosition to

reposition the ghost caret if at least one
available data type is suitable;

● reply with Message_DragClaim
(message type 17), with flags bit 0 clear,
and flags bit 1 set if a ghost caret is
being displayed.

● else,

● release claim
● set claiming to 'false';
● call Wimp_AutoScroll to deactivate

autoscrolling;
● call Wimp_SetCaretPosition -1 to

remove the ghost caret;
● let Message_Dragging bounce (i.e. don't

reply to it).
● When Message_DataSave is received,

● if claiming is 'true',
● this was an enhanced (full drag-and-drop) drop

- the claim was never released
● set claiming to 'false';
● call Wimp_AutoScroll to deactivate

autoscrolling;
● call Wimp_SetCaretPosition -1 to remove the

ghost caret;
● copy window handle, icon handle, x and y

offsets from last Message_Dragging over the
Message_DataSave block equivalents, and call
Clipboard_CatchDrop.

● else,
● this was a simple drop
● call Clipboard_CatchDrop.

5.4.2.2. Messaging

The details of the new SWIs introduced are:

Clipboard_StartDrag
(SWI &4E003)

Starts a drag-and-drop drag, using the Clipboard as a proxy

On entry
R0=flags:

Bit(s) Meaning
1 As Message_Dragging (= sending from selection)
2 As Message_Dragging (= sending from clipboard)

14-15 Proxy Drag Method:
Value Meaning

0 use rotating-dash fixed-size Wimp dragbox
1 use DragASprite
2 use DragAnObject
3 reserved

16 As DragAnObject_Start, if applicable (R1 is a pointer to
a routine rather than a SWI number)

17 As DragAnObject_Start, if applicable (if bit 16 is set
and bit 18 clear, enter routine with R10 below R13 -
note this was previously misdocumented as the routine
being entered in SVC mode rather than USR mode)

18 As DragAnObject_Start, if applicable (if bit 16 is set
and DragAnObject is version 0.09 or later, enter
routine in USR mode rather than SVC mode)

31 Flag reply messages as for the attention of the Wimp
(this bit must only be set by the Wimp)
All others are reserved and must be clear

R1=sprite area or renderer (if DragASprite or DragAnObject,
respectively)

R2=pointer to sprite name or register/parameter block (if
DragASprite or DragAnObject, respectively)

R3=source window handle (used in combination with the Shift key
state to determine when the source data needs deleting
afterwards)

R4=pointer to word-aligned block containing three bounding boxes,
each made up of four 32-bit quantities held in the order xmin,
ymin, xmax, ymax, where the minima are inclusive and the
maxima are exclusive:

● bounding box to apply to the pointer, in OS units from
the screen origin; if xmin > max then the pointer is
constrained to the screen

● initial position of the dragbox/sprite/object being
dragged, in OS units from the screen origin

● "real" position and size of the data to use to render the
ghost caret, in millipoints (1/72000ths of an inch)
relative to the pointer; if xmin > xmax then the size is
unknown or undefined

R5=data length, bytes

R6=pointer to non-null list of data types that the task can translate
the data to (in no particular order), terminated by -1

R7=pointer to proposed leafname of data, null-terminated

On exit
R0 - R7preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

Starts a drag-and-drop drag, using the Clipboard as a proxy.

The Clipboard takes a copy of the data pointed to, and performs the
actions described in §5.4.1.3 (sending) on behalf of the task. In order
to achieve this, it forces the required Wimp events to be unmasked
using a pre-poll filter, then performs its main actions using a post-poll
filter; it also calls Wimp_AddMessages, so it not necessary for the
task to register interest in Message_DragClaim etc. at initialisation.
During the drag, the task will not see any user_drag_box events,
key_pressed events (except for Escape), or any DragClaim,
RAMFetch, DataSaveAck or DataLoadAck messages. If null events
were enabled in the poll mask before it was massaged by the pre-poll
filter (and, if it was a call to Wimp_PollIdle, the required time has
passed) they will also pass through to the task once the post-poll
filter has done its work.

When the drag ends (successfully or not), the filters are removed.
When the drag ends successfully, the task's cooperation is required in
order to translate the data to the required data type; this is
accomplished by the Clipboard sending it a Message_PutRequest
with flags bit 3 clear, as described in §5.3.2.1.

Related SWIs
SWI Clipboard_CatchDrop (on page 88)

Clipboard_CatchDrop
(SWI &4E004)

Request the Clipboard to act as a proxy for data transfer during a
drop

On entry
R0=flags:

Bit(s) Meaning
31 Flag reply messages as for the attention of the Wimp

(this bit must only be set by the Wimp)
All others are reserved and must be clear

R1=pointer to DataSave message block (or DataLoad message block
if initiated by the Filer) that needs replying to

On exit
R0 - R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use
⚠ FIXME: confirm irqs, fiqs, processor-mode, re-entrant

The Clipboard handles the data transfer for the task, trying memory
data transfer first if possible. When the transfer is complete, the
Clipboard sends a Message_Paste to the task that called this SWI, so
as to appear identical to a paste operation.

It will also detect if it sent the DataSave message itself - in other
words, if the sending task was using the Clipboard as a proxy too - if
so, no further messaging will occur, and the Clipboard will simply use
the pointer to its copy of the data made during Clipboard_Put in the

Message_Paste.

Related SWIs
SWI Clipboard_StartDrag (on page 84)

5.4.3. Writable Icons

The Wimp will handle drags to and from writable icons as in §5.4.2.

The Wimp will install an internal message filter in order to listen for
Clipboard messages (Message_PutRequest and Message_Paste) with
flags bit 31 set; these are handled by the Wimp and not passed on to
the task. Similarly, it will intercept and not pass on
Message_Dragging throughout any period when it is claiming the
drag. However, some tasks (such as FrontEnd) do perform useful
functions when they receive a Message_DataSave, so
Message_DataSave is always passed through to the task, and the
Wimp will only call Clipboard_CatchDrop at the Wimp_Poll following
the delivery of Message_DataSave if the task didn't call
Wimp_SendMessage, Wimp_UpdateWindow or Wimp_ForceRedraw.

6. Data Formats
No new data formats are introduced.

7. Dependencies
The new Wimp provides facilities not available in earlier versions.
Although the source release means that it is possible for applications
that use them to require users of older Wimps to upgrade them, the
authors may choose to implement them manually in cases where an
older Wimp is detected. However, it is encouraged that the new
Wimp facilities be utilised when possible, to accommodate future GUI
changes, to allow system-wide configuration of autoscroll behaviour
and so on.

The Wimp will require the Clipboard to enable functioning of drag-
and-drop to or from writable icons. Without it, selections will be able
to be made, but no operations (other than deletion) can be performed
on them, and no selections from other applications will be inserted
when dropped on a writable icon.

8. Acceptance Test
8.1. Clipboard Module

8.1.1. Compatibility

The most advanced features of RISC OS that the Clipboard will make
use of are Dynamic Areas and the DragAnObject module, both
introduced at RISC OS 3.50. Provision may be made for further
development work to be done to support versions back to RISC OS
3.10 (by using RMA rather than Dynamic Areas, and defaulting to
rotating-dash boxes when a DragAnObject drag is requested), but for
the purposes of the initial release, a modern OS may be assumed.

8.1.2. Reliability/Robustness

The module must be able to handle at least a thousand consecutive
operations without crashing. Null-length data, extremely long data
and data close in length to a multiple of the page size must not cause
problems. Bad parameters (e.g. illegal sprite area pointers) must be
handled as well as possible - in the example, a rotating-dash box must
be used instead.

8.1.3. Performance

Performance will unfortunately continue to be slow in certain key
situations - for example, when transferring data to a conventional
task by memory data transfer, where the receiving task has specified
too small a buffer. Memory transfer will be slower during drops, since
the data is copied twice, once to the Clipboard's application slot, and
once from it. The incidences of scrapfile transfer will however be
reduced, resulting in speed gains.

8.1.4. Memory Usage

The module itself must not exceed 32kB in length. Stored global
clipboard data and transient data (during a drop operation) are
stored in the Clipboard's application slot so that the only size limits
are those of the application slot size (not a big issue with modern
memory maps) and the amount of physical RAM available. The
application slot shall grow and shrink so that it is no larger than the
combined size of the data stored, rounded up to the next page
boundary. The RMA shall be used for general heap storage (linked
lists etc.).

8.2. Wimp Writable Icon Code

8.2.1. Compatibility

The writable icon code will function correctly for all tasks that follow
the revised guidelines in §5 and all tasks that do not support the
drag-and-drop protocol, but it may lack complete functionality
(although not to the extent of rendering it useless) for up to 10% of
the writable icons in existing applications written to the old
application note guidelines.

8.2.2. Reliability/Robustness

The writable icon cut-and-paste / drag-and-drop code must be at least
as reliable as the Clipboard module.

8.2.3. Performance

Redraw of writable icons, especially when delimiting a selection with
autoscrolling active, must not cause flicker. Data transfer operations
must not be appreciably slower than the Clipboard routines that are
actually doing the work.

8.2.4. Memory Usage

Writable icon data is usually held in application workspace, and will
not increase in size by virtue of these enhancements. A negligible
amount of extra module workspace will be required to hold the
details of the Wimp selection and ghost caret, this should typically be
no more than 32K.

9. Non Compliances
No attempt will be made to develop an selection-drawing algorithm
that can cope with overlapping icons. The appearance of such icons
after scrolling and redrawing is not defined.

10. Development Test Strategy
Test applications will be written to exercise the Clipboard SWIs.

Drags to and from the existing drag-and-drop applications (e.g.
DataPower, EasiWriter and TechWriter) work seamlessly. These
applications will therefore be important testing tools. Also for testing
purposes, a drag-and-drop trashcan application and simple clipboard-
display application will be written.

(Conventional data transfer (as for example, when dropping a
selection on to a Filer window) is not expected to cause significant
problems, as the protocol has been clearly defined for a long time,
unlike the protocol in the application notes.)

A test suite will be written to exercise the functions of the Clipboard
through exercise of writable icons' cut-and-paste / drag-and-drop
facilities. For example: setting of writable icon selections will be
tested repeatedly, involving operations that change one or both ends
of a selection (or neither) at the same time, both with and without the
presence of a ghost caret. This will be done by direct calling of
Wimp_SetCaretPosition. And text files of differing length, of differing
line terminator and files that have been accidentally mistyped as text
will be saved on to writable icons of differing validation strings, using
conventional data transfer, pasting and dropping.

11. Product Organisation
This document, and the code it describes, form part of the Shared
Source RISC OS release.

The APIs and messages should ideally be included in a new version of
the Programmer's Reference Manual. Use of the raw protocol rather
than the Clipboard module will be deprecated.

The Clipboard module can be softloaded, but must also be capable of
being built into ROM.

12. Future Enhancements
None planned.

13. Glossary

Term(s)
used in
Document

Meaning

AND conj. Logical AND.
Caret n. The position in a document where typed

characters or pasted clipboard contents will be
placed. Many pre-drag-and-drop applications also
use this position as the insertion point for
dropped data, but drag-and-drop applications
must use the ghost caret for this purpose instead.
In textual documents, the caret is often shown by
a red I-beam, but other representations of the
caret may be more appropriate for other kinds of
data. Some editors, such as !Draw, do not have a
visible insertion point, but still "grab the caret"
and mark it as invisible, in order to gain the input
focus so that they may receive keystroke events."

Clear v. The operation by which a selection is undone."
Clipboard
n.

A hidden, temporary storage area that holds any
type of data while the user is copying or moving
it using the cut-and-paste protocol, whether
internal to one application, or between
applications. Conceptually, there is only one
clipboard, but the actual storage area may
actually be managed by different applications or
modules, depending upon the circumstances.
The term may also be used to refer to the
Clipboard module, although in this eventuality,
the initial letter will be in upper case.

Copy v. The operation by which the current selection is
replicated in the clipboard, overwriting any
existing data in the clipboard.

Cut v. As copy, but the selection is subsequently deleted
from its original location.

Data type
n.

A value equivalent to a filetype, but not
necessarily referring to a file.

Drag v. The operation by which the user indicates where
they wish a selection to be copied or moved to by
dragging a representation of the data from the
selection to the destination.

Drop v. At the end of a drag, the actual data transfer
process. This combines the functionality of a
paste operation with either a cut or copy
operation, as appropriate.

Ghost
caret n.

During a drag operation, the position in a
document where the data would be inserted,
were the user to release the mouse button. In
textual documents, the ghost caret is often

Term(s)
used in
Document

Meaning

shown similarly to a normal caret, but coloured
grey, and "snapped" to the nearest character
boundary. Other documents might better display
the ghost caret as the bounding box of the data,
scaled according to the destination window's
zoom factor(s).

OR conj. Logical inclusive OR (i.e. not EOR) - used where
the 'or' would have an ambiguous meaning, for
example in English text.

Input focus
n.

The defining attribute of the window where
keystroke events will be delivered. The user may
be able to see a caret or a selection, or possibly
neither, in the window that has the input focus;
the window border will be coloured in an
alternative colour (conventionally cream). Any
parent nested windows (recursively), and any
non-pane window behind a pane window, will
also have their title bars recoloured.

Paste v. The operation that the user performs to copy the
clipboard contents into a document, at the caret.

Selection
n.

The portion of a document which the user has
chosen as the target for subsequent operations.
This may be a contiguous selection (as in the
case of selected text) or a non-contiguous
selection (as in the case of a number of selected
files in the Filer). The rendering of the selection
is media-dependent, but typically may be shown
by inversion of the colours of the selected region,
or alternatively by the drawing of a bounding box
around the selection(s).
A shaded selection, which ought be rendered to
match the Wimp's rendering of shaded selections
in writable icons, indicates the location of a
selection after another selection has been made
in another window - but not when a caret or
selection is made in a non-drag-and-drop
application.

Shadow
caret n.

The equivalent of a shaded selection, but for
carets. A shadow caret must not be rendered in
such a way that it can be mistaken for a ghost
caret. It is optional, because applications are
expected normally to use a Wimp-drawn caret,
and the Wimp does not support shadow carets.
However, shadow carets can be useful, especially
if the application draws its own caret anyway (as,
for example, if an I-beam is an unsuitable),

Term(s)
used in
Document

Meaning

because they fix an insertion point for a drop,
whenever one or both of the sending and
receiving tasks uses pre-drag-and-drop data
transfer protocol. The shadow caret is also the
position to which the caret will be returned if the
user Adjust-clicks on the window, or clicks in a
"dead" region of the window, such as a page
border; this is particularly useful in cases where
repositioning the caret would be time-consuming
or fiddly, for example if the caret is in a deep
"layer" of a document.

14. References
[1]: Support Group Application Note 240: The RISC OS Selection
Model and Clipboard

[2]: Support Group Application Note 241: The RISC OS Drag-and-
Drop System

[3]: RISC OS 3 PRM 3 §53: The Window Manager, pp 3-249 - 3-256

[4]: RISC OS Style Guide, issue 3, §11: Handling selection, pp 77-82

[5]: Document Ref 1309,413/FS: Ursula Window Manager Changes
Functional Specification

15. History

Document information
History: Revision Date Author Changes

0.00 12 Sep 1997 BJGA Started
0.01 13 Oct 1997 BJGA First release for comment
0.02 14 Oct 1997 BJGA Released for review
D 19 May 1998 BJGA Prepared for D.O
E 26 Feb 1999 BJGA Started reworking

document for Java 1.2
project, didn't get far
before cancelled again

E 16 Oct 2007 BJGA Finally finished
integrating the Ursula
review comments and 8
years' worth of mental
notes, for initial release
alongside shared source
code

F 22 Feb 2015 RPS Updated the page
references in the Style
Guide

G draft 22 Feb 2015 Ben
Avison

Shared Source RISC OS
release (formerly Ursula
and Java 1.2) Ref:
1309,419/FS

0.08A 28 Aug 2021 Alan
Robertson

Initial version in
PRMinXML format
● Formatting of text

removed from document
(italic, underlined, bold)

● Added related links to
swi and message
definitions

Related: (PDF format, 8K).

https://www.riscosopen.org/images/risc_os_open/specifications/clipboard/state_diagram.pdf

URI Handler Functional
Specification

Overview
This document addresses the recognised lack of existing RISC OS
specifications that describe a standard method for different
applications to communicate URIs (of which URLs are an example)
between themselves; for example, to provide for an address book
requesting that a Web browser display someone's home page.

The first part of this requirement addressed is the provision of a
mechanism for applications to pass URIs between themselves in a
uniform manner. To date, several third party developers have
independently solved this problem in a variety of different ways, as
there was no centrally published, universally available standard for
developers to work to. This is such a standard.

This 'central resource broker' will be extended in the future to
provide mechanisms to enable more efficient handling of URIs. For
example, data may be passed to an appropriate application based on
the type of data as opposed to simply the method specified for
retrieval of the data, as is often the case with URLs. This too will be
via a service interface to the central broker.

Deliverable 'product'
This document describes the API created to fulfil the above stated
requirement, and relates to existing software providing the
underlying functionality.

The software takes the form of a RISC OS relocatable module,
entitled 'AcornURI'. This is a generic, OS-level software component
that could as equally sit beneath a text editor which was aware of the
form of URIs as sit beneath a Web browser or mail / news reader.
Distributed alongside the module are four sprite definitions for URI
files.

The module is suitable for RISC OS 3.10 upwards, and should be
stored in !System.310.Modules.Network as 'URI'.

An archive containing the module, sprites, a text version of this
specification and a brief ReadMe describing the component versions
can be downloaded here (ZIP format).

Programmer's interface
The application programmer's interface to the services provided by
the Acorn URI handler is detailed in the following sections. This
interface will be enhanced in the future, as outlined in the overview,
to provide a more comprehensive set of services; so it's worth
emphasising that only those details and features of the interface
specified in the following sections should be considered to be
supported. Any behaviour which is not specified below should be
considered to be an implementation feature of a particular version of
the software, and as such liable to change, alteration or omission
without notice.

The following have been allocated for the use of the Acorn URI
handler:

Type Allocated
Module name AcornURI
SWI prefix URI
SWI chunk &4E380
WIMP message chunk &4E380
Error code chunk &810A00
Service Call &A7
FileType &F91

All environment variables containing the string _URI_ (i.e. matching
URI)

URI 'handles' are utilised to identify a specific URI request when
communicating with the URI handler; tasks may assume nothing
about these handle values, other than that they identify a particular
URI to the handler for the period of their validity.

URI SWIs

URI_Version
(SWI &4E380)

return the URI handler module's version number

On entry
R0=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

On exit
R0=current version × 100

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
Not defined

Use

This SWI is used to inquire of the URI handler module's version
number, and should be used to check for a suitable version being
present before using the facilities provided.

The number returned is of the form (major version × 100) + minor
version.

Related APIs
None

URI_Dispatch
(SWI &4E381)

pass a URI string to the handler for dispatch, or checking for the
presence of a potential servicer

On entry
R0=flags:

Bit(s) Meaning
0 inform caller of result (=>R2 valid)
1 check only, don't process (R0:0 must be set)
2 don't attempt external process startup

3-31 Reserved, must be zero
R1=pointer to 0 terminated URI string
R2=0, or source task handle if bit R0:0 is set and the caller is a

WIMP task

On exit
R0=flags:

Bit(s) Meaning
0 request rejected, URI won't be dispatched

1-31 Reserved, must be zero
R1preserved
R2=task handle of URI handler
R3=handle of this URI (request identifier)

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used by an application to pass a URI string to the handler
for dispatch, or checking for the presence of a potential servicer.
Dispatch provides for optional requesting of a success/failure
indication (R0:0 set) via a WIMP message
(Message_URI_MReturnResult (on page 125)) or service call reason
code (Service_URI 3 (on page 120))
⚠ FIXME: change this to use-reasonname, when available -

necessary since the dispatch of the URI occurs asynchronously.

If R0:0 is set, module clients must signal that a URI_MReturnResult
message is not necessary by setting R2 to 0. In this case, only the
service call will be sent out. Conversely, WIMP task clients must
specify a valid task handle in R2 - in this case, only the WIMP
message will be sent out.

When requesting a check only (R0:1 set), it is an error not to set R0:0
and fill in R2 as described above.

The URI will be copied to the URI handler's workspace, optionally
transformed (future enhancement, such as canonicalisation), then
relocatable modules will be offered the chance to handle the URI via
service call &A7 with an appropriate reason code (Service_URI 2 (on
page 119))
⚠ FIXME: change this to use-reasonname, when available ; if the

service call is unclaimed, then a User_Message_Recorded WIMP
message will be broadcasted (Message_URI_MProcess (on page
123)), offering other tasks the chance of handling the URI; if neither
of these mechanisms elicits a response, then the request will be
deemed to have failed (in so far as active tasks are concerned).

If R0:2 is clear, then the 'fallback' position of checking a subset of the
environment variables will be used to attempt to start a suitable task
to handle the URI. The handle ceases to be valid at this point if
notification has not been requested, irrespective of whether or not
the URI has processed.

If R0:0 is set, the originating task will be informed of the results of
the dispatch process (via a User_Message_Recorded WIMP message
URI_MReturnResult if R2 contains a valid task handle, or service call
Service_URI_ReturnResult if R2 is zero). If the message is not
acknowledged or service call claimed, the handle will cease to be
valid; otherwise, the originating task becomes responsible for
indicating that it no longer needs the URI by calling SWI SWI
URI_InvalidateURI (on page 114).

Related SWIs
SWI URI_InvalidateURI (on page 114)

Related services
Service_URI 2 (on page 119)
Service_URI 3 (on page 120)

Related messages
Message_URI_MProcess (on page 123)
Message_URI_MReturnResult (on page 125)

URI_RequestURI
(SWI &4E382)

return size of buffer required to hold specified URI, or to return the
URI via the buffer

On entry
R0=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1=pointer to buffer to hold URI or 0 to read required size
R2=length of buffer or unused (if R1 = 0)
R3=URI handle

On exit
R0preserved
R1preserved
R2=offset into buffer of terminating null, or size of buffer required

(if R1 = 0 on entry)
R3preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to inquire what size of buffer is required to hold the
specified URI (if R1 is zero on entry), or to pass details of a buffer
into which your task desires the URI to be copied.

If this is successful, then R2 should be equal to the size of the buffer:
if the buffer specified on entry is not large enough, then R2 will be
returned negative (indicating the number of unreturned characters),
and the string returned in the buffer will still be zero-terminated i.e.
buffersize-1 characters of the string are returned.

Related APIs
None

URI_InvalidateURI
(SWI &4E383)

mark the specified URI as being invalid

On entry
R0=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R3=URI handle

On exit
R0preserved
R3preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to mark the specified URI as being invalid.

Related APIs
None

URI service calls

Service call &A7 has been allocated for the use of the URI handler;
the following sub-reason codes are defined for the use of external
applications. All other service call reason codes are reserved: a
module may assume nothing about these, and should always ignore
unrecognised reason codes - never claim such service calls.

A deliberate degree of similarly exists between the WIMP messages
and the service calls, since both provide essentially the same
functionality; clearly, messages will be convenient in environments
where service calls are not and vice versa, hence the duplication of
functionality between the two.

Service_URI
(Service Call &A7)

events issued by URI handler

On entry
R0=reason code:

Value Meaning
0 URI handler started (on page 117)
1 URI handler dying (on page 118)
2 process or check URI (on page 119)
3 return result of a dispatch (on page 120)

All other values are reserved, and must not be
used

R1=service call number
R2=flags

R3 - R4=dependant on reason code

On exit
R0 - R3=dependant on reason code

Use

Related APIs
None

Service_URI 0
Started

(Service Call &A7)
URI handler started

On entry
R0=0 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

On exit
R0 - R2preserved

Use

This service call indicates that the URI handler has started. It is
intended for more specific use defined in future versions of this
specification.

This service call must be passed on.

Related APIs
None

Service_URI 1
Dying

(Service Call &A7)
URI handler dying

On entry
R0=1 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

On exit
R0 - R2preserved

Use

This service call indicates that the URI handler is dying. It is
intended for more specific use defined in future versions of this
specification.

This service call must be passed on.

Related APIs
None

Service_URI 2
Process

(Service Call &A7)
process or check URI

On entry
R0=2 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0 check URI only, do not process

1-31 Reserved, must be zero
R3=pointer to URI string (readonly access)
R4=handle of this URI

On exit
R0preserved
R1=preserved, or 0 to claim

R2 - R4preserved

Use

This service call indicates that the URI handler has been requested to
dispatch the given URI for either processing (R2:0 clear), or just
checking (R2:0 set). The URI string is held in the URI handler's
workspace; this buffer must not be written to - if it is, behaviour is
undefined. It is intended that modules should inspect the string at the
given address, and if they decide they can process the given URI,
claim the service call. If R2:0 is set, this is all that is required.

However, if R2:0 is clear, i.e. process URI, then a call to SWI SWI
URI_RequestURI (on page 112) to obtain a local copy to work with
must be made; this step may NOT be omitted, since the internal
buffer is not guaranteed to remain valid after return from the service
handler.

If a module cannot process the given URI, it must pass the call on
with all registers preserved to allow the remainder of the dispatch
mechanism to function.

Related SWIs
SWI URI_RequestURI (on page 112)

Service_URI 3
ReturnResult

(Service Call &A7)
return result of a dispatch

On entry
R0=3 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0 Clear: URI was claimed for processing

Set: URI was not claimed for processing
1-31 Reserved, must be zero

R3undefined
R4=handle of this URI

On exit
None

Use

This service call is used by the URI handler to return result status
information to a requesting module. The module requests the service
call when it calls the SWI URI_Dispatch (on page 109) SWI; it must
set R0:0 and R2=0 on entry. Such modules must remember the URI
handle returned in R3 by this SWI or they cannot later determine if
the service call was meant for them or another client; any client
setting R0:0 on entry to URI_Dispatch must see if it recognises the
URI handle in R4, and if so, claim the service call. If it does not
recognise the handle, it must not claim the service call. Any clients
which never set R0:0 on entry to URI_Dispatch can ignore the service
call.

Only success or failure is indicated, though this is likely to be
enhanced in future.

Related SWIs
SWI URI_Dispatch (on page 109)

WIMP messages

Message_URI_MStarted
(&4E380)

URI handler started

Message
Offset Contents
R1+20 flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 undefined (reserved)

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is broadcast (User_Message) to indicate that the URI
handler has started up. It must not be acknowledged - information
only.

Related APIs
None

Message_URI_MDying
(&4E381)

URI handler dying

Message
Offset Contents
R1+20 flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 undefined (reserved)

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is broadcast (User_Message) to indicate that the URI
handler is shutting down. It must not be acknowledged - information
only.

Related APIs
None

Message_URI_MProcess
(&4E382)

process or check URI

Message
Offset Contents
R1+20 flags:

Bit(s) Meaning
0 check URI only, do not process

1-31 Reserved, must be zero
R1+24 pointer to URI string (URI internal buffer)
R1+28 URI handle
R1+32 undefined (reserved)

Delivery
Message must be broadcast (destination 0)

Message must be sent recorded delivery (reason code 18)

Use

This message is broadcast (User_Message_Recorded) to indicate that
the URI handler has been requested to dispatch the given URI for
processing, or check if any task can process the URI.

The URI string is held in the URI module's workspace; this buffer
must not be written to - if it is, behaviour is undefined.

It is intended that applications which can process URIs should
inspect the string at the given address to determine if they can
process the URI. If R0 bit 0 is clear, you must then call SWI SWI
URI_RequestURI (on page 112) to obtain a copy to work with - this
step may not be omitted, since the buffer given is not guaranteed to
remain unaltered.

If an application is able to check or process the given URI, then it
should acknowledge the broadcast by sending a
Message_URI_MProcessAck (on page 126) message to the URI
handler, thus preventing it being passed on to other applications,
otherwise it must not acknowledge the message.

Related SWIs
SWI URI_RequestURI (on page 112)

Related messages
Message_URI_MProcessAck (on page 126)

Message_URI_MReturnResult
(&4E383)

return result of a dispatch

Message
Offset Contents
R1+20 flags:

Bit(s) Meaning
0 Clear: URI was claimed for processing

Set: URI was not claimed for processing
1-31 Reserved, must be zero

R1+24 URI handle
R1+28 undefined (reserved)

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is used by the URI handler to return result status
information to a requesting task. Only success or failure is indicated,
though this is likely to be enhanced in future.

Related APIs
None

Message_URI_MProcessAck
(&4E384)

acknowledge URI_MProcess

Message
Offset Contents
R1+20 flags:

Bit(s) Meaning
0 Check URI only, do not process

1-31 Reserved, must be zero
R1+24 pointer to URI string (URI internal buffer)
R1+28 URI handle
R1+32 undefined (reserved)

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is used by clients of the URI handler to indicate to the
URI handler that they can claim or process a given URI, thus
preventing it being passed on to other applications. Claimants just
change the message type to &4E384 (URI_MProcessAck) and copy
the supplied my_ref field into your_ref, then send the message back
to its originator (ie. the URI handler).

Related APIs
None

* Commands

*Desktop_AcornURI
starts the URI handler

Syntax
*Desktop_AcornURI

Parameters
None

Use

Desktop_AcornURI starts the Acorn URI handler. Do not use
*Desktop_AcornURI, use *Desktop instead.

Help Text:*Do not use *Desktop_AcornURI, use *Desktop
instead.
Syntax: *Desktop_AcornURI

Examples
*Desktop_AcornURI Use *Desktop to start AcornURI

Related APIs
None

*URIinfo
display information about the URI handler

Syntax
*URIinfo

Parameters
None

Use

*URIinfo produces status information from the Acorn URI handler.

HelpText:

URIinfo produces status information from the Acorn URI handler.
Syntax: *URIinfo

Examples
*URIinfo

URI_taskhandle: 4b4016d8
URI chain start: 021cc844
URI handle: 022b60d4 (action:00020000) 'http://www.acorn.com/'

Related APIs
None

*URIdispatch
try to launch a URI

Syntax
*URIdispatch <uri>

Parameters
<uri> - the uri to be launched

Use

*URIdispatch tries to lauch a given URI. No indication is given of
whether or not the launch succeeded.

Help Text:

URIdispatch tries to launch a URI.
Syntax: *URIdispatch <uri>

Examples
*URIdispatch http://www.acorn.com/

Related SWIs
SWI URI_Dispatch (on page 109)

URI handler errors

Defined errors

The URI handler has a error chunk base of &810A00. Currently
defined errors are:

Error generators

Generators of the errors are as follows:

Finally, the WIMP task may generate (through a standard WIMP
error box) Error_URI_NoMemory and Error_URI_BadFile.

Use of the URI filetype

URI files have the filetype &F91, with the text equivalent 'URI'. The
URI handler will deal with such files appropriately when the file is
double-clicked upon (currenly, it dispatches the URI inside the file -
see the file format description below). Applications must not set an
Alias$@RunType variable for the URI filetype, nor must they deal
with DataOpen messages for this filetype. Applications may respond
to DataLoad messages for the filetype as they see fit.

Suitable sprites exist (four; medium and high resolution file sprites,
small and large variants). These are the only sprite definitions
acceptable for use in this context. The sprites should always be
distributed alongside the module.

URI files consist of a series of lines of characters. Lines are ended by
any number of control code characters (ASCII code less than 32) or
the end of the file. All lines in a file do not have to end in the same
way provided each individual line ends in a valid manner. Other white
space is not ignored, hence a single space character (ASCII code 32)
followed by ASCII code 9 does count as a line containing a single
space followed by a line end marker.

URI files support comments. Comment lines start with a '#' (ASCII
35) and end in the same way as all other lines. Comment lines are not
counted; any file reader that happened to keep track of the line
number it was on should not increment the counter for a comment
line. A URI file may contain any number of comment lines, but
automatic file generators are encouraged to keep comments to a bare
minimum to keep file sizes down. Generator code must never create
special comment lines which mean something to accompanying
reader code - comment lines are always skipped by the reader code
and never parsed, beyond identifying them as comments.

The line ending type of a URI file is not fixed as a specific control
code or sequence of control codes (e.g. CR+LF) to allow simple
generation from a variety of sources, including manual authoring.
Given this latter possibility, it is important to stress that unlike, say,
HTML, the URI file format is rigorously defined and must be adhered
to. Incorrectly formed files are not guaranteed to work correctly with

either the Acorn URI handler or applications which support it.

That said, the use of ASCII code 13 followed by ASCII code 10
(CR+LF) to end lines is strongly encouraged as this is a common line
ending type supported by many different editors on many platforms.
ASCII code 9 (tab) could also be used to give the file a better visual
appearence in the editor - it is still an end of line as far as the file
reader is concerned. This convention provides the potential for
greater convenience for the end-user, but must NOT be assumed in
file reading code!

Currently defined formats:

Line
number

Contents

1 'URI' - this must be present before any comments or other
information

2 Text equivalent of the earliest module version number (as
returned by URI_Version) that would fully understand the
file contents; e.g. '5' for v0.05 (any number of preceeding
'0's are also valid). So if lines were added to this file
format to produce a version 6 file, this implies that URI
v0.06 is required to understand those extra lines, even
though v0.05 would still understand lines 1 to 4
The first general release version of the URI handler will
adopt a version number of 1.00, so the first URI files will
start with '100' in this line

3 A fully specified URI; v0.05 of the URI handler does not
attempt to canonicalise URIs, though future versions may.
If this line contains only one character with ASCII code 42
('*'), the file does not contain a URI and should be ignored
(this is to allow future file formats to hold non-fully
specified URIs on later lines that could be canonicalised
by the URI module, without breaking legacy file reading
code)
Lines 1 to 3 are required in a minimal URI file. Any other
lines may or may not appear

4 A title string to associate with the URI. Again, if this line
contains only one character with ASCII code 42 ('*'), the
file does not contain a title string. Processors wishing to
display title information alongside a URI may well use the
URI itself instead, in this case

You can find some examples of URI files in a SparkFS format archive
here.

Future file formats will be backwards compatible with this one, so
clients should only check the version number of the file to know what
sort of contents to expect. So for example, if a version 100 aware

application encounters a later version file, it can assume that the first
4 lines of the file are as described for the version 100 file; though
there may be other lines which clearly it cannot understand, and
must ignore.

For example, the file format rationale may be easier to understand
given the possibility of a future format - version 101, say - which
allowed non-fully specified URIs in line 5 which can be canonicalised,
and a preferred external process to start in line 6. The file could look
like this:

-Start of file-
URI
6

*
Acorn Group PLC
www.acorn.com

<Browse$Dir>.!Run
-End of file-

Use of URI environment variables

Currently defined variables are of the form:

Alias$Open_URI_<scheme> <file_to_run>

for example,

Alias$Open_URI_http <Browse$Dir>.!Run
Alias$Open_URI_ftp <FTPClient$Dir>.!Run

If a variable such as the above is defined, then the task it names will
be run. If this is successful, the URI will be redispatched in the
normal way, so the task has the opportunity of dealing with it.

A comma separated list of handlers may be specified, so applications
must always add to the contents of the variables. At present, only the
first item in the list is used, though this may change in future
versions.

For compatability with existing applications, the URI handler will
support a similar scheme of system variables defined by ANT Ltd.
Details of these are at the time of writing freely available on the ANT
Support web site.

Performance targets
Final code size of version 1.00 should be about 26K. Quiescent
memory usage should be no more than 512 bytes. When active, the
main storage requirement for each URI being processed is storage of
the URI itself. This is, then, indeterminate, but unlikely to be more
than 2K (not that the URI handler will have any such hard coded
limits). An additional overhead of no more than 128 bytes per URI is
also required.

Document information
History: Revision Date Author Changes

1307,260/
FS_1

13 Dec 1996 Carl Elkins,
Stewart
Brodie,
Kevin
Bracey,
Simon
Middleton,
Ben
Laughton,
Andrew
Hodgkinson

(Developers only)
Original Version

1307,260/
FS_2

21 Dec 1996 ● Added 'handles' concept
after discussions with
S.Brodie

1307,260/
FS_3

22 Feb 1997 ● Corrected omission of
URI handle from
Message_ReturnResult,
clarified responsibility
for invalidation of URIs

1307,260/
FS_4

21 Apr 1997 ● Added
URI_MProcessAck
message and *command
documentation and
updated URI filetype
section

1307,260/
FS_5

13 Jun 1997 ● Service calls given
flags, so 'Check' service
call removed

● R0 return of
URI_Dispatch now a
bitfield, not a return
value

● Added
Service_MReturnResult.
Desktop_URI renamed
to Desktop_AcornURIto
match the actual
module task name

● URI file contents
specified; includes a
version number linked
to the module version,
so this specifies a
version 5 file

1307,260/
FS_6

20 Jun 2997 ● Following review of
draft 5, some minor

wording changes here
and there; performance
targets and
development test
strategy sections added

1307,260/
FS_7

21 Jun 1997 ● Reworded away from
future tense to form an
externally releasable
specification

1307,260/
FS_8

10 Dec 1997 ● A couple of implied
future tense references
missed in Draft 7,
Following review of
draft 5

● some minor wording
changes here and there

● performance targets
and development test
strategy sections
addednow corrected

● some minor rewording
associated with this

- 11 Dec 1997 (General release of
1307,260/FS)
● No longer draft
● settled on WIMP rather

than Wimp; couple of
minor typos corrected

- 05 Jan 1998 ● Few more typos fixed
('21', '23',
'URI_ProcessAck' and
'URIProcessAck'
instead of 'R2', '32',
'URI_MProcessAck' and
again
'URI_MProcessAck'
respectively)

- 05 Feb 1998 ● Minor tweaks to fit in
with the rest of the
Acorn Internet site
(now uses a small style
sheet like everything
else, site map link
added, and so-on). No
changes to the content
of the specification

- 19 Feb 1998 ● A few HTML style
changes to make some
of the section headings
a bit clearer; no content

change
- 23 Feb 1998 ● Colours changed to

blue; now back to green
again

1215,215/
FS_1

02 Mar 1998 (General release of
1215,215/FS)
● Document number now

1215,215/FS
● Updated history, and

navigation links in the
page footer now include
the specifications
section; no other
content changes

1215,215/
FS_2

01 Sep 1998 ● Corrected table listing
allocated items in the
Programmer's Interface
section - module name
is 'AcornURI', not 'URI'

● Issue numbers for
1215,215/FS in this
table are now in
 to match the
1307,260/FS numbers.
ECO 4102 allocated for
these changes

1215,215/
FS_3

08 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format
● No major changes to

text. Removed the
'Document Status'
section as information
captured in 'Document
Information' section

● Added related links to
definitions and various
parts throughout
document

● Prefixed the Acorn
Functional Specification
Document Number to
each Issue revision in
original

● Removed links to zip
files

Disclaimer:This document first appeared as 1307,260/FS and went through
issues 1 to 8, with 8 being published outside of Acorn. The
document number was later changed to 1215,215/FS.

Acorn URL Fetcher API Specification

Overview
The URL (Universal Resource Locator) module is a general purpose
module for fetching data from various Internet services. This
specification reflects the behaviour of version 0.42 or later of the
URL_Fetcher module. The purpose of the module is to provide a
uniform entry point into a set of "fetcher" protocols (e.g. FTP, HTTP,
Gopher, NNTP, etc.), without the need for a client application to
understand how that protocol works. This is done using a number of
generalised URL SWIs. The fetcher protocols modules (hereafter just
"protocol modules") with which the URL module communicates, are
called only by the URL module itself. The entry points into the
protocol modules have similar names to the entry points into the URL
module, but these are NOT the same, despite similarities. The system
structure is shown in figure 1 below.

Figure 1: URL Fetching
system structure

Each client fetch occurs with in the context of a 'session'. Each
session is identified by a different session identifier. Client session
identifiers are issued by the URL module upon request and remain
valid until the client informs the URL module to discard the session.
Subsequently, session identifiers may be re-issued by the URL
module for new sessions. Only a single object fetch can be performed
in any one given session. Sessions cannot be re-used by clients, even
if a prior object fetch in that session has completed.

The typical client usage of the system is:

● Obtain a session identifier (SWI SWI URL_Register (on page
141))

● Start fetching an object (SWI SWI URL_GetURL (on page
143))

● Repeatedly, whilst multi-tasking if in the desktop
environment:
1. Read blocks of data (SWI SWI URL_ReadData (on page

148))
2. Process that data

● Discard session (SWI SWI URL_Deregister (on page 154))

If an application decides it requires a premature termination (eg. the
user asked the application to quit whilst an object was being
downloaded), then the application calls SWI SWI URL_Stop (on page
152) immediately and then discards the session with SWI SWI
URL_Deregister (on page 154). Typical clients, such as web
browsers, will, most likely, have several sessions active concurrently.

The URL module uses its own session identifiers that are passed in
many of the SWI interfaces to the protocol modules which are not
those known to the client application - the URL module maintains its
own private sessions into the protocol modules. Service calls are also
provided to ease interaction between the URL module and the
fetchers, mainly to inform other modules of the arrival or departure
of a particular module.

Each protocol module accepts data and returns results as per the
HTTP protocol. Thus any extra client data associated with a request
(passed in R4 to SWI SWI URL_GetURL (on page 143)) will take the
format of a (possibly empty) set of HTTP headers,an empty line and
then the data; and each response will start with an HTTP/1.0 or
HTTP/1.1 Response-Line of the format: "HTTP/1.0 200 OK" followed
by various headers identifying the content-type of the retrieved data,
followed by an empty line, followed by the data itself.

Outstanding issues
There are no outstanding issues.

Client to URL module interface
A typical client would be an application, such as a Web Browser. The
following SWI calls provide the interface for an application to control
and transfer data via the URL module.

URL_Register
(SWI &83E00)

Initialise a client session with the URL module

On entry
R0=Flags: All bits are currently reserved (must be zero)

On exit
R0=Reserved - currently zero
R1=Session identifier

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI initialises a client session with the URL module and
provides the client with a session identifier that can be used to
monitor the status of the URL module within that client's context.
The session identifier is unique for each client session that is
registered with URL and is also used as an identifier in subsequent
interactions with the URL module.

Multiple registration by the same client application is permitted. This
will provide the client with multiple identifiers to the URL module.
Calling this SWI does not result in the calling of any protocol module
SWIs.

The URL module imposes no limit on the number of concurrently
registered sessions, other than having the required memory available
in which to store details of the session.

Related SWIs
SWI URL_Deregister (on page 154)

URL_GetURL
(SWI &83E01)

Instigate data transfer from / to a resource server

On entry
R0=Flags:

Bit(s) Meaning
0 If set, R6 is valid
1 If set, R5 holds length of data in R4 specified buffer,

otherwise a single NULL terminated string in buffer
2-31 Reserved, must be zero

R1=Session identifier
R2=Bitfield:

Bit(s) Meaning
0-7 Method (on page 145) (8-bit value, held in bits 0-7).

This is protocol dependent
8-15 Method dependent

16-31 Reserved, must be zero
R3=URL - the document we are after, including the protocol. For

example "http://www.acorn.co.uk/"
R4=Data block - data to send in addition to the URL. Validity is

protocol and method dependent
R5=If R0:1 is set, length of data in R4 data block

If R0:1 is clear, must be 2
R6=User Agent - Pointer to string to use as 'User Agent' identifier in

request header if R0:0 is set. (NULL pointer or NULL string
implies use default identifier - see below)
⚠ FIXME: original links to middle of third paragraph below!

On exit
R0=Protocol status (see SWI SWI URL_Status (on page 146), below)

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to instigate a transfer of data to or from (mainly
from) a resource server. When this SWI has been called, the URL
module checks the per-session and global proxy settings, looking for
a match (see SWI SWI URL_SetProxy (on page 150) for details on
setting proxies and proxy conflict resolution). If no proxy is to be
used, then URL looks for a protocol module which is capable of
handling the URL specified by R3. If a proxy setting was found, then
a pointer to the proxy URL is placed in R7, R0:31 is forced to value 1,
and URL looks for a protocol module which is capable of handling the
specified proxy URL. In both cases, if a suitable module cannot be
located, the URL module generates an error. If a protocol module
capable of handling the URL was found, then all client registers are
passed onto the protocol module via the SWI Protocol_GetData (on
page 176) SWI call with the exceptions stated above for proxy
handling. On exit, R0 will hold the status code returned by the
protocol module.

The extra data pointed to by R4 on entry is method and protocol
specific. For example, in HTTP, the data comprises HTTP headers
and, if appropriate, an entity body. Protocol modules should use this
style wherever possible. Note that these headers do not include lines
such as an HTTP Request-Line (ie. the "GET / HTTP/1.0" part. For
example, when posting data to an HTTP URL as the result of a form
submission on a web page, the web browser would supply a Content-
Type header, Content-Length header, potentially some kind of
encoding header, a blank line and then the entity body.

The User Agent string pointed to by R6 if R0:0 is set, is in indication
to the underlying protocol module of how the module should identify
itself to remote systems. This controls the User-Agent header for the
HTTP protocol module, for example. The protocol module is free to
define its default identifier as it pleases, however, following the
format of the HTTP User-Agent is recommended where possible and
appropriate to the protocol. Modules may choose to ignore or amend
any User-Agent string. For example, the AcornHTTP module will
suffix the client's User-Agent with its own version number, resulting
in complete identifiers such as:
User-Agent: Acorn Browse/2.06 AcornHTTP/0.82

where the client only specified "Acorn Browse/2.06".

Table of method numbers

Applications for new method codes should be made to Developer
Support. The range 128-254 is reserved for private non-distributed
modules. Method numbers 0 and 255 are reserved and must not be
used.

The list of methods specific to FTP quoted above are fully
implemented in version 0.28 of the FTP Fetcher module. The list of
methods specific to HTTP quoted above are fully implemented in
version 0.82 of the AcornHTTP module.

Related SWIs
SWI URL_Register (on page 141)
SWI URL_SetProxy (on page 150)
SWI URL_Stop (on page 152)
SWI URL_Deregister (on page 154)
SWI Protocol_GetData (on page 176)

URL_Status
(SWI &83E02)

Obtain information on a session

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit
R0=Status word:

Bit(s) Meaning
0 Connected to server
1 Sent request
2 Sent data
3 Initial response received
4 Transfer in progress
5 All data received
6 All data received

7-31 Reserved, must be zero
R1preserved
R2=Server response, as an "HTTP" response code (200, 401 etc.)
R3=Bytes read so far (total body data count)
R4=Total bytes to be transferred in whole transaction if known

(approximate value only), or -1 if unknown

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to monitor the transfer of data from a remote
service. It is protocol independent - the exit status bits are common
to all services. Clients must test this field bit-wise, since the value is
cumulative.

Clients may not assume that the states returned in R0 will progress
in any particular combination or order. However, the likely
progression during a fetch for a resource being retrieved over a
network (when the bits are combined into a single decimal value) is:
0,1,3,7,15,31 and then R0:5 set upon completion, and R0:6 set at any
stage when an error has occurred.

Since each protocol module is returning its results according to the
HTTP protocol, R2 can be treated as an HTTP response code
whatever the URL being fetched. For example, the FileFetcher
module will indicate file not found errors by setting the response
code to 404 (HTTP's Not Found error code).

Note that in the case of, for example, an HTTP 400 (Forbidden)
return, some explanatory data may be received, too. If the amount of
data to be received is unknown, R4 will contain -1, however R3 will
contain the number of bytes received so far. The R4 value should be
treated as approximate, since the exact interpretation varies between
protocols.

When this SWI is called, the URL module invokes SWI SWI
Protocol_Status (on page 178) for the protocol module concerned
with the request.

Related SWIs
SWI URL_Register (on page 141)
SWI URL_Deregister (on page 154)
SWI Protocol_Status (on page 178)

URL_ReadData
(SWI &83E03)

Read data pending from a request

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Client buffer for receiving data
R3=Size of buffer pointed to by R2

On exit
R0=Status word (see SWI SWI URL_Status (on page 146))
R1preserved
R2=Preserved. Contents of buffer modified
R3preserved
R4=Number of bytes transferred to R2 buffer
R5=Number of bytes still to be read to complete object (if known) or

-1 if unknown

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to read the data pending from a request, find out
how much data has been read on this call and how much more there
is remaining to be read for the request. R2 is a pointer to a buffer on
entry (and R3 is the size of the buffer), on exit the buffer contains the
new data, R4 contains the amount of data written to the buffer and
R5 contains the amount of data left to be read. If the amount of data
left is unknown R5 will contain -1. R1 always returns the protocol
status code. In the event of all the data being read (R5 = 0 on exit), a
call to SWI URL_Stop (on page 152) is not required as this is
performed automatically when SWI URL_Deregister (on page 154) is
called for the client session. Once all data has been read a call to SWI
URL_Status (on page 146) can return no meaningful information,
simply indicating that the transfer has completed.

The data returned will take the form of a complete HTTP compatible
response. Responses should use HTTP/1.0 if possible and avoid
HTTP/1.1. For example, AcornHTTP will downgrade any higher
version responses to HTTP/1.0, having taken care to remove any
features applicable only to the higher version, such as chunked
transfer encodings.

When this SWI is called, the URL module invokes the SWI
Protocol_ReadData (on page 180) SWI for the protocol module
concerned with the request.

Related SWIs
SWI URL_Register (on page 141)
SWI URL_GetURL (on page 143)
SWI URL_SetProxy (on page 150)
SWI URL_Status (on page 146)
SWI URL_Deregister (on page 154)
SWI Protocol_GetData (on page 176)
SWI Protocol_ReadData (on page 180)

URL_SetProxy
(SWI &83E04)

Set up a proxy server for a session with the URL module

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Address of buffer containing a URL base
R3=URL 'method' to proxy (address of URL fetch identifier to be

proxied)
R4= Value Meaning

0 Proxy request
1 Don't proxy request

All other values are reserved

On exit
R0=Status word (see SWI SWI URL_Status (on page 146))

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call is used to set up a proxy server to use for a session with the
URL module. If R1 is zero then the proxy is considered global and is
used for all sessions. If R1 is a valid session identifier then the proxy
server for that session only is set. R2 is a pointer to a string
containing the base URL to pass the request on to when a proxy
request is made. This is of the form "http://www-
cache.demon.co.uk:8080/" (note the trailing '/'). A common error is to
omit the port number. If the port number is not specified, then the
default port number is used. See discussion under SWI
URL_ProtocolRegister (on page 171) regarding how the default port
number is derived.

R3 is a pointer to a buffer containing the initial part of the URL to
proxy - the URL scheme (eg "http:", "ftp:"). This system has the
advantage that requests to certain hosts can be proxied and not
others (eg by giving "http://www.acorn.co.uk/" as the scheme).
However, if R4 is 1, this indicates that no matter how the proxy
settings have been defined, requests to the base URL should not be
proxied in this case (R3 is undefined). When a SWI URL_GetURL (on
page 143) request is received, the proxy settings are evaluated in the
following order:

Order Description
1 Client no-proxy
2 Client proxy
3 Global no-proxy
4 Global proxy

This is to ensure all client settings override global settings and thus
remain safe for the given client - ie. a client which sets up a proxy
server and then defaults all other URLs to no-proxy, can, no matter
how the global settings are changed, be sure of where requests will
end up. If R2=0 on entry, then all proxy settings for the specified
session are cleared.

Calling this SWI does not result in any calls being made to protocol
modules.

Related SWIs
SWI URL_Register (on page 141)
SWI URL_GetURL (on page 143)
SWI URL_Deregister (on page 154)

URL_Stop
(SWI &83E05)

Abort a request placed with the URL module

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit
R0=Status word (see SWI SWI URL_Status (on page 146))
R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call aborts a current request if there is one associated with the
session identifier. In the event of no request being associated with
the identifier, an error is generated. The purpose of this SWI call is to
provide the client with a way of enforcing the termination of a
request. It is not called by the client just because all the data
associated with the request has finished being transferred, although
it may do that if it so chooses. The URL_Stop call will be made
automatically by the URL module when the session is deregistered by
the client using SWI SWI URL_Deregister (on page 154).

When this SWI is called, the URL module invokes the SWI
Protocol_Stop (on page 182) SWI for the protocol module concerned
with the request.

Related SWIs
SWI URL_Register (on page 141)
SWI URL_Deregister (on page 154)
SWI Protocol_Stop (on page 182)

URL_Deregister
(SWI &83E06)

Deregister a client session with the URL module

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit
R0=Status word (see SWI SWI URL_Status (on page 146))
R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call deregisters the client session from the URL module, freeing
up any information the URL module may have kept about the client
session (eg proxy information). The session identifier ceases to be
valid and becomes available for re-issue on a subsequent call to SWI
SWI URL_Register (on page 141).

When this SWI is called, the URL module invokes the SWI
Protocol_Stop (on page 182) SWI for the protocol module concerned,
if it has not already done so (e.g. during the processing of SWI
URL_Stop (on page 152)).

Related SWIs
SWI URL_Register (on page 141)
SWI URL_Stop (on page 152)
SWI Protocol_Stop (on page 182)

URL_ParseURL
(SWI &83E07)

Parse URLs to / from their constituent parts

On entry
R0=Flags:

Bit(s) Meaning
0 If set, R5 contains number of words in data block, else

a default of 10 words is assumed.
1 If set, character codes 0 to 31 and 127 in the URL will

be escaped (hex encoded, e.g. space becomes '%20') -
only available in URL 0.42 or later. URL 0.38 through
to 0.41 inclusive always escape these characters.
Versions prior to 0.38 never do this.

2-31 Reserved, must be zero
R1=Reason code:

Value Meaning
0 Return component buffer requirements (on page 158)
1 Return component data in specified buffers (on page

160)
2 Construct full URL from component buffers (on page

162)
3 'Quick parse' (on page 164)

R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block of R5 words (unless R1 = 3, see below, or

R0:0 is unset, in which case R4 points to a buffer of at least 10
words in length)

R5=If R0:0 set, size of R4 block in words

On exit
R0=Flags: All bits currently reserved (must be zero)
R1preserved
R2preserved
R3preserved
R4=preserved. Data block at R4 is updated in line with entry reason

code
R5preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to parse URLs into their constituent parts, enabling
clients to extract the various fields from the URL in a reliable
manner. The call is also capable of resolving a relative URL to
produce a fully-qualified URL, and of reconstructing a full URL from
a set of components.

The data block referred to above is either a block of integers which
will be updated to contain the size of the required buffer for each
element, or a block containing pointers to buffers for the actual data.

All strings are zero-terminated and all lengths include space for the
zero terminator.

The number of entries in the block is specified in R5 if R0:0 is set on
entry. If R0:0 is clear, then the default value of 10 is assumed. The
format of the data block is:

Offset Usage
+0 Fully canonicalised URL
+4 URL protocol (e.g. "http", "ftp") forced to lower-case
+8 Hostname (e.g. "www.acorn.com") forced to lower-case
+12 Port (e.g. "80")
+16 Username - used for FTP authentication and mailto
+20 Password - for FTP
+24 Account - for FTP
+28 Path (e.g. "pub/riscos/releases") (See note)
+32 Query - for HTTP, things after a query character
+36 Fragment - for HTTP, things after a hash character

It is anticipated that this SWI will be called twice: the first time to
find the lengths of the buffers, and the second to retrieve a copy of
the data into the buffers. The URLs pointed to by R2 and R3 (if used)
need not be fully-qualified, e.g. R2 may point to "www.acorn.com/
browser/". The fully canonicalised version of the URL at block+0
refers to a fully-qualified, canonicalised version of it, which in this
example would be "http://www.acorn.com/browser/".

During canonicalisation, the port number will be elided if possible.
See the discussion under SWI SWI URL_ProtocolRegister (on page
171) for details of how URL discovers whether this is possible or not.

Note: The path will not start with a '/' unless the URL being parsed
explicitly specified one - this is in keeping with the URL specification,
so for example, given the URL "http://www.acorn.com/browser/", then
the path component is "browser/", and not "/browser/"; the slash
between the hostname and path is a separator only, not a part of
either component.

If R3 is non-NULL on entry, it is assumed to point to a partial URL
which needs to be resolved with respect to the base URL pointed to
by R2. If R3 is NULL, then R2 is assumed to point to a full URL.

The entry reason codes are described below.

Related SWIs
SWI URL_ProtocolRegister (on page 171)

URL_ParseURL 0
ReturnLengths
(SWI &83E07)

Work out space required for URL components

On entry
⚠ FIXME: need someone to double-check entry and exits

R0=Flags:
Bit(s) Meaning

0 If set, R5 contains number of words in data block, else
a default of 10 words is assumed

1 If set, character codes 0 to 31 and 127 in the URL will
be escaped (hex encoded, e.g. space becomes '%20') -
only available in URL 0.42 or later. URL 0.38 through
to 0.41 inclusive always escape these characters.
Versions prior to 0.38 never do this

2-31 Reserved, must be zero
R1=0 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit
R4=Data block updated with sizes of each component

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

When R1 is 0 on entry to the SWI, the data block is treated as a block
of unsigned 32-bit integers. The contents of the block are ignored on
entry, but on exit are filled in with the lengths of the individual
components of the URL. A value of zero is stored for a field which
does not exist; non-zero values include space for a zero-byte
terminator.

Related SWIs
SWI URL_ParseURL (on page 155)
SWI URL_ParseURL 1 (on page 160)
SWI URL_ParseURL 2 (on page 162)

URL_ParseURL 1
ReturnData

(SWI &83E07)
Split a URL into its component parts

On entry
⚠ FIXME: need someone to double-check entry and exits

R0=Flags:
Bit(s) Meaning

0 If set, R5 contains number of words in data block, else
a default of 10 words is assumed

1 If set, character codes 0 to 31 and 127 in the URL will
be escaped (hex encoded, e.g. space becomes '%20') -
only available in URL 0.42 or later. URL 0.38 through
to 0.41 inclusive always escape these characters.
Versions prior to 0.38 never do this

2-31 Reserved, must be zero
R1=1 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit
R4=Data block updated with pointers to each component requested

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

When R1 is 1 on entry to the SWI, the data block is treated as a block
of pointers to buffers to receive the components of the URL. Each of
the pointers in the data block must be either zero, indicating that the
caller is not interested in that field, or point to a buffer which is
sufficiently long to receive the field. The client can ensure this by
having previously used reason code 0 to determine the length
required.

Related SWIs
SWI URL_ParseURL (on page 155)
SWI URL_ParseURL 0 (on page 158)
SWI URL_ParseURL 2 (on page 162)

URL_ParseURL 2
ComposeFromComponents

(SWI &83E07)
Combine the components of a URL

On entry
⚠ FIXME: need someone to double-check entry and exits

R0=Flags:
Bit(s) Meaning

0 If set, R5 contains number of words in data block, else
a default of 10 words is assumed.

1 If set, character codes 0 to 31 and 127 in the URL will
be escaped (hex encoded, e.g. space becomes '%20') -
only available in URL 0.42 or later. URL 0.38 through
to 0.41 inclusive always escape these characters.
Versions prior to 0.38 never do this.

2-31 Reserved, must be zero
R1=2 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit
R4=Data block updated with full URL

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

When R1 is 2 on entry to the SWI, the data block is treated as
containing the broken down fields of a URL. Each of the pointers in
the data block must be either zero or point to a buffer containing the
value of the component, with the exception of the full URL field,
which is a pointer to a buffer to receive the fully canonicalised URL.
This buffer is filled in on exit.

Related SWIs
SWI URL_ParseURL (on page 155)
SWI URL_ParseURL 0 (on page 158)
SWI URL_ParseURL 1 (on page 160)

URL_ParseURL 3
QuickResolve
(SWI &83E07)

Quickly obtain a fully resolved URL

On entry
⚠ FIXME: need someone to double-check entry and exits

R0=Flags:
Bit(s) Meaning

0 Reserved, must be zero
1 If set, character codes 0 to 31 and 127 in the URL will

be escaped (hex encoded, e.g. space becomes '%20') -
only available in URL 0.42 or later. URL 0.38 through
to 0.41 inclusive always escape these characters.
Versions prior to 0.38 never do this.

2-31 Reserved, must be zero
R1=3 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to buffer
R5=Size of buffer in R4

On exit
R4=Data block updated with fully resolved URL
R5=Size of buffer remaining (negative if it was too small)

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

When R1 is 3 on entry to the SWI, R4 points to a buffer for receiving
the fully resolved URL. R5 is the length of the buffer. On exit, the
buffer is filled in with the fully resolved URL obtained, and R5 is
decreased by the length of the URL (including terminating zero byte).
Hence R5 will be negative on exit if the buffer wasn't large enough.
There is no fixed rule for calculating the minimum buffer length
required for the answer. To guarantee that the buffer is large enough,
it should be calculated as:

length(base URL) + length(relative URL) + 4

If R0:1 is set on entry, there is the potential for up to the entire URL
to be hex encoded. In this case, you would need to multiply the above
by three. URL 0.37 and earler never hex encodes URLs. Note that
URL 0.38, 0.39, 0.40 and 0.41 will always do this; the control through
R0:1 was introduced in v0.42. Clients not knowing about this bit
(therefore leaving R0:1 unset) will find that 0.42 or later do not
automatically escape URLs, this being more sensible default
behaviour on the whole.

Characters which are already hex encoded in URLs are left alone in
all versions of the URL module.

Clients are strongly recommended to use this reason code if they
wish to resolve a relative URL or canonicalise a URL and are only
interested in the fully resolved and canonicalised form of the URL,
since it is significantly faster than using reason code 0 and then
reason code 1. To help reduce the chances of wildly over-allocating
buffer space, setting of R0:1 is not recommended unless full hex
escaping is definitely required.

Related SWIs
SWI URL_ParseURL (on page 155)

URL_EnumerateSchemes
(SWI &83E08)

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Context (0 for first call)

On exit
R0=Status flags (currently unused)
R1=Context for next call (-1 if finished)
R2=Pointer to read-only URL fetch scheme (if R1 is not -1)
R3=Pointer to read-only help string (if R1 is not -1)
R4=Protocol module SWI base (if R1 is not -1)
R5=Protocol module version (×100, if R1 is not -1)

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call is used to discover which schemes are currently available to
the URL module. It may be used, for example, to determine whether
or not a client of the URL module may deal with a given URL (in
combination with SWI SWI URL_ParseURL (on page 155) to extract
the scheme) and if not, pass it to the Acorn URI handler to see if
anything else in the system can deal with it [9].
⚠ FIXME: Add link to Acorn URI Handler Functional Specification

URL will not cope gracefully if the protocol module list is updated
between calls to this SWI (you may get duplicate modules or miss
some out).

Related APIs
None

URL_EnumerateProxies
(SWI &83E09)

Enumerate proxies or no-proxy URLs

On entry
R0=Flags:

Bit(s) Meaning
0 If set, enumerate the no-proxy list

1-31 Reserved, must be zero
R1=Session identifier, or zero for global proxies / no-proxies)
R2=Context (0 for first call)

On exit
R0=Status flags (currently unused)
R1preserved
R2=Context for next call (-1 if finished)
R3=If R0:0 clear: Pointer to read-only URL to proxy (if R2 is not -1)

If R0:0 set: Pointer to a read-only URL to not proxy (if R2 is not
-1)

R4=If R0:0 clear: Pointer to read-only proxy URL information (if R2
ia not -1)
If R0:0 set: Corrupted, contains no useful information

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call is used to discover which URLs proxies are set for on a per
session or global basis, or which URLs are not to be proxied. The
information pointed to by R3 and R4 where applicable is a copy of
that which was passed to SWI SWI URL_SetProxy (on page 150)
when the setting was made.

If R0:0 is set on entry, then R4 will be corrupted on exit and may not
contain a meaningful value.

URL will not cope gracefully if the proxy list is updated between calls
to this SWI (you may get duplicate entries or miss some out).

Related SWIs
SWI URL_SetProxy (on page 150)

Protocol module to URL module interface
This section defines the calls provided by the URL module to enable a
fetcher protocol module to interact with it.

URL_ProtocolRegister
(SWI &83E20)

Register a protocol module with the URL module

On entry
R0=Flags:

Bit(s) Meaning
0 If set, R5 contains protocol flags word
1 If set, R6 contains the default port number

2-31 Reserved, must be zero
R1=Protocol module's SWI base
R2=URL fetch scheme supported e.g. "http:" etc
R3=Version number × 100 e.g. 116 => version 1.16
R4=Informational string. Up to 50 characters of descriptive text,

e.g. "Acorn HTTP fetcher"
R5=Protocol flags word, if R0:0 set. See below ⚠ FIXME: Add link
R6=Default port number, if R0:1 set. See below ⚠ FIXME: Add link

On exit
R0=Flags: All bits currently reserved (must be zero)

R1 - R6preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call is used by a protocol fetcher module to register its SWI base
and the type of URL that it accepts with the URL module. The SWIs
that are accessible from this SWI base are defined in the following
section. If the module cannot be registered (e.g. another module is
already claiming that URL base), then an error will be returned. R3 is
an integer version number and R4 is a pointer to a string containing
more information which will be displayed by the *URLProtoShow (on
page 189) command(or 0 if no descriptive text is provided).

Typically, it will be called during a protocol module's initialisation
code or on a callback set from the module's initialisation code. If the
protocol module is registered successfully, then URL will issue a
service call Service_URLProtocolModule_ProtocolModule (on page
187) to inform any interested modules.

If R0:0 is set, then R5 contains a protocol flags word. This is used to
describe to URL how the resolver should treat URLs from this
scheme. The current bits defined are:

Bit(s) Meaning
0 Path is not UNIX-like
1 No parsing should be performed on this scheme
2 Scheme allows "user@" to precede the hostname component
3 Hash (ASCII 35) allowed in hostname (e.g. for file: URLs)
4 No hostname component (e.g. mailto: URLs)
5 Remove leading ".." components in pathname

Note that the meanings of set bits are such that zero is a reasonable
value to pass for unknown schemes. Note that if URL is requested to
resolve URLs using schemes unknown to it, it will assume a protocol
flags word value of zero. This may lead to inconsistent behaviour
depending on whether the protocol module is loaded or not.

If R0:1 is set, then R6 contains the default port number for this
scheme. This is used by the URL resolving code to determine if
explicitly specified port numbers can be elided from the URL. For
example, when constructing the canonicalised form of
"http://www.acorn.com:80/", the port bit is dropped as it serves no
useful purpose, leaving "http://www.acorn.com/".

The URL module is primed with knowledge of the following protocols:

1. mailto:
2. telnet:
3. finger:
4. file:

5. filer_opendir:
6. filer_run:
7. local:
8. gopher:
9. ftp:

10. http:
11. https:
12. whois:

It is not necessary for modules implementing those protocols to set
either flag bit and hence no need for them to set R5 or R6.

Related SWIs
SWI URL_ProtocolDeregister (on page 174)

Related services
Service_URLProtocolModule_ProtocolModule (on page 187)

URL_ProtocolDeregister
(SWI &83E21)

Deregister a protocol module from the URL module.

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Protocol module's SWI base

On exit
R0=Flags: All bits currently reserved (must be zero)
R1=Number of client sessions that were using this module

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
SWI is not re-entrant

Use

This call should be used by the protocol module to tell the URL
module that it is no longer available. The URL module will raise the
appropriate disconnect messages with its clients, and tell the
protocol module the number of clients that were affected.

Typically, it will be called during a protocol module's finalisation
code. If the protocol module is deregistered successfully, then URL
will issue a service call Service_URLProtocolModule_ProtocolModule
(on page 187) to inform any interested modules.

Related SWIs
SWI URL_ProtocolRegister (on page 171)

Related services
Service_URLProtocolModule_ProtocolModule (on page 187)

URL module to protocol module interface
The protocol module SWI interface is only called by the URL module.
URL module clients should never call the ReadData/Status/GetData/
Stop SWIs directly. The protocol modules are required to supply a
SWI interface. There are currently 4 SWIs that need to be supported
which run from SWI_base to SWI_base+3. New SWIs common to all
protocol modules will only be added at the low-end of the SWI range.
Protocol modules must generate standard SWI not known error
(error number &1E6) if they receive a call which they do not
understand, so that the URL module can determine that they do not
support the SWI. Note that there is no general requirement to use
SWIs from offset 0 into a SWI chunk, although it makes sense to do
this. Protocol modules which support multiple protocols should
ensure that they do not place their internal "SWI bases" less than 16
SWIs apart to allow space to future expansion. e.g. AcornHTTP
registers http: as &83F80 and https: as &83F90.

Protocol specific SWIs should be added at the top-end of the SWI
chunk (ie start at SWI_base+63 and work down) - the AcornHTTP
module uses that range to provide clients with access to its HTTP
cookie management code, for example.

Note: the Session identifiers used by the URL module to talk to the
protocol modules are not the same identifiers used by clients to talk
to the URL module. They are not interchangeable.

Protocol_GetData
(SWI URLFetcherProtocol+&00)

Start retrieving data

On entry
R0=Flags:

Bit(s) Meaning
0-30 As specified by client in SWI URL_GetURL (on page

143)
31 R7 is valid

R1=Session identifier
R2=Method (on page 145)
R3=URL (including fetch scheme)
R4=Pointer to block of data in addition to URL
R5=Protocol dependent
R6=Protocol dependent
R7=If R0:31 is set, proxy URL information. See below

On exit
R0=Protocol status word (see SWI SWI URL_Status (on page 146)

for details)

Interrupts
Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode
Processor is in undefined mode

Re-entrancy
protocol module dependent

Use

This call is used to start retrieving data. The protocol module should
raise any events for the client via the session identifier provided in
R1. The URL module calls this SWI in response to one of its clients
calling SWI SWI URL_GetURL (on page 143).

The proxy URL information specified in R7 (if R0:31 is set) gives the

location of the proxy to be used in the format of a URL. For example,
"http://www-cache.demon.co.uk:8080/". This information is supplied
by the URL module and not the client. The protocol module must note
that on a proxied request, the target URL indicated by R3 may not
have the same fetch scheme. For example, it might be an ftp: URL
being proxied through an HTTP proxy service.

All other registers are protocol dependent.
⚠ FIXME: This text was originally in 'On Exit'

Related SWIs
SWI URL_GetURL (on page 143)
SWI URL_ProtocolRegister (on page 171)
SWI URL_ProtocolDeregister (on page 174)
SWI Protocol_Stop (on page 182)

Protocol_Status
(SWI URLFetcherProtocol+&01)

Monitor data transfer

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit
R0=Protocol status word (see SWI SWI URL_Status (on page 146)

for details)
R1=preserved ⚠ FIXME: I added this
R2=As SWI URL_Status (on page 146)
R3=As SWI URL_Status (on page 146)
R4=As SWI URL_Status (on page 146)

Interrupts
Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode
Processor is in undefined mode

Re-entrancy
protocol module dependent

Use

This SWI is used to monitor the transfer of data from the remote
service. It is protocol independent, with the exit status bits of R0
being common to all fetcher services. R2 should contain the remote
server's most recent response code where possible; note that even in
the case of, for example, an HTTP 400 (Forbidden) response, some
explanatory data may be received, and thus R3 may be non-zero. If
the client is unknown to the protocol module then an error should be
returned. If the client's last request has finished, but the client
session has not yet been deregistered, then the protocol module
should return the status code as of the time that the request finished
(ie bit 6 or 5 will be set along with another combination if relevant).

The URL module calls this SWI in response to one of its clients

calling SWI SWI URL_Status (on page 146).

Related SWIs
SWI URL_Status (on page 146)
SWI URL_ProtocolRegister (on page 171)
SWI URL_ProtocolDeregister (on page 174)

Protocol_ReadData
(SWI URLFetcherProtocol+&02)

Read data pending from a request

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Address of client's data buffer
R3=Size of client's data buffer

On exit
R0=Protocol status word (see SWI SWI URL_Status (on page 146)

for details)
R1=preserved ⚠ FIXME: I added this
R2=As SWI URL_ReadData (on page 148)
R3=As SWI URL_ReadData (on page 148)
R4=As SWI URL_ReadData (on page 148)
R5=As SWI URL_ReadData (on page 148)

Interrupts
Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode
Processor is in undefined mode

Re-entrancy
protocol module dependent

Use

This SWI is used to read the data pending from a request, find out
how much data has been read on this call and how much more there
is remaining to be read for the request. The register usage and
description is the same as for SWI SWI URL_ReadData (on page 148).
The URL module calls this SWI in response to one of its clients
calling SWI SWI URL_ReadData (on page 148).

Related SWIs
SWI URL_ReadData (on page 148)
SWI URL_ProtocolRegister (on page 171)
SWI URL_ProtocolDeregister (on page 174)
SWI Protocol_GetData (on page 176)
SWI Protocol_Stop (on page 182)

Protocol_Stop
(SWI URLFetcherProtocol+&03)

Abort a current request

On entry
R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit
R0=Protocol status word (see SWI SWI URL_Status (on page 146)

for details)

Interrupts
Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode
Processor is in undefined mode

Re-entrancy
protocol module dependent

Use

This call aborts a current request if there is one associated with the
session identifier. The URL module calls this SWI in response to one
of its clients calling SWI SWI URL_Deregister (on page 154) or SWI
SWI URL_Stop (on page 152).

Related SWIs
SWI URL_Stop (on page 152)
SWI URL_Deregister (on page 154)
SWI URL_ProtocolRegister (on page 171)
SWI URL_ProtocolDeregister (on page 174)

URL module service calls
The URL fetcher system has been allocated a block of 256 service
calls (&83E00-&83EFF). Two are currently defined. The other 254
are reserved by Acorn for future use.

Service_URLProtocolModule
(Service Call &83E00)

Communicate important events to protocol modules

On entry
R0=Reason code indicating type of event:

Value Name of event
0 URLModuleStarted (on page 185)
1 URLModuleDying (on page 186)

All other reason codes are reserved to Acorn and must
not be used

R1=&83E00 (Service_URLProtocolModule)

On exit

All registers must be preserved, unless claiming the service call. In
all the currently defined cases, the service call must not be claimed.
Protocol modules must ignore reason codes which they do not
understand.

Use
The various reason codes are described below.

Related APIs
None

Service_URLProtocolModule 0
UrlModuleStarted

(Service Call &83E00)
URL module has initialised

On entry
R0=0 (URLModuleStarted)
R1=&83E00 (Service_URLProtocolModule)
R2=Version number of URL module × 100

On exit
None

Use

Upon receiving this service call, protocol modules should re-register
with the new URL module by issuing SWI SWI URL_ProtocolRegister
(on page 171) as usual. It must assume that any previous registration
is no longer valid.

This service call must not be claimed.

Related APIs
None

Service_URLProtocolModule 1
UrlModuleDying

(Service Call &83E00)
URL module is dying

On entry
R0=1 (URLModuleDying)
R1=&83E00 (Service_URLProtocolModule)
R2=Version number of URL module × 100

On exit
None

Use

Upon receiving this service call, protocol modules should note that
the URL module has gone away and not attempt to talk to it any more
until a future URLProtocolModule/URLModuleStarted (on page 185)
service call arrives.

This service call must not be claimed.

Related APIs
None

Service_URLProtocolModule_ProtocolModule
(Service Call &83E01)

A protocol module has registered or deregistered

On entry
R0=Reason code:

Value Meaning
0 URLProtocolModuleStarted (A protocol module has just

registered)
1 URLProtocolModuleDying (A protocol module has just

deregistered)
All other reason codes are reserved

R1=&83E01 (Service_URLProtocolModule_ProtocolModule)
R2=URL fetch scheme (e.g. "http:", "ftp:")
R3=SWI base chunk of protocol module
R4=Description of module as shown by *URLProtoShow (on page

189)

On exit

All registers must be preserved, unless claiming the service call. In
all the currently defined cases, the service call must not be claimed.
Protocol modules must ignore reason codes which they do not
understand.

Use

Upon receiving this service call, protocol modules should note that
the URL module has gone away and not attempt to talk to it any more
until a future URLProtocolModule/URLModuleStarted (on page 185)
service call arrives.

This service call must not be claimed.

Related APIs
None

URL module *-commands
The URL module provides a single *-command.

*URLProtoShow
Shows all the current protocols known and their SWI bases

Syntax
*URLProtoShow

Parameters
None

Use

Display information on currently registered protocol modules.

Help Text: "*URLProtoShow shows all the current protocols
known and their SWI bases."

Examples

*URLProtoShow

Base URL SwiBase Version Comment
===
--- 0x83e00 038 URL © Acorn 1997-8 (Built: 07 May 1998)

gopher: 0x508c0 010 Gopher Fetcher © Acorn 1997-8 (Built: 17 Feb 1998)
ftp: 0x4bd00 028 FTP Fetcher © Acorn 1997-8 (Built: 19 Mar 1998)
file: 0x83f40 038 File Fetcher © Acorn 1997-8 (Built: 04 Jun 1998)
http: 0x83f80 082 Acorn HTTP © Acorn 1997-8 (Built: 07 May 1998)

Related SWIs
SWI URL_EnumerateSchemes (on page 166)

URL errors
The URL module is allocated two ranges of error numbers, each
range being 256 long. The first 32 errors are reserved to the URL
module and the rest are reserved to Acorn protocol modules.

Module Error range
URL &80DE00 - &80DE1F
HTTP &80DE20 - &80DE3F
MAILTO &80DE40 - &80DE5F
File &80DE60 - &80DE7F
FTP &80DE80 - &80DE9F
Gopher &80DEA0 - &80DEBF
WhoIs &80DEC0 - &80DEDF
Finger &80DEE0 - &80DEFF
WAIS &81EF00 - &81EF1F
HTTPS &81EF20 - &81EF3F
News &81EF40 - &81EF5F

Error numbers &81EF60-&81EFFF are reserved for Acorn use only.
The URL module errors are:

Error
no.

Meaning

&80DE00 Session ID not found. A client passed an unknown
session ID in R1 to one of the URL module's SWIs

&80DE01 URL ran out of memory
&80DE02 No matching fetcher for the URL could be found
&80DE03 SWI not found (URL Module). URL attempted to call a

fetcher's SWI and received a SWI not known error
&80DE04 Session already has had an object fetch performed in it.

You cannot re-use this session
&80DE05 No fetch in progress for this session ID. You have called

URL_ReadData or URL_Status having already
terminated the fetch

&80DE06 SWI Method already exists. URL already knows of a
module which provides this method for fetching -
another cannot register

&80DE07 No fetch in progress for this session ID. You have not
called URL_GetURL before URL_Stop,URL_ReadData or
URL_Status

&80DE08 Message not found in Messages file
&80DE09 (No longer used)
&80DE0A Unable to parse URL

Error numbers for protocol modules are not within the scope of this
specification.

Performance targets
Final code size of the version described by this document should be
about 25K. When fetches are active, more memory will be claimed
from the RMA to record details of the session. The amount claimed
depends on the URL being fetched plus the small overhead for the
session information.

Temporary workspace is claimed from the RMA as required for URL
resolution equivalent to three times the total combined length of the
base and relative URLs involved.

Workspace is claimed from the RMA to store details of registered
proxies.

All session-specific memory, including proxy information, is freed
when the session is terminated.

Glossary
Term Description
FTP File Transfer Protocol - an application level protocol

for the transfer of files between a remote host
computer and a local client, as defined by RFC 959
[6]

HTTP HyperText Transfer Protocol - a protocol designed to
transfer resources ("documents") from a remote
server machine to a local client, as defined by RFC
1945 (version 1.0 [4]) and RFC 2068 (version 1.1 [5])

HTTPS Secure HyperText Transfer Protocol - HTTP protocol
over a communication channel encrypted using SSL

URL Uniform Resource Locator, as defined by RFC 1738
[2], [3] - a subclass of URIs (Uniform Resource
Identifiers, defined in RFC 1630 [1]) which map onto
network access protocols. More commonly, the
addresses of objects on the World Wide Web

NNTP Network News Transfer Protocol, as defined by RFC
977 [7]

Gopher The Internet Gopher Protocol - a distributed
document search and retrieval protocol

SSL Secure Sockets Layer. A specification for encryption
of communications on networks

WAIS Wide Area Information Servers, as defined by RFC
1625 [8]

References
The following references may be of interest:

● RFC 1630 - Uniform Resource Identifiers
● RFC 1738 - Uniform Resource Locators
● RFC 1808 - Relative Uniform Resource Locators
● RFC 1945 - HyperText Transfer Protocol (HTTP) version 1.0
● RFC 2068 - HyperText Transfer Protocol (HTTP) version 1.1
● RFC 959 - File Transfer Protocol (FTP)
● RFC 977 - Network News Transfer Protocol (NNTP)
● RFC 1625 - Wide Area Information Servers (WAIS) over

Z39.50-1988
● 1215,215/FS Acorn URI Handler Functional Specification

⚠ FIXME: version I found on Internet

http://www.faqs.org/rfcs/rfc1630
http://www.faqs.org/rfcs/rfc1738.html
http://www.faqs.org/rfcs/rfc1808.html
http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc2068.html
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc977.html
http://www.faqs.org/rfcs/rfc1625.html
http://www.faqs.org/rfcs/rfc1625.html
http://www.vigay.com/inet/acorn/uri.html

Document information
History: Revision Date Author Changes

1215,2201 (Developers only)
0.16 19 Oct 1997 RCE First formal version of

specification based on
uncontrolled textual
programmer's notes
(RCE)

0.16a 20 Oct 1997 RCE Incorporated notes from
ADH and SB

0.19 17 Nov 1997 SNB Incorporated details of
service calls

0.20 20 Nov 1997 SNB Incporated details of
URL parsing SWI

0.21 11 Jun 1998 SNB All other updates
incorporated

0.22 22 Jun 1998 SNB Comments after first
review incorporated.
Added details of proxy
enumeration SWI

0.24 04 Aug 1998 SNB No longer live. ECO
4082.

0.25 12 Nov 1998 ADH Multiple changes
● Four digit years on all

dates.
● Tidied up white space.
● Removed smart quotes

and n-dashes.
● Added author details to

history.
● Corrected references

on R0 exit words from
URL_ParseURL to
URL_Status.

● Added details of bit 1 of
flags word in R0 to
URL_ParseURL.

● Clarified a few
sentences here and
there. ECO 4131.

0.25a 31 Aug 2021 Alan
Robertson

Initial version in
PRMinXML format

0.25b 01 Sep 2021 Gerph Tiny tweaks to
formatting

Acorn Plug-In Protocol Functional
Specification

Overview
The World Wide Web is gradually being extended to offer better
support for embedding multimedia data inside Web pages. A well-
established mechanism known as "helpers" allows a browser to
delegate the display of unsupported data types to other applications.
However, the helper application displays this data independently,
usually in its own window.

The idea of a "plug-in" is to integrate the display of such data into the
WWW browser's own window. A number of proposed HTML
extensions are being promoted, such as <APPLET> (by Sun for Java),
<EMBED> (by Netscape) and <OBJECT> (by W3C).

https://www.netscape.com/
https://www.w3.org/

Outstanding issues
There are no outstanding issues.

Technical background
Navigator™ for the Mac and Windows™ supports plug-ins in the form
of dynamically loaded code resources (DLLs). On finding data of a
type it cannot display itself, the browser seeks a DLL which is
capable of handling it. If it finds one, it calls standard entry points in
the DLL to get it to display the data in the browser's window.

This model does not fit well with RISC OS practices. It does not have
a standard scheme for DLLs, and the alternative - using relocatable
modules - is not practical for very large playback engines for systems
like Java and Director. Therefore plug-ins are implemented as
separate tasks, with a special message protocol between the browser
and the plug-in to permit communication and control.

In order to display the data inside the browser's own window, the
plug-in needs to be made responsible for updating a certain portion
of the browser's work area. This could be done by the browser
instructing the plug-in to redraw parts of the window. However, this
approach is rejected because it introduces significant differences
between a plug-in and a normal application. Instead, we utilise a new
facility
⚠ FIXME: Original document had link to Nested Window Manager

added to the Window Manager, whereby windows can be created
"inside" a parent window. The Window Manager takes care of event
distribution to the plug-in, and also ensures that the "child" window
is in a fixed position relative to the work-area of the parent - so the
plug-in's display area will be scrolled within the browser window if
the user manipulates the browser window's scrollbars.

User interface
There is no user interface component to this specification.

Programmer interface
A plug-in accepts one or more types of data, specified using normal
RISC OS filetypes. It is the responsibility of the browser to map
MIME types to RISC OS filetypes.

Just as other RISC OS applications may be "single document" or
"multiple document", a plug-in implementor may choose whether to
handle multiple items at once or not. Ideally, plug-ins should be able
to cope with multiple pieces of data, potentially owned by multiple
client applications. However, for ease of implementation it may
sometimes be preferred to restrict each instance of a plug-in to
displaying one piece of data. In this case, were two such pieces of
data to be displayed at once, it would be necessary to invoke the
plug-in twice.

Invocation

Having determined the best RISC OS filetype for the data, the
browser performs the following sequence of actions:

1. Broadcast Message_PlugIn_Open (on page 208), passing the
filename and filetype of the data, and the parent window
information. This message also contains an opaque 32 bit value
known as the "browser instance handle". This is a word of
significance to the browser, and might be different for each
instance of a plug-in. The plug-in must always quote the
correct browser instance handle to the browser in subsequent
messages.

2. If a Message_PlugIn_Opening (on page 210) is received in
reply, an existing invocation of a suitable plug-in has agreed to
handle the data. The Message_PlugIn_Opening contains an
opaque word value, known as the "plug-in instance handle",
which together with the task handle of the plug-in task
uniquely identifies the piece of data. The browser remembers
both of these values for use in future messages.

3. If no task responds to Message_PlugIn_Opening, the browser
attempts to launch the appropriate plug-in. This is done by
looking for an environment variable called
Alias$@PlugInType_<xxx> where <xxx> is the hexadecimal
type value. If this variable is not found, no suitable plug-in is
available, and the browser regards the attempt to display the
data as unsuccessful. If the variable is found, then the browser
launches it by calling Wimp_StartTask.

4. The result of Wimp_StartTask is the task handle of the new
invocation of the plug-in. As soon as Wimp_StartTask returns,
the browser re-broadcasts the Message_PlugIn_Open message.

5. Normally, the plug-in accepts this message and replies with
Message_PlugIn_Opening, containing a plug-in instance handle
as described above.

6. If no reply was forthcoming, the browser assumes that for
some reason the plug-in was unable to load the data, and it
regards the attempt to display this data as unsuccessful. This
might be because the data is malformed, erroneous or of an
incompatible version to that expected by the plug-in, or it
might be because of some unexpected eventuality (out of
memory, etc). If a detailed failure message is to be issued to
the user, it is the responsibility of the plug-in to do this.

If further data of the same type needs to be displayed, either
simultaneously or sequentially, then the browser should repeat
the whole process starting with the broadcast.

7. If the plug-in replies and so requests then the browser opens a
data stream for the initial object being embedded and sends
this data to the plug-in according to the plug-in stream (on
page 203) protocol.

8. The plug-in examines the contents of the file that was named
in the Message_PlugIn_Open message. This file contains all of
the information from the OBJECT, EMBED or APPLET tag, and
is used by the plug-in to initialise itself. The plug-in may have
to fetch the contents of more URLs in order to do this; it may
get the browser to do this on its behalf by using
Message_PlugIn_URL_Access (on page 231).

9. If during startup the plug-in encounters an unrecoverable
error it tidies up after itself and sends a
Message_PlugIn_Closed (on page 213) to the browser, setting
a flag in the message to indicate that this is due to an error.
The message may optionally include an error message for the
browser to display.

Shutdown

When the browser wishes the data to be forgotten, for example when
the user quits the browser or leaves the current page, the following
actions are taken. If multiple pieces of data have been farmed out (to
the same or multiple plug-ins) the sequence below is performed for
each such piece of data.

1. Browser sends Message_PlugIn_Close (on page 212) directly to
the plug-in task, passing the plug-in instance handle associated
with the data.

2. Plug-in closes and deletes its window, cleans up state and data,
etc.

3. Plug-in replies with Message_PlugIn_Closed (on page 213).
4. Plug-in decrements its count of active objects. If the count is

zero, it is free to exit if it wishes. A flag in the
Message_PlugIn_Close acts as a hint to the plug-in as to
whether the browser would like the plug-in to remain running
or not, but the plug-in does not have to honour this if it does
not want to.

Plug-in death

If the browser receives a Message_Task_CloseDown, it checks to see
whether the exiting task was a plug-in that was currently displaying
data on behalf of the browser. If so, all data being displayed by that
plug-in is marked as undisplayable. The Window Manager has
already deleted the child window(s) associated with the task. The
browser might not issue any error in this case (for example, the
NCBrowser does not); other possibilities are relaunching the plug-in
or reporting the exit to the user.

Browser death

If the plug-in receives a Message_Task_CloseDown, it checks to see
whether it is displaying data on behalf of the exiting task. If so, it
deallocates any state or data associated with that task, and reduces
its reference count by the correct amount. If the reference count
reaches zero (i.e. the dead task was the only task using the plug-in),
then the plug-in may exit if it wants to.

Window events

The Window Manager's nested window mechanism handles all
subwindow positioning issues automatically. If a browser window is
closed, then the subwindow is removed from view, and is reinstated
when the parent window is reopened. If the browser window is
scrolled, the Window Manager ensures that the plug-in window stays
at the same position relative to the browser's work area, if necessary
it repositions the subwindow and clips it if it has scrolled partiallly or
entirely out of view. Repositioning is done by the Window Manager
without sending Open_Window_Request events to the plug-in.

If the plug-in receives a keypress or mouse button click that it does
not want to handle, it must pass it on to the browser by means of
Wimp_SendMessage. It must set the window handle field of the
message to the handle of its parent window. Note that this should be
used instead of Wimp_ProcessKey.

If the browser wishes to forcibly resize or reposition the subwindow,
it sends a Message_PlugIn_Reshape (on page 215) to the plug-in,
quoting the plug-in instance handle. The plug-in must honour this
request by re-opening itself at the new position. The coordinates in
this request are work-area coordinates of the parent window. The
parent window handle in this message may be different to the
original one. The plug-in should be prepared to check for this, and re-
create its window as a child of the new parent if necessary.

If the plug-in wishes to alter its size, it cannot simply resize its
window. Instead it must send a Message_PlugIn_Reshape_Request
(on page 217) to the browser. The browser responds by reformatting

the page (if necessary) and then replying with a suitable
Message_PlugIn_Reshape. The plug-in must act on this in the normal
way.

Data pointers

Many of the strings passed around in this protocol are of unspecified
size and may, especially in the case of URLs, be larger than could fit
within the body of a Wimp message. Therefore they are defined in
this spec as string_values. These are defined as being either offsets
from the start of the message body (if less than 256) or as pointers to
data held in shared memory (i.e. the RMA or a dynamic area). It is
always the responsibility of the sender to free the memory used for
any such pointers. The protocol is defined in such a way that there
should always be a reply received or the message will be bounced by
the Window Manager. In either case it is then safe for the sender to
free the memory allocated.

However to avoid memory leaks it is recommended that careful track
is kept of such pointers so that they can be freed when a plug-in
instance is closed.

All strings must be null terminated but need not start at a word-
aligned address.

Stream protocol

Some plug-ins may wish the browser to fetch data from the net for
them rather than having to implement their own fetching code. A
flexible interface is provided for this based, in part, on the API used
in the de facto standard plug-in API created by Netscape, in order to
facilitate porting plug-ins to RISC OS.

N.B. Take note of the non-compliances section (on page 245).

There are several ways a stream can be instigated, as follows

● The browser wishes to transfer the initial data which
launched the plug-in

● The plug-in requests some data be fetched for it with
Message_PlugIn_URL_Access (on page 231)

● The plug-in requests some data be posted for it with
Message_PlugIn_URL_Access

● The plug-in wishes to write directly to a browser window

Initial transfer

1. Browser fills in flags, mime type, stream data and sends
Message_PlugIn_Stream_New (on page 221).

2. The plug-in returns the same message

● quoting the reference
● filling in the plug-in stream instance handle
● updating the stream mode (if necessary)

4. If mode is applicable
1. Browser sends Message_PlugIn_Stream_Write (on page

225)
2. Plug-in replies with Message_PlugIn_Stream_Written

(on page 227) giving the number of bytes that is could
process

This is repeated until all data is transferred or an error occurs
3. Browser sends Message_PlugIn_Stream_Destroy (on page 223)

with appropriate reason code

Plug-in requests data be fetched or posted

1. Plug-in sends the Message_PlugIn_URL_Access (on page 231)
message

2. When data starts arriving we continue as initial transfer

Plug-in write to browser

1. Plug-in fills in MIME type, target, plug-in stream instance and
sends Message_PlugIn_Stream_New (on page 221)

2. The browser returns the same message
● quoting the reference
● filling in the stream fields

3. The plug-in writes data;
1. Plug-in sends Message_PlugIn_Stream_Write (on page

225)
2. Browser replies with Message_PlugIn_Stream_Written

(on page 227) giving the number of bytes that it could
process

This is repeated until all data is transferred or an error occurs
3. Plug-in sends Message_PlugIn_Stream_Destroy (on page 223)

with appropriate reason code

System variables

For a plug-in <yyyy> whose file type is <xxx> the variables which
the plug-in must set are:
<yyyy>$Dir The application directory containing !Boot, !Run etc. files
PlugIn$Type_<xxx> Name of plug-in for browser menu
Alias$@PlugInType_<xxx> Command to run plug-in as a stand-alone
application, no arguments

The plug-in can optionally set these variables:
PlugIn$About_<xxx> The directory containing plug-in copyright
details

If the plug-in is capable of being launched as a stand-alone

application without the browser involvement it must define these
variables:
File$Type_<xxx> Up to 8 character name describing file format
Alias$@RunType_<xxx> Command to run plug-in as a standalone
application, takes filename as an argument

If the plug-in can also be used as a helper application then this
variable must also be set:
Alias$@HelperType_<xxx> Command to run plug-in as a helper
application

For example a sample !Boot file might contain the following:

Set Java$Dir <Obey$Dir>
Set File$Type_AE4 Java
Set PlugIn$Type_AE4 Java
Set PlugIn$About_AE4 <Java$Dir>.About

SetMacro Alias$@RunType_AE4 /<Java$Dir>.!RunImage -standalone %%*0
SetMacro Alias$@PlugInType_AE4 /<Java$Dir>.!RunImage -plug-in %%*0

If a file is embedded with APPLET, EMBED or OBJECT then the
Alias$@PlugInType_<xxx> variable is used to start the application.

If a file is pointed to with an anchor (eg <A HREF="applets/
myapplet.class">) then the file is downloaded and the
Alias$@Runtype_<xxx> variable is used.

The OBJECT tag

Note that plug-ins can be launched from an OBJECT tag as well as
EMBED or APPLET. When this happens there are some minor
differences to the values in the parameter file (on page 241) The
following table also describes how the attribute names in the HTML
tag get mapped to the entries in the parameters file:

Helper applications

This same interface is also used for helper applications. Helper
applications are very like plug-ins except that they open their
windows external to the parent rather than embedded in the parent's
window. This means that they are not constrained to close down
when the parent window is closed (e.g. when the browser follows a
link to another page) but can still benefit from the communication
protocols with the parent. There is a flag in Message_PlugIn_Opening

(on page 210) to inform the parent whether a window was embedded
or not.

When trying to launch a helper application the process described in
the Invocation (on page 200) section is used except that if the initial
Message_PlugIn_Opening is not claimed the system variable
Alias$@HelperType_<xxx> is used to start the helper task.

Help protocol

A plug-in may support the Wimp Help protocol. If they do then help
mesages are displayed in the browser status bar (if configured).
Messages must be limited to at most 40 characters.

About plug-in

A plug-in may display a logo and some associated text (e.g. copyright
information) in a browser's window at the user's request. The
suggested URL for this is 'about:'. The system variable
PlugIn$About_<xxx> points to a directory containing text files with
optional image (PNG, GIF or JPEG) files.

Each file has a two digit reference number to allow a single plug-in to
have multiple logos and copyright entries (e.g. each Replay codec).
The file 'About<yy>', where <yy> is the two digit reference number,
contains the text suitable for inclusion inside a table cell of an HTML
document. For each About file there is an optional image file, of the
name '<yy><wwww><hhhh>', where <wwww> and <hhhh> are
each four digits for the size that the image will be scaled to (usually
the same as the actual image size). It is strongly recommended that
the width and height are specified, but a filename of just '<yy>' is
accepted.

If the plug-in has a single copyright message and logo, the filename
'About' can be used as a shortcut for 'About00'. The optional logo
must still be called '00<wwww><hhhh>' or '00'.

It is the browser's responsibility to enumerate all the
PlugIn$About_<*> system variables and compile an HTML document
containing all available plug-in details.

Data interchange
The following new Wimp messages are defined.

⚠ FIXME: All Messages delivery elements to be checked for errors.

Message_PlugIn_Open
(&4D540)

Sent by the browser to create a plug-in instance

Message
Offset Contents
R1+16 Message_PlugIn_Open
R1+20 Flags:

Bit(s) Meaning
0 Open the file as a helper (else open it as a plug-in)

1-31 Reserved, must be zero
R1+24 Reserved, must be zero
R1+28 Browser instance handle (provided by the browser)
R1+32 Parent window handle
R1+36 Bounding box in parent window's work area co-ordinates:

Left
R1+40 Bounding box in parent window's work area co-ordinates:

Bottom
R1+44 Bounding box in parent window's work area co-ordinates:

Right
R1+48 Bounding box in parent window's work area co-ordinates:

Top
R1+52 File type
R1+56 Filename (string_value) (on page 203)

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

The file specified by "Filename" at R1+56 contains a series of
parameters in the form of name-value pairs. This data is the list of
attributes and parameters from the APPLET, OBJECT or EMBED tag - see
their respective definitions. This data is used by the plug-in to
understand what is being requested of it. There are more details in
the Data formats (on page 241) section.

If bit 0 of the flags word at R1+20 is set then this is a request to open
the file as a helper application, i.e. external to the parent application.
In this case the bounding box (offset bytes 36 to 51) are invalid. The
parent window handle may be valid or 0 depending on how the file is
launched.

Related messages
Message_PlugIn_Opening (on page 210)

Message_PlugIn_Opening
(&4D541)

Sent by the plug-in task to say an instance has been created

Message
Offset Contents
R1+12 my_ref field from Message_PlugIn_Open (on page 208)
R1+16 Message_PlugIn_Opening
R1+20 Flags:

Bit(s) Meaning
0 Plug-in can accept input focus (else it cannot use

input focus)
1 Plug-in wants the code resource fetched for it (else

it will fetch this itself)
2 Plug-in wants the data resource fetched for it (else

it will fetch this itself)
3 Plug-in will delete the parameters file itself (else

the browser should delete this file now)
4 Plug-in has more work to do, keep showing a busy

indicator in the browser (if appropriate)
5 Plug-in does understand the PlugIn_Action

message beyond only the STOP reason code
6 Plug-in task has actually opened a helper window

(else it embedded itself in the parent)
7-31 Reserved, must be zero

R1+24 Plug-in instance handle (invented by the plug-in)
R1+28 Browser instance handle (copied from the

Message_PlugIn_Open (on page 208))

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This is sent by the plug-in in response to Message_PlugIn_Open (on
page 208). Note that bit 6 of the flags word at R1+20 may indicate
that the Plug-in opened a helper window even if the browser
requested that it be embedded as a plug-in.

Related messages
Message_PlugIn_Open (on page 208)

Message_PlugIn_Close
(&4D542)

Tell a plug-in instance to close down

Message
Offset Contents
R1+16 Message_PlugIn_Close
R1+20 Flags:

Bit(s) Meaning
0 Browser would also like plug-in to exit

1-31 Reserved, must be zero
R1+24 Plug-in instance handle to close
R1+28 Browser instance handle

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is sent by the browser to a plug-in, if it wants an
instance of a plug-in to be closed down (e.g. because the browser
window is being closed, or is moving to a new page). Bit 0 of the flags
word at R1+20 may be set if the browser needs urgently to free up
memory; it is a hint to the plug-in to free up as much memory itself as
it can. Not all plug-ins will read this bit.

Related messages
Message_PlugIn_Closed (on page 213)

Message_PlugIn_Closed
(&4D543)

A plug-in [instance] has closed down

Message
Offset Contents
R1+12 my_ref field from Message_PlugIn_Close (on page 212),

unless bit 1 of the flags word at R1+20 is set
R1+16 Message_PlugIn_Closed
R1+20 Flags:

Bit(s) Meaning
0 Plug-in itself will exit after this message
1 The message is not in reply to a

Message_PlugIn_Close (so R1+12 is irrelevant)
2 There is an error message at R1+32 as detailed

below
3-31 Reserved, must be zero

R1+24 Plug-in instance handle of the closed instance
R1+28 Browser instance handle of the closed instance
R1+32 If R1+20 Bit 2 is set: Error number
R1+36 If R1+20 Bit 2 is set: Zero terminated message to be

displayed by the browser (N.B. this message is always
embedded here as the plug-in may be exitting itself)

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is usually sent as a reply to a Message_PlugIn_Close
(on page 212) from the browser, and confirms that the requested
instance has been closed down. It may also be sent if the plug-in
should exit for its own reasons without the browser asking. An error
which the browser should display will be embedded in the message at
R1+32, if bit 2 of the flags word at R1+20 is set.

Related messages
Message_PlugIn_Close (on page 212)

Message_PlugIn_Reshape
(&4D544)

Move or resize a plug-in instance

Message
Offset Contents
R1+12 my_ref field from Message_PlugIn_Reshape_Request (on

page 217) (if applicable)
R1+16 Message_PlugIn_Reshape
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Parent window handle
R1+36 Bounding box in parent window's work area co-ordinates:

Left
R1+40 Bounding box in parent window's work area co-ordinates:

Bottom
R1+44 Bounding box in parent window's work area co-ordinates:

Right
R1+48 Bounding box in parent window's work area co-ordinates:

Top

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is sent by a browser to a plug-in. The plug-in should
move the specified instance to the specified position; this may involve
resizing the embedded window.

Some plug-in types may want to resize the windows themselves (for
example, some Java applets do this). In that case, they will send
Message_PlugIn_Reshape_Request (on page 217) to the browser and
it should reply with Message_PlugIn_Reshape once it has determined
where the plug-in should be moved to (since the resizing may affect
page formatting and therefore the coordinates of the embedded plug-
in window). A plug-in should therefore not expect an immediate reply
to the message.

Related messages
Message_PlugIn_Reshape_Request (on page 217)

Message_PlugIn_Reshape_Request
(&4D545)

A plug-in instance wants to resize

Message
Offset Contents
R1+16 Message_PlugIn_Reshape_Request
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Width (in OS units)
R1+36 Height (in OS units)

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

A plug-in may sometimes want to resize its embedded window. It
sends this message to the browser when it does so. The browser
should respond with Message_PlugIn_Reshape (on page 215), though
it may not do so immediately.

On sending this message a plug-in may immediately resize its
window, or it may wait; this is undefined. The browser should not
assume either. To be sure that the plug-in embedded window ends up
in a sensible position, the browser must eventually reply to the
message.

Related messages
Message_PlugIn_Reshape (on page 215)

Message_PlugIn_Focus
(&4D546)

Move the input focus between plug-in and parent

Message
Offset Contents
R1+16 Message_PlugIn_Focus
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle

Source
Browser or plug-in

Destination
Browser or plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is used to transfer the input focus between a plug-in
and its parent. It can be sent in either direction. If the recipient
cannot or does not wish to accept the focus then it just ignores the
message. Otherwise it should acknowledge the message with
message type 19 to prevent it being bounced back to the originator.

Related APIs
None

Message_PlugIn_Unlock
(&4D547)

This message call is for internal use only. You must not use it in your
own code.

Message_PlugIn_Stream_New
(&4D548)

Create a new stream

Message
Offset Contents
R1+16 Message_PlugIn_Stream_New
R1+20 Flags:

Bit(s) Meaning
0-3 Stream type field:

Value Meaning
0 Normal
1 Seek only
2 As file
3 As file only

All other values are reserved, and must
not be used

4 Stream is seekable
5-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value (on page

203))
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 MIME type of URL (string_value (on page 203))
R1+60 Window target (string_value (on page 203))

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol (on page 203) as already
described.

Related messages
Message_PlugIn_Stream_Destroy (on page 223)

Message_PlugIn_Stream_Destroy
(&4D549)

Destroy a stream

Message
Offset Contents
R1+16 Message_PlugIn_Stream_Destroy
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value (on page

203))
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Reason code:

Value Meaning
0 Stream finished successfully
1 Stream finished due to an error
2 Stream finished due to user intervention

All other values are reserved, and must not be used

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol (on page 203) as already
described.

Related messages
Message_PlugIn_Stream_New (on page 221)

Message_PlugIn_Stream_Write
(&4D54A)

Write data to a stream

Message
Offset Contents
R1+16 Message_PlugIn_Stream_Write
R1+20 Flags:

Bit(s) Meaning
0-3 Data type field:

Value Meaning
0 String_value (on page 203)
1 Anchor
2 File handle

All other values are reserved, and must
not be used

4-31 Reserved, must be zero
R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value (on page

203))
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Logical offset in stream of data
R1+60 Length of data
R1+64 Data pointer

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol (on page 203) as already
described.

Related messages
Message_PlugIn_Stream_Written (on page 227)

Message_PlugIn_Stream_Written
(&4D54B)

Accept data that was written to a stream

Message
Offset Contents
R1+12 my_ref field from Message_PlugIn_Stream_Write (on page

225)
R1+16 Message_PlugIn_Stream_Written
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value (on page

203))
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Length of data consumed; less than zero if the plug-in

experienced an error

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol (on page 203) as already
described.

Related messages
Message_PlugIn_Stream_Write (on page 225)

Message_PlugIn_Stream_As_File
(&4D54C)

Send stream data as a file

Message
Offset Contents
R1+16 Message_PlugIn_Stream_Written
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value (on page

203))
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Filename of stream data (string_value)

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use
⚠ FIXME: Confirm Source and Destinations for this Message.

This message is part of the Stream protocol (on page 203) as already
described.

Related messages
Message_PlugIn_Stream_Write (on page 225)

Message_PlugIn_URL_Access
(&4D54D)

Ask the browser to deal with a URL

Message
Offset Contents
R1+16 Message_PlugIn_URL_Access
R1+20 Flags:

Bit(s) Meaning
0 Return a Message_PlugIn_Notify (on page 233) on

completion
1 Fetch by POST, else fetch by GET
2 Should be 0 if bit 1 is unset

If bit 1 is set, bit 2 means POST a file if set, else
POST a block of memory

3-31 Reserved, must be zero
R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 URL to access (string_value (on page 203))
R1+36 Window target (string_value (on page 203))
R1+40 Notify data to be returned (if bit 0 of the flags word at

R1+20 is set)
R1+44 Length of data to be posted
R1+48 If R1+20 bit 2 is set: Filename (string_value (on page 203))

If R1+20 bit 2 is unset: Pointer to data (string_value (on
page 203))

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is sent by a plug-in to the browser, to ask it to deal with
a URL in various ways. The plug-in may ask the browser to send it a
notification message when it has completed whatever action is
required on the URL.

If the window target is non-zero then the URL is fetched to the given
window name. Otherwise, a stream is opened and the data is sent to
the plug-in.

Related messages
Message_PlugIn_Notify (on page 233)

Message_PlugIn_Notify
(&4D54E)

Signal completion of handling a URL to a plug-in

Message
Offset Contents
R1+16 Message_PlugIn_Notify
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 URL accessed (string_value (on page 203))
R1+36 Reason for notify:

Value Meaning
0 Stream finished successfully
1 Stream finished due to an error
2 Stream finished due to user intervention

All other values are reserved, and must not be used
R1+40 Notify data

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This is sent by the browser to the plug-in, because the plug-in
requested it through a Message_PlugIn_URL_Access (on page 231).

Related messages
Message_PlugIn_URL_Access (on page 231)

Message_PlugIn_Status
(&4D54F)

Send a status message to the browser

Message
Offset Contents
R1+16 Message_PlugIn_Status
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Status message (string_value (on page 203))

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

Requests that the parent display some information in its status bar,
or similar. The message should be reasonably short.

Related messages
Message_PlugIn_Busy (on page 236)

Message_PlugIn_Busy
(&4D550)

Signal a plug-in state change to the parent

Message
Offset Contents
R1+16 Message_PlugIn_Busy
R1+20 Flags:

Bit(s) Meaning
0 Plug-in is busy
1 Word at R1+32 has some meaning, else ignore it

2-31 Reserved, must be zero
R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 If R1+20 bit 1 is set: Plug-in's new state:

Value Meaning
0 Stop
1 Play
2 Pause
3 Fast Forward
4 Rewind
5 Record

All other values are reserved, and must not be used

Source
Plug-in

Destination
Browser

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

⚠ FIXME: Flag to be changed. bit 1 seems to be used as an
identifier

Requests that the parent display some indication of business (e.g.
spinning logo, etc.). If the plug-in had set the busy bit in its Opening
message then it should send this message with bit 0 of the flags word
at R1+20 clear when it has finished its loading.

This is also used to notify the parent of any state change by the plug-
in in case it needs to update any user interface.

Related messages
Message_PlugIn_Status (on page 235)

Message_PlugIn_Action
(&4D551)

Send a command to a plug-in

Message
Offset Contents
R1+16 Message_PlugIn_Action
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 If R1+20 bit 1 is set: State the plug-in should move to:

Value Meaning
0 Stop
1 Play
2 Pause
3 Fast Forward
4 Rewind
5 Record
6 Mute
7 Unmute

All other values are reserved, and must not be used

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

⚠ FIXME: Flag to be changed. bit 1 seems to be used as an
identifier

This message is used for sending specific commands to a plug-in. Not
all plug-ins will understand the commands sent.

The new state sent is the state the plug-in should enter. If it is
already in that state then it should ignore the message.

After entering the state it should send back a Message_PlugIn_Busy
(on page 236) confirming the new state, except for the Mute and
Unmute actions.

Related messages
Message_PlugIn_Busy (on page 236)

Message_PlugIn_Abort
(&4D552)

Stop activity for a plug-in instance

Message
Offset Contents
R1+16 Message_PlugIn_Abort
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle

Source
Browser

Destination
Plug-in

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is sent by the browser when the user clicks on the Stop
icon (or performs its equivalent). The plug-in should stop as much of
its activity as possible. Specifically, anything that updates the screen,
anything that uses significant CPU time and anything that accesses
the network.

Note that this message is sent to each plug-in instance individually
and should be treated as such.

Related messages
Message_PlugIn_Status (on page 235)

Data formats
The Message_PlugIn_Open (on page 208) contains a filename that
refers to a file of parameters and attributes. The plug-in uses this
information to locate the correct data, classes, implementation etc.

The file contains the concatenation of one or more binary records of
the following form:

Integers are stored in little-endian order.

Flags (parameters with void value whose presence or absence only is
significant) are represented by a parameter of type DATA with zero
length.

The parameters include:

● all the attributes of the OBJECT (or other) element that
references this plug-in

● all the PARAM elements enclosed within it
● special parameters created by the browser

These parameters are passed exactly as seen in the HTML without
any conversions. The data/url/ref distinction is as given in the DTD
(for OBJECT attributes) or in the VALUETYPE attribute of the PARAM
element.

The plug-in may implement its own URL fetching code, or it may have
the browser fetch URLs on its behalf by issuing a
Message_PlugIn_URL_Access (on page 231) message to the browser.

Special parameters are created by the browser (rather than being
part of the object element). They are:

Parameter Meaning
BASEHREF (Mandatory)

The full URL of the document containing this
object.

USERAGENT (Mandatory)
The name of the browser.

UAVERSION (Mandatory)
Version number of the browser (user agent) in
format x.y. If the plug-in needs a specific
browser feature it may refuse to initialise if
this version is not high enough.

APIVERSION (Mandatory)
Version number (on page 242) of this API in
format x.y. Changes in x mean a major
incompatible change in formats. If the plug-in
doesn't understand this version it should refuse
to initialise. Changes in y mean some new
functionality introduced in a backwards
compatible way.

BGCOLOR (Optional)
The background colour of the page, which can
be used by the plug-in as the default
background colour. The colour is passed in as a
string in the format 'BBGGRR00'.

API Versions

Released versions of this API about are listed below. A plug-in can
use this information to alter its behaviour if used with an application
supporting an older version of the protocol.

Version 1.00
Original plug-in specification (version 0.09). All messages up to and
including STATUS. Supported by NCBrowser 1.06, for example.

Version 1.10
This specification. Adds BUSY, ACTION, ABORT messages and
support flags. Adds Helper information. Supported by NCBrowser
1.07 and above, or Browse 1.27 and above, for example.

External dependencies
This specification relies on the existence of a Window Manager with
nested window support.

Acceptance test
The protocol must be able to cater for the needs of Shockwave (on
page 247) and Java (on page 247) plug-ins.

Non-compliances
At the time of writing, neither the NCBrowser nor Browse support all
of the variations of the STREAM protocol (on page 203). They do not
support POSTing from a plug-in or streaming data from a plug-in to a
browser window.

Development test strategy
The protocol has been tested during the development testing of a
browser and during the creation of plug-ins. Each plug-in listed in the
acceptance criteria (on page 244) tested that its interactions with the
browser through this protocol performed as expected by this
specification. This included deliberately generating errors to check
the error recovery of the plug-in and the browser.

Glossary
Term Description
Aplet Application Programmer Interface.
API Small application, usually written in Java,

embedded in a web page
ARM Acorn RISC Machine OR Advanced RISC

Machines Ltd
Cache Area of disk or memory used to store recently

accessed files
Caret Text cursor
Codec COder-DECoder
Director
Player

MacroMedia multi-media animation player

DLL Dynamically linked library (loaded at runtime)
Frame An independently scrollable portion of an HTML

page
GUI Graphical User Interface
HTML HyperText Markup Language
HTML 4 The current base-line HTML standard
Java Machine independent interpreted programming

language
MIME Multipurpose Internet Mail Extensions
NC Network Computer
OS Operating System
Plug-in A program that extends the browser by handling

a particular type of file embedded in an HTML
page

PRM Programmers Reference Manual
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RISC OS Acorn's operating system, the basis of RISC OS
ROM Read Only Memory
Shockwave MacroMedia multi-media browser plug-in player
Sprite An Acorn proprietary bitmap graphics file format
SWI Software Interrupt
UI User Interface
URL Uniform Resource Locator (HTML link)
Wimp Colloquialism for Window Manager

References
The following references may be of interest:

Director Player Software Functional Specification

Document reference 2107,711 (covers Shockwave as well as Director
Movies). Obtain through Developer Support.

Java Software Functional Specification

Document reference 2107,710. Obtain through Developer Support.

[NC] Browser Software Functional Specification

Obtain through Developer Support.

Acorn Nested Window Manager Functional Specification

Document reference 1215,401/FS.

Wimp message protocol

PRM Volume 3.

Wimp Help protocol

PRM Volume 3.

Document information
History: Revision Date Author Changes

2107,740
issue 1

(Developers only)

0.01 09 Jan 1997 SJM Created from 2103,740
and added BUSY
notification protocol

1.2 06 Feb 1997 SJM New format
1.3 07 Feb 1997 SJM Fixed errors in Message

numbers
1.4 14 Feb 1997 SJM Added PASSWORDS.

Changed API version.
Added Glossary

1.5 18 Feb 1997 SJM Changed PASSWORDS
to file. Added
Message_PlugIn_Action.
Added Helper app info

1.6 24 Feb 1997 SJM Added ABORT message
to replace some uses of
STOP

1.7 24 Feb 1997 SJM Fixed error in states.
Changed API info

1.9 26 Feb 1997 SJM Added mute
1.12 09 Apr 1997 SJM Added missing history

comments for 1.10 and
1.11, updated with
comments from SG.
Added glossary,
references and
development test
strategy. Added Helper
launching system
variable

1.13 11 Apr 1997 SJM Fixed typos after review
1.14 11 Apr 1997 SJM Fixed some links
2.1 11 Apr 1997 Signed off, AMR

allocated
3.1 11 Aug 1997 Few small changes;

then signed off, ECO
3995 allocated

1116,010/
FS issue
1

(Developers only)

1.0 26 Jan 1998 PW Added 'About Plug-in'
1.1 06 Feb 1998 PW Added BGCOLOR

special parameter
(PW); AMR 4903
allocated

1116,010/
FS Issue
2

(General release)

1.0 ● HTML style changes

for publishing on the
Web; some
clarifications here and
there in the body
content.

● Various minor 'tweaks'
such as changing, for
example, "Netscape"
to read "Navigator™".

● There are a few more
in-document links to
make finding things
easier.

● Some typos corrected
(e.g. 'data' changed to
'date').

● A few history and
references bits
removed ready for
general public release
(that's why the
revision list given
here has gaps in it).

1.1 23 Feb 1998 Simon
Middleton
(SJM),
Piers
Wombwell
(PW),
Andrew
Hodgkinson
(AH)

AMR allocation details
corrected in this history
section

1.2 23 Feb 1998 SJM, PW,
AH

ECO 4049 allocated

1.3 26 Mar 1998 SJM, PW,
AH

Created revision 1.3
purely to fix the
erroneous reference to
the Nested Wimp
specification which
gave an incorrect
drawing number. No
ECO allocated for such
a trivial change

1.4a 04 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format
● No major changes to

text. Removed the
'Document Status'
section as information
captured in

'Document
Information' section

● Added related links to
message definitions

Disclaimer:This document has a fairly long history; originally it was an
internal-only specification (2103,740); it later became available
to developers in a revised form (2107,740 and recently
1116,010/FS issue 1) and is now on general release (1116,010/
FS issue 2).

Acorn Nested Window Manager
Functional Specification

Overview
Version 3.97 and 3.98 of the Wimp are beta versions, incorporating
extensions required by numerous projects. The main features are:

● Nested windows
● Icon bar auto-fronting
● Icon bar scroll regulation and acceleration
● 24-bit icon colour specification
● Border-less windows
● New filter types
● Redraw optimisation
● Numerous bugfixes and other optimisations

Technical Background
This document documents changes to the Wimp over the version
present in RISC OS 3.71, as determined from the PRM volumes 3 and
5a and the old Wimp itself.

The Wimp has been written so that any given version can be built to
soft-load on any OS version back to 3.10. Builds of version 3.97 and
version 3.98 suitable for RISC OS 3.1x, 3.5x, 3.6x and 3.7x have been
released with beta status for external testing, because a nested Wimp
is a prerequisite of the browser and Java. The main differences from
the RISC OS 3.7x build in those for earlier operating systems are as
follows:

In RISC OS 3.6x and earlier, the Wimp

● has no support for StrongARM
● handles task memory management (rather than delegating

to OS_AMBControl)

In RISC OS 3.5x and earlier, the Wimp

● always plots sprites using a translation table (ColourTrans
module isn't new enough to plot paletted sprites from the
palette)

In RISC OS 3.1x, the Wimp

● handles memory management significantly differently (for
example, it doesn't use dynamic areas)

● doesn't assume FPEmulator 4.00 or later will be present
● doesn't support mode specifiers

User Interface
Child and Nested Windows

The single biggest enhancement to the Wimp is support for child
windows: windows that are linked to and are only displayed within
their parent. Each edge, and both scroll offsets of every child window
are independently linked to the work area or one edge of the parent
window, in whatever way suits the task. Thus, when a parent window
is moved, scrolled or resized, any related changes to child windows
are dealt with automatically by the Wimp.

Any window may have any number of children, and within each
window there is a stack of child windows, whose relative depth can
change in the same manner as the top-level window stack. Child
windows may change their parent at any time, jumping between
stacks. Child windows may themselves have nested children within
them, which may in turn have their own children, and so on. Child
windows are considered to lie above any icons in their parent
window, and above the parent window's caret.

It should be noted that with all this added flexibility comes a
potential for badly designed, non-intuitive application front-ends, so
care must be taken when designing a user interface which uses the
window nesting facilities.

Child Windows Without a Work Area

In the past, it has not been possible to display windows without a
work area, for example to implement a scroll bar in a non-standard
place. This was due not only to a hard-coded minimum size visible
area (see Minimum Sizes (on page 257)) but also due to the ever-
present single-pixel border drawn by the Wimp along any edge of a
window that lacks window furniture. In fact, it has previously been
possible to remove the single-pixel border, but at the expense of the
removal of all the window furniture at the same time, leaving an
isolated work area. These restrictions have been lifted.

This behaviour is in fact also available with top-level windows, but its
usefulness is expected to be limited to child windows.

Furniture Windows

Normally, child windows are clipped according to the visible area of
the parent window. However, there are occasions where it is
desirable for the child windows to be clipped by the window outline -
that is, allowing them to overlap the window furniture. This might,
for example, be used to display status information within the
scrollbars, or add window furniture buttons. An additional window

flag has been introduced, allowing a child window to overlap the
window furniture of its parent in this way.

Further, it is realised that to place such a furniture window at, for
example, the bottom left of a window, would obscure the parent's
scroll arrow icon. In order to compensate for this, scrollbars are
allowed to move to accommodate any child window found to be
touching both the outside edge of the scrollbar, and the end of the
scrollbar. A window is deemed to be touching the end of the scrollbar
if its end outline coordinate is within 1 pixel of the end of the
scrollbar, i.e. there must be no gap between the child window outline
and the final pixel of the scrollbar. The end of the scrollbar is
adjusted so that it just underlaps the other end of the child window
outline. The child window should normally be wide enough to cover
all the area where the scroll bar would have been, as only a blank
area of colour will be drawn there otherwise.

Notice that these constraints allow for four furniture windows within
the scrollbars of the parent. If, for example, the developer wanted
two child windows in the bottom left, one window would have to be
made a child of the other. Under current Wimp behaviour, if two
sibling child windows are placed side by side in this manner, the
scrollbar will move to accommodate both of them, but only if they are
in a certain stacking order; this behaviour is not guaranteed in future
versions of the Wimp, and must not be relied upon.

Again, the flexibility offered by these child windows must not be
abused: developers must, for example, take steps to ensure that the
parent's minimum visible area is large enough for the furniture
window never to overlap the parent's adjust size button.

Furniture windows which are independently moveable and/or
resizable are beyond the scope of the Nested Window Manager, and
any attempt to give them such abilities will result in unpredictable
behaviour. Such designs are thus strongly discouraged.

Windows in General

Invalid Rectangle Handling

The way in which the Wimp calculates the invalid and block-copy
rectangle lists is optimised over old Wimps, in order to increase the
proportion of block-copy operations, which are usually much faster
than redraws. This is done by compiling a list of changes between
each call to Wimp_Poll, and only then calculating which rectangles
are genuinely invalid, and which can be displayed using a quick
block-copy operation. The block-copies themselves are re-ordered so
that wherever possible, one copy does not invalidate screen area
needed as source for another copy operation; in the rare cases where
this is not possible, the least damaging alternative is chosen - that is,

the one requiring the smallest invalid area to be redrawn.

The upshot of this is that wherever touching or overlapping windows
move together - external and internal panes, and of course, nested
windows - the shuffling effect present in earlier Window Managers,
where an area is alternately covered by the top window, and exposed
and redrawn, is eliminated. There is also some speed gain from
combining block-copy operations. In the unusual event that the
window opening queue needs to be flushed before the Wimp_Poll, an
extension to SWI Wimp_OpenWindow (on page 269) is provided.

Standard Window Furniture

All window furniture buttons slab in, including close and toggle size.

The bug regarding slabbing-in of the other furniture buttons, which
could be unreliable following a Service_InvalidateCache, is fixed.

Single-pixel borders can be removed from windows without removing
all the other window furniture at the same time.

For large work area windows, when the scroll sliders start being
dragged, they jump less than in previous Wimps, and are displayed
more accurately when they reach the end of the document.

A plain-colour background is no longer drawn underneath the solid
toolsprites, thereby reducing flicker.

Minimum Sizes

All windows are optionally shrinkable to zero size visible area
(subject to the continued visibility of any back, close, toggle size and
adjust size buttons). In order to achieve this, scroll bars no longer
have a minimum length (except in special cases). After the scroll
slider region has been shrunk to zero length, the scroll arrows start
to be plotted scaled down until the entire bar shrinks to nothing.

Most conventional programs which rely upon the old behaviour
continue to function as before, due to the special-case exemptions in
SWI Wimp_CreateWindow (on page 262).

Shift-Toggle-Sized Windows

Windows which have been toggle-sized with Shift held down (i.e.
made to fill all the screen except the icon bar) are now internally
marked as being full size, and the toggle-size button indicates this by
switching to the "fulled" sprite. A further click on the toggle size
button will then reduce the window's size to its original size, as
opposed to the previous, unhelpful behaviour, which was to enlarge

the window to full screen, including covering the icon bar!

Error Report Dialogue Boxes

Since each error button in a Wimp error box can contain user-defined
text, it is possible for the text to be wider than the fixed width action
buttons used in previous Wimps' error boxes. The Wimp now enlarges
each action button if the width of its text (plus 36 OS units to allow
for borders) is greater than that of its standard action button.

Icons

A number of long-standing bugs relating to "3-D" icons are fixed:
clicking on an action button that uses an antialiased font doesn't
reset the Wimp font to the old bitmap system font; multiple selection
of action buttons via dragging off one button and Adjust-clicking on
another is no longer possible; menu clicks on action buttons no
longer cause a flicker; and the 3-D plinths are drawn correctly in EX0
and/or EY0 screen modes and/or when not pixel-aligned. Icon
foregrounds and backgrounds can be drawn using any 24-bit
specified colour, not just one one of the Wimp colours.

Any 2-, 4-, 16- or 256-colour sprites with palettes within icons are
now plotted using the palette directly, rather than via a translation
table. The effect of this is better colour reproduction of such sprites
in 32 thousand colour and 16 million colour modes.

Line spacing for multi-line text icons, first specified for RISC OS 3.10,
via the parameters to the "L" command of an icon's validation string,
has finally been implemented.

Menus

Submenus and dialogue boxes opened from "reversed menus" are
opened at the correct horizontal position again. However, the
automatically-opened position still does not perfectly mirror normal
menus for cases where the pointer is held over the "tick" space
opposite the arrow.

Icon Bar

The icon bar scrolls at a rate independent of processor speed or
loading - the position is determined according to the time elapsed
since scrolling started, irrespective of how many screen updates have
been possible since.

Also, the speed of scrolling increases linearly over time; it
accelerates. This eases navigation of very wide icon bars.

If the pointer is left over the bottom pixel row of the screen for 0.5

seconds, the icon bar now pops to the top of the window stack, much
as it would if you had used the Shift-F12 hotkey. The icon bar remains
at the top of the stack (and therefore accessible) while the pointer
stays over the icon bar and/or there is an icon bar menu open. When
this condition is no longer true, the icon bar returns to its original
position in the window stack (note that this differs from Shift-F12
behaviour, where the icon bar always becomes a "back" object again).

Panic Redraws

When a panic redraw occurs due to there being too many invalid
rectangles for the Wimp to handle, the first thing drawn is a plain
background. In a feature dating back to Arthur, this was hard-coded
to Wimp colour 15 (now light blue) - hardly appropriate. This is
changed to a mid-grey colour.

Also, anticipating the increased number of invalid rectangles made
likely by the nested windows system, the number of invalid
rectangles allowed before a panic redraw is triggered is raised from
128 to 256.

Programmer's interface
The following SWIs detail the changes from the previous version of
the Window Manager. They are not full definitions for each SWI call.

Wimp_Initialise
(SWI &400C0)

On entry

-

On exit

-

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

Wimp_Initialise recognises a new version number, in addition to the
established 200, 300 and 310 versions. 380 will, at a sufficiently
advanced version of the Wimp, be necessary in order to activate most
of the features described in this specification. As of Wimp version
3.97, only the window foreground colour byte of the window block is
affected by the version passed to Wimp_Initialise, but this must not
be relied upon for future releases of the Wimp; other Nested-Wimp
features may in future become reliant upon having passed 380.

Related APIs
None

Wimp_CreateWindow
(SWI &400C1)

On entry
R1=Window block

Offset Contents
+28 window flags:

Bit(s) Meaning
22 This bit is overwritten by the Wimp, and may be read using

Wimp_GetWindowState. When set, it indicates that the window
is, or will be, toggled to full size without covering the icon bar
Note that this behaviour is different to bit 18, which is set if
the window is, or has been, toggled to full size including the
icon bar.

Toggling behaviour can only be properly resolved after
Wimp_Poll returns an Open_Window_Request reason code and
before the subsequent call to Wimp_OpenWindow. Flags bit 19
is set, by definition; applications may distinguish between
different types of toggle-size clicks using the following truth
table:

These are the only values that can be returned in combination
with bit 19 being set.

23 If this is a child window, make it a furniture window. (This has
no meaning for top-level windows, so the bit should always be
cleared in such cases to allow for future expansion).

+32 Title foreground and window frame colour:
Value Meaning

&FF Window has no 1-pixel border components, but furniture can
still be present (as controlled by the usual flag bits). Title
foreground colour defaults to Style Guide standard colour
(Wimp colour 7).

+68 Minium width of window (16 bits).

This used to be the minimum visible width in OS units, unless a greater
width was required by either of the following:

● The top edge furniture - any combination of the back, close,
title and (as a special case when the vertical scrollbar is
absent) the toggle-size icons. The width required by the title
icon was defined as 8 OS units, except when 0 was used here,
indicating that the full width of the title text or sprite will

Offset Contents

apply;
● The bottom edge furniture - the minimum (unsquashed) size

horizontal scrollbar (if present), plus any adjust-size button (in
the special case when the vertical scrollbar is absent).

The 0 special case retains exactly the same behaviour as before
(horizontal scroll bars, if present, cannot be squashed below a certain
minimum width). Any other values activate the new behaviour: a
horizontal scrollbar can be squashed down to zero width, and the title
bar can be squashed down to zero width as long as the back and close
buttons are both absent (otherwise, 8 OS units remains the minimum
title icon width). A new special case, 1, is introduced, activating the
new behaviour, but with an actual minimum window width of 0 rather
than 1 (although it is obviously still subject to any non-squashable
furniture width requirements as discussed).

+70 Minium height of window (16 bits).

This used to be the minimum visible height in OS units, unless a greater
height was required by a minimum (unsquashed) size vertical scrollbar
plus any toggle-size and adjust-size buttons (in the special cases where
there is no title or horizontal scrollbar, respectively). It was also subject
to a restraint that the minimum height could not be less than 2 pixels
high when the vertical scrollbar was absent.

The value 0 becomes a special case, and retains exactly the same
behaviour as before. That is, the vertical scroll bar, if present, cannot
be squashed down below a certain size. All other values activate the
new behaviour: any vertical scrollbar may be squashed down to zero
height, and the 2-pixel hard-minimum no longer applies. A special case,
1, is introduced, activating the new behaviour but with a minimum
window height of zero rather than of 1 (subject to constraints imposed
by window furniture as described).

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

The meanings of certain parts of the window block are altered and
extended as shown.

Related APIs
None

Wimp_CreateIcon
(SWI &400C2)

On entry

unchanged

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

The (C)olour validation string command is introduced to allow icon
colours to be set from a 24-bit palette. It is typically followed by two
hexadecimal numbers (BBGGRR) separated by a /, but either one may
be omitted, and the relevant colour from the icon flags (or the F
command) will then be used instead. It is suggested that the old-style
colours should be specified to something sensible, in case the
program gets run on a Window Manager that doesn't support the
command.

Note also that the line spacing specified after the (L)ine spacing
command is now acted upon.

Bit 20 of the icon flags has not been part of the Exclusive Selection

Group (ESG) number since at least RISC OS 3.10, and should be
considered 'reserved'.

Related APIs
None

Wimp_OpenWindow
(SWI &400C5)

On entry
R1=Pointer to block, or NULL (0 or -1) to flush all pending opens to

the screen.
R2="TASK" (&4B534154)

This is a 'magic word' to tell Wimp that the extended version of
this SWI call is being made.

In the extended call, R3 and R4 are as described below.
Otherwise, the previous parent and flags (if any) are reused.
The parent defaults to -1 and the flags default to 0, i.e.
traditional Wimp behaviour is still the default.

It is important to ensure that R2 does not accidentally get
left with this value from a previous call in code which
mixes old and new style calls. This is mostly an issue for C
SWI veneers.

R3=Handle of window to make parent (or -1 to make a top-level
window)

R4=flags
Bit(s) Meaning

0 Use extended OpenWindow block in R1 (R1 + 32 =
window flags).

16-17 left edge of child
18-19 bottom edge of child
20-21 right edge of child
22-23 top edge of child
24-25 x-scroll of child
26-27 y-scroll of child

These flag pairs have the following meanings (as high
bit, low bit):

Setting Action
00 linked to work area of parent
01 linked to left / bottom of visible area of

parent
10 linked to right / top of visible area of parent
11 reserved

1-31 Reserved, must be zero

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

This call is the key to the nested window system. Changes are as
shown.

If R3 is -1, bits 16-27 must all be clear. Otherwise, they specify how
certain aspects of the child are aligned with the parent window.

If R4 bit 0 is set, then R1 + 32 holds the new window flags to use.
This can be used, for example, to add or remove window furniture
without having to delete and re-create the window.

Not all window flags can be altered in this way. In particular, bits
16-22 can only be set or cleared by the Wimp, in order to reflect the
window status. The Wimp will also modify the bits relating to the
window furniture as follows: if bit 31 is unset (indicating the old-style
bits are to be used) then bits 24-30 are updated to reflect the status
indicated by bits 0, 2, 3 and 7 (but note that bit 31 itself is left
unchanged). If bit 31 is set, however, bits 0, 2, 3 and 7 are cleared.
All other bits are preserved (and acted upon) by the Wimp.

Under previous Wimps, the window handle at R1+0 had to be owned
by the task calling Wimp_OpenWindow. Because a child window need
not belong to the same task as its parent, this restriction has now
been lifted; this is the case even for the non-extended form (R2 not
equal to the magic word "TASK").

Since RISC OS 2 (and possibly even earlier), Wimp_OpenWindow has
had undocumented return conditions: values at R1+4 - R1+24 are
updated to represent the actual parameters of the opened window
after valid ranges have been taken into account, and the window has

been forced on-screen (if applicable). Rather than continue to have
programs waste time following a Wimp_OpenWindow with a
Wimp_GetWindowState (except in cases where the new window flags
are required), the exit conditions can now be considered official.

Related APIs
None

Wimp_GetWindowState
(SWI &400CB)

On entry

changes detailed below

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

This call mirrors Wimp_OpenWindow. If R2 = "TASK" on entry, then
on exit R3 and R4 are as described above (on page 269). Note
however that Wimp_GetWindowState has always returned the
window flags in R1+32, but despite this, R4 bit 0 will always be
returned cleared.

Related APIs
None

Wimp_GetWindowInfo
(SWI &400CC)

On entry

unchanged

On exit

changes detailed below

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

The returned window block's extended meanings are as for SWI
Wimp_CreateWindow (on page 262).

Related APIs
None

Wimp_ForceRedraw
(SWI &400D1)

On entry
R0=Window handle (as before)
R1="TASK" (&4B534154)

This signals that the extended version of
Wimp_ForceRedraw is being used, and R2-R4 are as stated
below.

R2= Value Meaning
+3 Redraw title bar

Other values are reserved
R3 - R4=Ignored

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

Wimp_ForceRedraw is changed so that it can be applied to windows
owned by other tasks, because a child window may belong to another
task.

In the past, redrawing the title bar of a window has been
accomplished either by working out where the window's title bar is
on the screen and calling Wimp_ForceRedraw with R0=-1 to
invalidate that area, or alternatively by toggling the input focus in
and out of the window to force its borders to be redrawn.

Neither of these methods is particularly satisfactory: the first could

cause other windows on top of the one in question to be redrawn
unnecessarily, and the second redraws the rest of the borders as well,
and in the case of child windows, would also cause a redraw of the
parent's title bar.

So Wimp_ForceRedraw is extended as shown above.

Note: Since the value &4B534154 ("TASK") is far too big to be an
minimum x coordinate, it is safe to use as described above.

Related APIs
None

Wimp_GetWindowOutline
(SWI &400E0)

On entry

unchanged

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

Previously, a window had to be open and visible on screen for this call
to work. It will now work on windows which are closed or not yet
visible.

Related APIs
None

Wimp_RegisterFilter
(SWI &400F5)

On entry
R1=Reason code:

Value Meaning
4 Register / deregister post-rectangle filter
5 Register / deregister post-icon filter

On exit

unchanged

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
SWI is not re-entrant

Use

Each type of filter may only be registered once using this call, and so
it remains for the use of the Filter Manager only (which will normally
be responsible for delegating filter calls for specific tasks) unless you
want to replace the whole filter system. The SWI is thus, in effect,
only really for internal use but since it is documented in the PRMs
the extended version is included here for completion.

As far as the Filter Manager is concerned, note that certain filter
types require a newer Filter Manager than present in the RISC OS
3.60 / RISC OS 3.71 ROMs.

There are two new reason codes that may be passed to
Wimp_RegisterFilter (4 & 5)

Notes:
There is an undocumented entry condition for any registered pre-

filter: R3 points to the poll word if R0 bit 22 was set on entry to
Wimp_Poll. On exit, R1 and R3-R10 must be preserved. The PRMs
have also forgotten to mention that on entry to the post-filter, R12
holds the value given in R2 when the routine was registered. On exit,
R1 and R3-R10 must be preserved. Future documentation will
include this information.

The Wimp now calls the post-filter, with a null reason code, whenever
Wimp_StartTask returns, even if the child task didn't call Wimp_Poll.
In either case, any attempt to claim the null event will now be
ignored.

The entry and exit conditions for reason code 2 and 3 filters have not
previously been documented, and those for reason codes 4 and 5 are
new in Wimp version 3.86, so they are in numerical order by reason
code in the section entitled Filter Entry Points (on page 281).

Related APIs
None

Wimp_Extend
(SWI &400FB)

On entry
R0=Reason code (see exit conditions for R1)
R1=Window handle, or for reason codes in R0 of 7 and 8, a value of

-1 to enquire about the top-level stack.

On exit
R1=The value of R1 depends on the reason code and R1 value

supplied on entry:
Value Meaning

0 - 5 Internal use only
6 Parent window
7 Frontmost child window
8 Backmost child window
9 Sibling immediately behind

10 Sibling immediately in front

Interrupts
Interrupts are unchanged
Fast interrupts are unchanged

Processor mode
Processor is in undefined mode

Re-entrancy
Not defined

Use

It is possible to enumerate window stacks using only
Wimp_GetWindowState, but it requires that you open a "special"
window of your own at the back of each stack to be enumerated, and
you can only enumerate the stack from back to front. It may also
return rather more information that you actually need, and so may be
a little bit slower than it might be.

Consequently, five new index values are added to Wimp_Extend. For
each of the following, R1 holds the window handle being queried, or

a value of -1 to enquire about the top-level stack (for index values 7
and 8 only).

Any of the above calls can return R1 = -1 for "no window", indicating
that the end of the stack was reached, or the window had no parent
or child, or R1 was -1 on entry and R0 was not 7 or 8.

Note also that pane windows are not skipped by any of the above
calls.

Related APIs
None

Filter Entry Points

Rectangle Copy Filter

On entry
R2=Destination bounding box: min x
R3=Destination bounding box: min y
R4=Destination bounding box: max x
R5=Destination bounding box: max y
R6=Source bounding box: min x
R7=Source bounding box: min y
R8=Source bounding box: max x
R9=Source bounding box: max y

R10=Window handle, minus one
(only in Nested Wimp variants from v3.90 onwards)

R12=Value of R2 when registered

On exit
R0 - R1preserved

R3 - R10preserved

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
Entry point is not re-entrant

Use

The rectangle copy filter is called when the Wimp is about to copy a
rectangle across the screen, not exclusively due to Wimp_BlockCopy.
The current and previous graphics cursor positions are describing
the area to be copied, ready for the VDU block copy operation, but
the actual operation has not yet been performed.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs
None

Get Rectangle Filter

On entry
R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R12=Value of R2 when registered

On exit
R0 - R1preserved

R3 - R10preserved

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
Entry point is not re-entrant

Use

The get rectangle filter is called just before the redrawing of a
rectangle begins, before the window background has been filled (if
appropriate), and even before the VDU graphics window has been set
up. This filter is no longer called when it is only the caret which is
being redrawn; the new rectangle filters below never have been.

Note that on entry, R10 is undefined (this may change to match the
other rectangle filters, but don't rely on it).

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs
None

Post-Rectangle Filter

On entry
R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R10=Window handle, minus one
R12=Value of R2 when registered

On exit
R0 - R1preserved

R3 - R10preserved

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy
Entry point is not re-entrant

Use

The post-rectangle filter is called after the window background is
filled as part of a rectangle redraw, i.e. shortly before
Wimp_GetRectangle or Wimp_RedrawWindow (or their internal
equivalents) reset the VDU state and return, unless the call is
returning with "no more to do" status. The filter is linked to the
filling-in of the window background; redraw loops initiated by
Wimp_UpdateWindow never cause this filter to be called, because
they do not cause the window background to be redrawn. However,
the filter is called after a "transparent" window background would
have been filled.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs
None

Post-Icon Filter

On entry
R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R10=Window handle, minus one
R12=Value of R2 when registered

On exit
R0 - R1preserved

R3 - R10preserved

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in svc mode

Re-entrancy

Use

In the past, the rectangle redraw cycle has consisted of the Wimp
filling the background and returning control to the application, which
then draws whatever it wants and calls Wimp_GetRectangle. The
Wimp subsequently draws the icons before moving on to the next
rectangle and filling its background, and so on. This did mean that
applications never got a chance to draw on top of the icons; the post-
icon filter now allows them to.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs
None

References
The Filter Manager

PRM Volume 3, section 56, pp. 303-312 and erratum, Volume 5a,
page 668.

The Window Manager: Wimp_RegisterFilter

PRM Volume 3, section 53, pp. 224-225

Acorn Filter Manager v0.18: Functional Specification

Document reference 1215,102/FS.

Document information
History: Revision Date Author Changes

1116,011/
FS_1

06 Feb 1998 Original Version (not
released)

1116,011/
FS_2

10 Feb 1998 ● HTML version
completed for
publishing on the
Web

1116,011/
FS_3

16 Feb 1998 ● Fixed up the HTML a
bit

● in
Wimp_CreateWindow
the title foreground
colour defaults to 7,
not to 2

- 23 Feb 1998 ● Various HTML
tweaks; no content
change

1215,401/
FS_1

02 Mar 1998 General Release
● Document number

now 1215,401/FS
● Updated history, and

navigation links in
the page footer now
include the
specifications
section.

● no other content
changes

1215,401/
FS_2

08 Apr 1998 ● Added
Wimp_RegisterFilter
details.

● Some missing spaces
added.

● Alphabetic
components of the
hex SWI numbers in
body text capitalised.

● Added References
section.

● Used <acronym>
tag for acronyms.

1215,401/
FS_3

21 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format
● No major changes to

text. Removed the
'Document Status'
section as

information captured
in 'Document
information' section

● Prefixed the Acorn
Functional
Specification
Document Number
to each Issue
revision (where
possible) in original

● Removed links to
external files

● The Filter Entry
Points are now
defined within their
own section, rather
than as part of
Wimp_RegisterFilter

Disclaimer:Originally appearing as 1116,011/FS up to issue 3, this
specification now has a document number of 1215,401/FS for
General Release.
Various authors for original document, including:

● Piers Wombwell
● Kevin Bracey

Later revisions for first formal specification:

● Ben Avison
● Andrew Hodgkinson

CryptRandom

Introduction
CryptRandom is a module for generating cryptographically useful
random bytes under RISC OS. It can use a number of sources to
provide this information to clients needing secure, or high quality
random data.

Overview
Computers are, by their nature, deterministic - so applying the same
sequence of inputs to any program is likely to produce the same
result. This is a bad thing when it comes to cryptography, as if you
use a known sequence to encrypt a data stream, next time you turn
on your machine you'll use the same known sequence, making the
code possible to break. Thus we need a random sequence so that no
pattern can be spotted in it. Basic provides a pseudo-random
sequence, but this is the same every time the machine is turned on,
so is not very good. It is also just a sequence, which will eventually
repeat. True randomness is only possible on a computer by attaching
it to other devices such as a radioactive source - not very practical.

CryptRandom applies another method, which will produce different
values showing to no known pattern, which are different each time
you switch the machine on. This is much less secure than using a true
random source, but better than using a predictable random number
generator like that Basic uses.

The CryptRandom module provides SWI calls which allow access to
random data retrieved from a variety of sources.

Installation

CryptRandom is supplied in an archive containing a !System
directory. It can be installed by decompressing this archive, then
using a !System merge tool - such as that accessible by running
!Boot, or !SysMerge for RISC OS 3.1 machines.

CryptRandom provides a service to clients that require it. Such
applications should load it in the following way:

RMEnsure CryptRandom a.bc RMLoad System:Modules.CryptRand
RMEnsure CryptRandom a.bc Error CryptRandom version a.bc is required

where a.bc is the oldest version supporting the features the
application requires (see the history file). Note that this version
should be at least that of the latest security advisory (if any).

Lineage

CryptRandom is based on code from PuTTY, the Windows SSH client
by Simon Tatham (see
http://www.chiark.greenend.org.uk/~sgtatham/putty/). It consists of a
'pool' of random data, which is 'stirred' every time a byte is
requested, using a complex hashing function to ensure there is no
discernible pattern. The pool is supplied by 'entropy' from various
sources, designed so that they are different every time they are
called. The numerous sources include:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Technical details
● On initialisation of CryptRandom:

● Unique machine ID
● Current WIMP tasks
● Current dynamic areas
● Disc free space
● Disc directory listings
● Previous saved CryptRandom seed

● Every time a byte is requested:

● Real time clock
● System interval timer
● Battery manager data (voltages/temperatures etc)

● Every mouse and key press:

● Press data
● Mouse position
● System timer

Sources are ignored if they don't work (eg a Risc PC doesn't have a
battery manager).

Interrupts are disabled on SWIs as mentioned above - this is to allow
multiple users to access the pool from interrupt routines (events/
callbacks etc) - this may be subject to change in future versions.

The seed is saved over sessions to preserve the entropy - it'll first
look for CryptRandom$SeedFile, and if this is set use this as the seed
location, otherwise try Choices:Crypto.CryptRand.Seed or if
Choices$Path is unset use <Wimp$ScrapDir>.Seed.

I don't claim to prove the security of the hashing process, so I can't
guarantee the randomness of the output, but it appears to be white
noise - if in doubt, do your own tests. The hash is based on SHA-1,
which is believed by the computing community to be secure. Any
comments in this respect would be welcomed.

contact

Newer versions (if any) of this software may be found at
http://www.markettos.org.uk/ or else by contacting the author at:
email theo@markettos.org.uk

Theo Markettos
5 Willow Close
Liphook

Hants
GU30 7HX
UK

I'd also welcome any bug reports or fixes, or any other comments.

Sources

Sources can be obtained from http://www.markettos.org.uk/

To build them you'll need:

● Acorn C v4 or v5 (the Makefiles are designed for Castle's
32bit C compiler, so may need modification otherwise)

● SDLS if have Acorn C v4 http://www.excessus.demon.co.uk/
acorn/ssr/

● Syslog (optional) http://www.drobe.co.uk/archives/
freenet.barnet.ac.uk/Acorn/freenet/j.ribbens/syslog-0.17.spk
(note that Syslog 0.19 appears to have bugs in it which may
cause problems)

● Makatic (optional) http://www.mirror.ac.uk/collections/
hensa-micros/local/riscos/projects/makatic.zip

● OSLib http://ro-oslib.sourceforge.net/

SWIs

CryptRandom_Byte
(SWI &51980)

Reads a byte from the random pool

On entry
None

On exit
R0=Random byte value (0-255)

Interrupts
Interrupts are disabled
Fast interrupts are undefined

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI reads a byte from the pool, and subsequently stirs it.

Related SWIs
SWI CryptRandom_Block (on page 297)
SWI CryptRandom_Word (on page 298)

CryptRandom_Stir
(SWI &51981)

Stirs the random pool

On entry
None

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are undefined

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI stirs the random pool - this should not be necessary in
normal use

Related SWIs
SWI CryptRandom_AddNoise (on page 296)

CryptRandom_AddNoise
(SWI &51982)

Introduce data to the random pool

On entry
R0=Pointer to block of noise data to add
R1=Size of data in the block

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are undefined

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

Adds a block of noise to the random pool - shouldn't be necessary in
normal use.

Related SWIs
SWI CryptRandom_Stir (on page 295)

CryptRandom_Block
(SWI &51983)

Reads multiple bytes from the random pool

On entry
R0=Pointer to block to fill with random bytes
R1=Number of bytes to fill into the buffer

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are undefined

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

Generates a block of random data. Note this is called with interrupts
off, so large blocks may cause your machine to hang while they are
generated. Note also the entropy generated by this call is likely to be
less than multiple SWI CryptRandom_Byte (on page 294) calls (since
times/battery status etc are likely to be the same during this call, but
not if _Byte calls are spread at different points in your program), so
randomness may suffer as a result.

Related SWIs
SWI CryptRandom_Byte (on page 294)
SWI CryptRandom_Word (on page 298)

CryptRandom_Word
(SWI &51984)

Reads a 32-bit word from the random pool

On entry
None

On exit
R0=Random 32-bit word from the pool

Interrupts
Interrupts are disabled
Fast interrupts are undefined

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This reads a 4 bytes from the pool, and assembles them into a 32-bit
word.

Related SWIs
SWI CryptRandom_Byte (on page 294)
SWI CryptRandom_Block (on page 297)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

Theo Markettos <theo@markettos.org.>
History: Revision Date Author Changes

0.13 Theo
Markettos

Text documentation
● Original documentation

for the CryptRandom
module.

0.13a Gerph PRM-in-XML
documentation
● Documentation re-

written as PRM-in-XML.
Disclaimer:Copyright 2000-1 Theo Markettos.

Portions copyright Simon Tatham, Gary S. Brown and Eric
Young
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions of
the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL SIMON TATHAM OR THEO MARKETTOS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

mailto:gerph@gerph.org
mailto:theo@markettos.org.

Filing system drive information

Introduction
Filing systems may be based on devices which are able to be changed
dynamically in use ('hot pluggable'). These devices may issue an
UpCall to indicate that a device is now available, or has become
unavailable.

Technical details
Two UpCalls are used to indicate that a filing system path residing on
a device is now available, or has been made unavailable:

● UpCall_DriveAdded (on page 302)
● UpCall_DriveRemoved (on page 304)

Not all devices and filing systems issue these UpCalls, so clients
should treat them as advisory.

UpCalls

UpCall_DriveAdded
(UpCall &18)

A filing system may be available on a given path.

On entry
R0=24 (&18)
R1=Pointer to a zero-terminated filing system path prefix for a new

device

On exit
R0 - R1preserved

Use

This UpCall is issued by a device when filing system path has been
made available. This may happen due to a new disc being inserted, a
device being formatted, or a remote system becoming available.

At the time that the UpCall is issued the filing system path should be
accessible through normal filing system operations. The nature of hot
pluggable systems mean that by the time this call is received, the
device may have already become unavailable, or the filing system on
the device may not be present.

The filing system path takes the form of a filing system name, a disc
name specification and an optional path specification. For some
devices, the disc name may be a number, indicating that no name has
been determined yet, or that there is no name available. For others, a
name may be given. It is recommended that the path be
canonicalised to obtain the correct name of the device.

Example prefix names:

● ADFS::4
● SDFS::0
● Share::Storage
● HostFS::Host.$.Mountpoint

This UpCall must not be claimed.

Related upcalls
UpCall_DriveRemoved (on page 304)

UpCall_DriveRemoved
(UpCall &19)

A filing system is no longer available on a given path.

On entry
R0=25 (&19)
R1=Pointer to a zero-terminated filing system path prefix for a new

device

On exit
R0 - R1preserved

Use

This UpCall is issued by a device when filing system path is no longer
available. This may happen due to a disc being removed, a device
being formatted, or a remote system becoming unavailable.

At the time that the UpCall is issued the filing system path will not be
accessible and no further information is available. As such, clients
should attempt to track the paths to which the drive may refer. In
particular, devices may refer to drive numbers, without any name
being canonicalised, and clients may therefore need to track which
drive numbers refer to which canonicalised disc names.

This UpCall must not be claimed.

Related upcalls
UpCall_DriveAdded (on page 302)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 23 Dev 2021 Gerph Initial version

● Created from
examples of sources
using it.

Related:https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/
SDFS/SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/
ADFS/ADFSFiler/-/blob/master/s/ADFSFiler#L1055

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/SDFS/SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/SDFS/SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/ADFS/ADFSFiler/-/blob/master/s/ADFSFiler#L1055
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/ADFS/ADFSFiler/-/blob/master/s/ADFSFiler#L1055

Pointer devices (supplement for
Pyromaniac)

Introduction and overview
Pointer devices (usually mice) have been extended to provide
additional functionality found in more modern devices such as
additional buttons and an alternate positioning device (usually
provided as a single or dual 'scroll wheel'). Similarly, devices which
provide absolute positioning such as tablets and touchscreens are
now capable of being serviced by the pointer system. In order to
provide these extra functions, a revised form of the PointerV
interface has been used.

This builds upon the interface declared in PRM 5a, but moves some
functions away from the driver.

The OSPointer module controls pointer movement and will handle
these extended functions. Previously the Kernel provided
management of the pointer. These functions are now provided
entirely by the OSPointer module.

The operation is split into two major parts:

● How drivers provide information to the OSPointer module
about the new features

● How programmers access this information

In addition, a separate document details the operation of the
WindowScroll module which provides functionality for desktop tasks.

Technical details
PointerV

PointerV has been extended with a new reason codes - PointerV 4 (on
page 315) - in RISC OS Select to support the use of alternative
pointing device values. Specifically this allows for the scroll wheel
provided by modern mice, and for tablet or touch screen devices.

Driver updates in RISC OS Select

Quadrature mouse driver

The quadrature mouse driver ('Mouse' module) has been updated to
provide an additional device type for Stuart Tyrrell's PS2 mouse
interface. This interface functions in 'driver' mode to provide
alternate device support for single axis devices (primarily vertical
scroll wheels).

Dual axis movement is presently not supported.

PS 2 mouse driver

The PS 2 mouse driver ('PS2Driver' module) has been updated to
provide support for 'Intellimouse' and 'Intellimouse Pro' devices.
These are more commonly known as 'scroll mice' or '5 button mice'
respectively.

Dual axis movement is presently not supported.

Touch screen or tablet drivers

No touch screen or tablet driver is supplied with the current version
of RISC OS. Developers wishing to implement such a driver should
contact their supplier.

OSPointer handling of extended requests

The OSPointer module will issue the Extended request (on page 315)
for versions of the OS which support these new features (RISC OS
4.32 and later). If the call returns unclaimed (R0 having not been set
to -1 or 5), the module will issue PointerV 1 (Request) and defer
button handling to the driver.

If the call is claimed, the OSPointer module will issue KeyV events for
the buttons which have been pressed and apply the change or
absolute position to the pointer.

The absolute positioning interface is available from version 0.25 of

the OSPointer module.

Additional buttons

In addition to the base 3 buttons up to 8 buttons are supported by the
OSPointer module. 5 button mice are common and the PS 2 driver
has been updated to support such devices.

The additional buttons are reported through the extended KeyV
interface for mouse buttons. These buttons are detected by the
OSPointer module and returned as useful values through the
standard interfaces.

Programmers interface

In order obtain position details for the alternate scrolling device, a
new reason has been added, SWI OS_Pointer 2 (on page 311).

SWI calls

OS_Mouse
(SWI &1C)

Read current mouse state

On entry
None

On exit
R0=X position of the pointer
R1=Y position of the pointer
R2=mouse buttons:

Bit(s) Meaning
0 right button
1 middle button
2 left button
3 fourth button
4 fifth button
5 sixth button
6 seventh button
7 eigth button

8-31 Reserved, must be zero
R3=time of button chan

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI returns the pointer position from the mouse buffer if events
are buffered or the current position if the buffer is empty. It has been
extended from the interface described in PRM 1-699 by adding
additional buttons.

Related SWIs
SWI Pointer 2 (on page 0)

Related vectors
PointerV 4 (on page 315)

OS_Pointer 2
ReadAltPosition

(SWI &64)
Read alternate position

On entry
R0=2 (reason code)
R1=Register details

On exit
R0=signed 32bit X position of the alternate device
R1=signed 32bit Y position of the alternate device

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI returns the position of the alternate positioning device. The
device position is unbounded and thus may wrap when the limits of
the 32bit representation are reached. Should the device position
wrap past a limit, it will be reset to zero. Thus, should the position
exceed either &7FFFFFFF or -&80000000 it will be reset. Clients
should be aware of this and handle such conditions appropriately.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.48
Supported

Related SWIs
SWI Mouse (on page 0)

Related vectors
PointerV 4 (on page 315)
EventV 21,4 (on page 313)

Software vectors

Vector EventV 21,4
ExpansionMouseScroll

(Vector &10)
Scroll event has been triggered by the user

On entry
R0=reason code (21)
R1=subreason code (4)
R2=signed 32bit change in X position
R3=signed 32bit change in Y position

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This event is generated by the OSPointer module when a scroll event
is triggered by the user. Clients which track mouse movements
should monitor this event. This allows clients to monitor either
changes or the absolute position should they wish to do so. If clients
wish to cause the scroll event to be ignored they should claim the
event.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.48
Supported

Related SWIs
SWI Mouse (on page 0)
SWI Pointer 2 (on page 0)

Related vectors
PointerV 4 (on page 315)

Vector PointerV 4
ExtendedRequest

(Vector &38)
Request information about the current pointing device position

On entry
R0=reason code (4)
R1=pointer type

On exit
R0=Request state:

Value Meaning
-1 Extended request claimed for this pointer type, for

relative positioning device
4 Extended request not understood
5 Extended request claimed for this pointer type, for

absolute positioning device
R1preserved
R2=relative device: signed 32 bit change in X position

absolute device: fractional 16 bit X position

R3=relative device: signed 32 bit change in Y position

absolute device: fractional 16 bit Y position

R4=relative device: signed 32 bit change in X position of alternate
device

absolute device: must be 0

R5=relative device: signed 32 bit change in Y position of alternate
device

absolute device: must be 0

R6=Mouse buttons:

Bit(s) Meaning
0 Right button
1 Middle button
2 Left button

3-7 May be provided at the discretion of driver
8-31 Must be 0

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector reason is called by the OSPointer module to determine
the position of the pointing device in a similar manner to that of
PointerV 1 (Request). Drivers should check the pointer type and if it
matches the device being provided details should be returned and
the vector claimed. If the pointer type does not match the vector
should be passed on.

Unlike PointerV 1 (Request), drivers should not issue KeyV requests
for the mouse buttons that they provide. This task will be performed
by the OSPointer module based on the button state returned. Drivers
wishing to support both the old and new protocol may share code
between PointerV 1 (Request) and PointerV 2 (Result) but they must
ensure that registers are not corrupted unduly and that the different
mouse button processing is performed based on the request type.

Relative devices and absolute devices respond to the same request
but provide slightly different responses. The value returned in R0 is
used to determine the type of response made.

Absolute devices return a 16 bit value (0-65535) which determines
the position of the event. The driver may determine how the event is
to be processed and indicate an equivalent button state for the event.
This allows devices to provide positioning within the absolute device
as distinct from button click events. For absolute devices the
meaning of R4 and R5 is undefined and the registers must be
returned as 0 for future compatibility. Internally, the absolute
position request is scaled by the screen size and converted into a
relative position which is applied to the mouse position with an
equivalent of a mouse step of 1.

For scroll wheel-like alternate devices the +ve Y direction should be
that for pushing the wheel 'away' from the user.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related SWIs
SWI Mouse (on page 0)
SWI Pointer 2 (on page 0)

Related vectors
EventV 21,4 (on page 313)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 17 May 2023 Gerph Initial version

● Created from Select
technical
documentation.

Related:http://www.riscos.com/support/developers/riscos6/input/
pointerdevices.html

Disclaimer:© Gerph, 2023.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/input/pointerdevices.html
http://www.riscos.com/support/developers/riscos6/input/pointerdevices.html

Icon bar file drags

Introduction
For RISC OS 4 the behaviour of the iconbar device icons was updated
to allow files dropped on them to be saed to a specified directory for
the device. Usually this would be the root of the device, but is
configurable. This avoids the user opening a save box but being
unable to drop the file anywhere.

Technical details
File drags from save boxes to icon bar Filer icons will cause the file
to be saved in a specified directory of the device, most sensibly the
root. The Filer will then open the directory viewer. In combination
with the autofronting icon bar in the new window manager, the user
will now never face the situation of having a save box open, but
nowhere to drag the file to.

For consistency, drags from Filer windows to icon bar icons will
cause files to be copied/moved to the directory. As with saves, the
Filer will open the directory viewer.

The directory which a file is saved/copied to will be specified by a
system variable and will default to the root directory. The system
variable will be of the form <FSName>Filer$DefaultPath. For
example ADFSFiler$DefaultPath or NetFiler$DefaultPath.

Icon bar save protocol

In order for files to be saved to icon bar device icons, the FS Filers
will now be required to receive the WIMP message
Message_DataSave. They will reply with Message_DataSaveAck (on
page 0) specifying a pathname for the saved file. They will also
receive Message_DataLoad on completion of the save and use this as
the trigger for opening the Filer window of the directory the file has
been saved in.

Icon bar copy protocol

For file copies to work, a different system is necessary. Without
modification, when a file is dragged from a Filer viewer to a device
icon, the Filer will send a Message_DataLoad to the FS Filer
responsible for the device. All the FS filers will be changed to receive
this message and then to reply with a new message,
Message_FilerDevicePath (on page 323).

System variables

FSFiler$DefaultPath
Default path for files dropped on the filer icon

Use

The iconbar device filers should use these variables - substituting
their own filing system name in the name - to decide where to save
files when the user drops a file on their iconbar icon.

Related messages
Message_FilerDevicePath (on page 323)

Wimp messages

Message_FilerDevicePath
(&408)

Request to Filer to copy a file to a location

Message
Offset Contents
R1+20 zero-terminated path name to copy to

Source
Icon bar Filer tasks

Destination
Filer

Delivery
Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This message is sent by icon bar filer tasks to the Filer in response to
a Message_DataLoad to request that it copy the file to a new location.

The path that should be copied to is formed as
<DevicePath>.<path>.

Where <DevicePath> is the root directory of the device eg.
ADFS::HardDisc4.$, and <path> is the expansion of
FSFiler$DefaultPath. If the variable is unset, the root of the device
should be used. By default, these system variables will be unset but
will be left to more experienced users to set, as needed.

An example may help to clarify. If the user has set
ADFSFiler$DefaultPath to be Files.Junk and they drag a file from
a Filer viewer to the HardDisc4 icon, then the ADFS Filer should
return a Message_FilerDevicePath, with the path name
ADFS::HardDisc4.$.Files.Junk and the Filer will copy the file into
that directory (if it exists).

The FS Filer will also prompt the Filer to open the directory viewer
for the directory who's path it has just specified, using
Message_FilerOpenDir.

If the path name consists of no characters and then the terminator, it
is assumed that the root directory is read only.
⚠ FIXME: What does this mean? Does it mean that the variable can
be set to an empty string to not perform the save ?

Related system variables
FSFiler$DefaultPath (on page 322)

Related messages
Message_FilerOpenDir

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
A-H 28 Jan 1988 RML Initial version
2 24 Jan 2022 Gerph Conversion to PRM-in-

XML
● Created from

original RISC OS 4
documentation

Related:None
Disclaimer:© Gerph, 2022.

mailto:gerph@gerph.org

Icon bordering filters

Introduction
The WindowManager has, since RISC OS 3, been able to render icons
with styled borders. In RISC OS 3.0 this was through the 'Z'
validation, and with RISC OS 3.1 this settled on the 'R' validation to
select the button style. The forms of borders that the
WindowManager renders were, at that time, fixed to be 3D-effect
rectangular regions. The WindowManager and FilterManager have
been updated to provide the ability to offload the rendering of icon
borders to third party extensions through Icon border filters.

Icon border filters are able to change the presentation of the icons
with styled borders through extension modules. A 'plain' rendering,
which matches the original style used by RISC OS 3 onwards, is
supplied in the form of the IconBorderPlain. As the first registrant,
this is used as a fallback when no other custom form of buttons is
available. This results in an experience for users which is unchanged
until another customised module is loaded (or activated).

Customisation of the icon borders is intended to allow greater
degrees of customisation for the user, and easier development of
'themes' which group many stylistic elements into a cohesive look
and feel. RISC OS Select is supplied with a customisable border filter
which allows for rounded buttons, and some variation on the
standard rectangular button.

Icon border filtering is available in RISC OS Select versions of the
WindowManager from 4.64 onwards.

Overview
Icon border filters are provided by relocatable modules, registered
through SWI Filter_RegisterIconBorderFilter (on page 334). The
WindowManager will call the FilterManager to dispatch requests to
draw icon borders to the registered filters. The WindowManager does
not contain any code to render the styled borders - and if no filters
are registered which can provide the rendering of the requested
icons, there will be no border drawn.

Icon border filters are dispatched in most recent registration order.
This is the same behaviour as other filters within FilterManager, and
of the software vectors. This means that filters may layer their
behaviour upon one another if necessary.

Icon border filters can:

● Change the outer border style
● Change the inner fill style
● Change the colouring of borders and filled regions
● Change the position of text within the border
● Look different when selected
● Look different when the mouse is over them

Technical details
Registration

Icon border filters may be registered by modules when they start,
using SWI Filter_RegisterIconBorderFilter (on page 334). When they
are finalised they must de-register themselves with SWI
Filter_DeRegisterIconBorderFilter (on page 336).

Modules should be aware of the FilterManager's service calls. They
should register themselves if they receive
Service_FilterManagerInstalled, and note that they are not registered
on receipt of Service_FilterManagerDying

Rendering icons

When an icon with a styled border needs to be redrawn by the
Window Manager the following steps are followed:

1. Call IconBorder_State (on page 345) to determine whether a
full redraw is required due to the shape changing.
If it does require a full redraw, redraw all the content from the
window background up to the icon.

2. Call IconBorder_Colour (on page 343) to determine the colours
to use for the icon, supplying the initial colours given by the
icon itself.

3. Apply any additional changes to the colour of the icon
indicated by its validation:

● Apply any tinting validation
● Apply selected icon highlighting
● Apply shading of the colours

4. If the icon is filled, call IconBorder_Fill (on page 339) to render
the background of the icon.

5. Call IconBorder_Draw (on page 337) to render the border of
the icon.

6. Call IconBorder_Size (on page 341) to determine the size to set
the graphics window to, to render the text and/or sprite within
the icon.

Customisable features

Icon borders can customise some of the rendering features of the
icon, but are constrained by the existing use of the icons within
applications, and the expectations of users. A given filter can change
just as much of an icon's rendering as it wants, although if this
matches up poorly with other filters, or the applications, it may give

an unappealing look.

In general, there are a few features of icons that icon border filters
may wish to check before attempting to render icons.

● Filled flag: Some icons are commonly filled, for example
buttons (type 5 and 6) and writable boxes (type 7).
Recognising unfilled forms of these icons and rejecting
them may prevent unexpected effects.

● Sprite icons: Any of the styled borders which use sprites are
likely to have undesireable effects if the icon border
deviates far from the expected 3D effect.

● Long text: The 'L' validation to render long text inside the
icon may not wrap correctly if the borders of the icon
change significantly.

● Oversize icons: For stylistic reasons, styled borders may
have been used to create tall regions, or vertical dividers
with a very thing icon. Checking the size of the icon is
suitable and rejecting the icon if it is unsuitable may ensure
that the intended effect is retained for the user.

● Inactive buttons: The button type borders (type 5 and 6)
may have been used in cases where the icon's button type is
set to a type which does not react to the user's clicks. It
may be undesireable to style such buttons as if they are
pressable.

Border colouring

Border colours may be changed by the filter. This might be as simple
as changing the strength of the 3D effect, or forcing the colours to
match a different style. The colouring of the border can be modified
at will by the filter, but this may need to be done with care to avoid
explicit choices by application authors being overridden in ways that
produce unusable interfaces.

For example, forcing the border of all icons to be solid black with no
3D effect would look fine within a regular application, but any
application which used a black background with white text would
find that the border became indistinguishable from the filled
background of the icon. Filters should either declare that they are
not suitable for use with applications which do not follow its
expectations, or should attempt to cater for non-standard forms. This
might mean disabling themselves when colours are not as expected,
or providing variations which retain contrast.

Restricting effects to just where the button borders (type 5 and 6)
may avoid making too great a set of changes to the buttons.

Fill colouring

The background fill colour can equally be changed as freely, but has a
much greater impact on the user's experience as most button icons
(type 5 and 6) will be filled. Informational fields which are shown as
sunk borders (type 2) are commonly filled, but that form of field is
also commonly used as a colour selector region.

Bordering

Although the border is expected by designers and users to be a
rectangular border, equally surrounding the text of the icon, the icon
border author will find that there is flexibility in how the border is
drawn.

The most obvious change that can be made is to use non-rectangular
borders. The round borders supplied with RISC OS Select through
the IconBorderReound module show that with some degree of
freedom for regular button icons (type 5 and 6) the corners can be
varied. Any changes to the rendered border width must also be
reflected when the size of the text is calculated.

The border shape can be different for a selected and unselected
border. This can have useful effects for pressing buttons. For
example, when pressed, the button might bulge outwards (although it
must still not exceed the bounds given by the icon). If the rendered
shape of the border changes when pressed, the border filter must
return with bit 0 set in the filter flags when IconBorder_State (on
page 345) is called.

The border is not required to use the colours supplied to it. Whilst
using other colours will mean that layered filters will be unable to
change the style of a button, it may allow certain styles which are
otherwise impossible. For example, an default button might have a
more stylised shape which uses more colours than the single 'well
colour'. Used with care, this may make for an interesting effect.

Generally it is best to keep to colours based on those supplied. For
example, the IconBorderRound implementation allows a graduated
fill to be used to make the button appear more rounded. This uses a
colour slightly lighter and slightly darker than the supplied colour,
with the horizontal mid-line being the colour supplied.

Filling

The fill operation is performed before the text is rendered, and
should fill the region within the bordered itself. Not all icons are
filled, and those that are not filled will never receive the call to their
IconBorder_Fill (on page 339) entry point.

As with the border, filling is not required to use the colours supplied
to it. The problems of selecting different colours for the fill are worse
than that of the border as the text must be visible on top of whatever
colour is filled.

Generally it is best to keep to colours based on those supplied. For
example, the IconBorderRound implementation allows a graduated
fill to be used to make the button appear more rounded. This uses a
colour slightly lighter and slightly darker than the supplied colour,
with the horizontal mid-line being the colour supplied.

Sizing the text

Although the expectation is that the icon will have a symmetric
border, this is not required. Varying degrees of success have been
found with creating icon borders for buttons which have one size
larger than the other. When the border has different sizes, the size
which the text can be rendered into must be returned correctly when
the IconBorder_Size (on page 341) entry point is called.

The default behaviour when buttons (type 5 and 6) are selected is to
change the border rendering. However, for some effects, moving the
text to one side when selected may be a useful effect. This can be
acheived by changing the size of the region which the text can be
rendered into. As most bordered text is centred horizontally, this will
generally have the effect of moving the text by half the distance that
the border was increased.

Highlighting

Where supported by the WindowManager, the icon borders may be
aware of the pointer being placed over the bordered icon. This is
indicated by bit 23 (the 'deleted' bit) being set in the icon flags. The
highlighting of the icons will only happen when the IconBorder_State
(on page 345) call returns with bit 1 set, indicating that the icon
supports being highlighted.

Highlighting the icon may be as simple as changing the colours.
However, it may mean a completely different border shape, or even a
different text position.

Common parameters

The entry points have some common parameters passed through the
registers on entry.

Icon flags word

The icon flags word supplied to the border rendering entry points is

the same as that used in the icon block, with a small exception. The
'icon is deleted' bit (bit number 23) is repurposed to indicate that the
pointer is currently over the icon. This bit is only set when the entry
point has declared that the filter is able to change when the pointer is
over the icon.

The inverted and shaded bits in the flags word will be set according
to the original icon's state, and may change the rendering of the
border. The colours supplied to the border rendering entry points will
have been updated by the WindowManager to reflect the icon's state
when the IconBorder_Draw (on page 337) and IconBorder_Fill (on
page 339) entry points are called.

Icon border rendering box

The icon rendering box is supplied as a parameter to the border entry
points to describe the region the icon border should cover. It contains
8 words which describe the box, together with the size of the pixels
on the screen. The coordinates are in half-open format (x0 and x1 are
inclusive coordinates, and x1 and y1 are exclusive coordinates).

Offset Contents
+0 x0 coordinate in OS units
+4 y0 coordinate in OS units
+8 x1 coordinate in OS units
+12 y1 coordinate in OS units
+16 x pixel size in OS units
+20 y pixel size in OS units
+24 x pixel size in OS units - 1
+28 y pixel size in OS units - 1

Icon border colour table

The colour table is supplied as a parameter to the border entry points
to describe the colours to be used for the icon border regions. The
colours are supplied as 32bit palette entries in the form
&BBGGRRxx.

Offset Contents
+0 Foreground colour
+4 Background colour
+8 Selected background colour (for border type 5 and 6)
+12 Well colour (for border type 6)
+16 'Face' colour (usually the light highlight colour)
+20 'Opposite' colour (usually the dark highlight colour)

Icon rendering flags

The icon rendering flags passed to the icon border filter allow the
WindowManager to control additional features of the rendering. This
allows the icon to be rendered consistent with configuration of the
WindowManager by honouring the configuration to dither colours, or
sprites.

Bit(s) Meaning
0 Dither background colours
1 Dither deep sprites
2 Reserved, must be zero

Configuration

Modules which provide icon border filters should include *Commands
to allow them to be activated and deactivated. They may also provide
the ability to configure their capabilities. It is strongly recommended
that modules initialise in their disabled state. This will allow users to
load multiple filter modules and select which are active.

SWI calls

Filter_RegisterIconBorderFilter
(SWI &4264C)

Register a filter to handle the rendering of icon borders

On entry
R0=Pointer to zero-terminated string describing the filter (must be

static for the lifetime of the filter)
R1=Pointer to entry point for the filter code
R2=R12 value to supply to the filter code
R3=Mask of border types supported by this filter

Bit(s) Meaning
0 Simple bordered icons (not used in current versions)
1 R1 border supported (Raised region)
2 R2 border supported (Lowered region)
3 R3 border supported (Ridge group)
4 R4 border supported (Channel group)
5 R5 border supported (Action button)
6 R6 border supported (Default button)
7 R7 border supported (Writable box)

8-31 Reserved, must be zero

On exit
R0 - R9preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

The Filter_RegisterIconBorderFilter SWI is used to register a new
filter with the FilterManager which is capable of providing rendering
of the borders on icons. The new filter code is registered for only
certain border types through the use of mask bits. The filter will only
be called for those button types which have been registered.

Although the filter may report an interest in a given set of borders, it
is not required to actually service any of the requests. For example, a
filter might only take effect for a particular size of border, and for all
others it can pass on the call to other filters.

Related SWIs
SWI Filter_DeRegisterIconBorderFilter (on page 336)

Filter_DeRegisterIconBorderFilter
(SWI &4264D)

De-register a filter from handling the rendering of icon borders

On entry
R0=Pointer to zero-terminated string describing the filter (should be

the same pointer as used on registration)
R1=Pointer to entry point for the filter code
R2=R12 value to supply to the filter code

On exit
R0 - R9preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

The Filter_DeRegisterIconBorderFilter SWI is used to remove the
registration of border rendering code. The values supplied in R0-R2
must match those that were supplied on registration.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Entry points

IconBorder_Draw
(0)

Draw an icon border on behalf of the WindowManager

On entry
R0=Border type (0-7) of the bordered icon
R1=Icon flags word (on page 331) of the bordered icon
R2=Pointer to Icon border rendering box (on page 332) for the icon

being drawn
R3=Pointer to Icon border colour table (on page 332) for the icon

being rendered
R4=Icon rendering flags (on page 333) for the icon
R9=0 (reason code)

On exit
R9=-1 if handled, or preserved to pass to the next filter

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render
the border of an icon. The border type will have been filtered by the
mask supplied on registration. Filters may decide to handle the
border returning with R9 set to -1, or pass it on to other border filters
by preserving R9.

The filter may update the icon border rendering box if it is passing on
the call. This can be used if the border wishes to handle part of the
outer rendering of the border before the next filter handles it.

The filter may use any of the parameters to decide whether it wishes
to handle rendering of the border. For example, a filter may only
handle certain sizes of boxes, or only icons which have a particular
combination of flags set. Care must be taken to ensure that this
presents a consistent experience to the user, as icons which change
in style may be confusing.

The filter should draw a suitable border within the bounds of the icon
border rendering box, and reduce the bounding box size accordingly.
To be consistent with the user's configuration, the flags in R4 should
be used to decide whether dithering should be used to draw the
border.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Related entry points
IconBorder_Fill (on page 339)
IconBorder_Colour (on page 343)
IconBorder_Size (on page 341)
IconBorder_State (on page 345)

IconBorder_Fill
(1)

Fill an icon border on behalf of the WindowManager

On entry
R0=Border type (0-7) of the bordered icon
R1=Icon flags word (on page 331) of the bordered icon
R2=Pointer to Icon border rendering box (on page 332) for the icon

being drawn
R3=Pointer to Icon border colour table (on page 332) for the icon

being rendered
R4=Icon rendering flags (on page 333) for the icon
R9=1 (reason code)

On exit
R9=-1 if handled, or preserved to pass to the next filter

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render
the fill of a bordered icon. The border type will have been filtered by
the mask supplied on registration. Filters may decide to handle the
border returning with R9 set to -1, or pass it on to other border filters
by preserving R9.

The filter may use any of the parameters to decide whether it wishes
to handle rendering of the border. Usually this is the same criteria
used to decide whether icon should be handled in the
IconBorder_Draw (on page 337) entry point. For example, a filter may
only handle certain sizes of boxes, or only icons which have a
particular combination of flags set. Care must be taken to ensure that

this presents a consistent experience to the user, as icons which
change in style may be confusing.

The filter should fill the region not covered by the border within the
bounds of the icon border rendering box. The bounding box supplied
will be that of the icon itself. The filter will only be called icon flag bit
is set in the icon flags word which indicates that the icon is filled. To
be consistent with the user's configuration, the flags in R4 should be
used to decide whether dithering should be used to fill the icon.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Related entry points
IconBorder_Draw (on page 337)
IconBorder_Colour (on page 343)
IconBorder_Size (on page 341)
IconBorder_State (on page 345)

IconBorder_Size
(2)

Return the size available for text after rendering the icon border

On entry
R0=Border type (0-7) of the bordered icon
R1=Icon flags word (on page 331) of the bordered icon
R2=Pointer to Icon border rendering box (on page 332) for the icon

being drawn
R9=2 (reason code)

On exit
R9=-1 if handled, or preserved to pass to the next filter

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render
the text of a bordered icon. The text within an icon will be bounded
by the edges of the border. In order that this text be clipped to those
edges, this entry point must reduce the size of the icon border
reendering box in R2 by the space covered by the border. The border
type will have been filtered by the mask supplied on registration.
Filters may decide to handle the border returning with R9 set to -1,
or pass it on to other border filters by preserving R9.

The filter may use any of the parameters to decide whether it wishes
to handle this border. Usually this is the same criteria used to decide
whether icon should be handled in the IconBorder_Draw (on page
337) entry point. For example, a filter may only handle certain sizes
of boxes, or only icons which have a particular combination of flags
set. Care must be taken to ensure that this presents a consistent

experience to the user, as icons which change in style may be
confusing.

The filter should increase the x0 and y0 values, and decrease the x1
and y1 values in the bounding box to reflect the region that the text
of the icon may use.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Related entry points
IconBorder_Draw (on page 337)
IconBorder_Fill (on page 339)
IconBorder_Colour (on page 343)
IconBorder_State (on page 345)

IconBorder_Colour
(4)

Update the colours for an icon border on behalf of the
WindowManager

On entry
R0=Border type (0-7) of the bordered icon
R1=Icon flags word (on page 331) of the bordered icon
R2=Pointer to Icon border rendering box (on page 332) for the icon

being drawn
R3=Pointer to Icon border colour table (on page 332) for the icon

being rendered
R9=4 (reason code)

On exit
R9=-1 if handled, or preserved to pass to the next filter

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is not re-entrant

Use

This entry point is called when the WindowManager is about to
render a bordered icon, to give the border rendering filters an
opportunity to override the icon's own colours. The border type will
have been filtered by the mask supplied on registration. Filters may
decide to handle the border colours returning with R9 set to -1, or
pass it on to other border filters by preserving R9.

The filter may use any of the parameters to decide whether it wishes
to handle rendering of the border. Usually this is the same criteria
used to decide whether icon should be handled in the
IconBorder_Draw (on page 337) entry point. For example, a filter may
only handle certain sizes of boxes, or only icons which have a

particular combination of flags set. Care must be taken to ensure that
this presents a consistent experience to the user, as icons which
change in style may be confusing.

The filter should update the values in the icon border colour table in
R3 if it wishes to override the colours that the icon has selected. The
colours in the table have not yet been updated to invert, shade, tint
or apply other colour effects to the icon. As such, the colours chosen
here are the base colours. After this entry point has returned, the
colours will be updated by the WindowManager to reflect the effects
that the icon requests.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Related entry points
IconBorder_Draw (on page 337)
IconBorder_Fill (on page 339)
IconBorder_Size (on page 341)
IconBorder_State (on page 345)

IconBorder_State
(5)

Get information about the type of icon border filter

On entry
R0=Border type (0-7) of the bordered icon
R1=Icon flags word (on page 331) of the bordered icon
R2=Pointer to Icon border rendering box (on page 332) for the icon

being drawn
R3=Filter flags word

Bit(s) Meaning
0 The border changes in shape, so must be redrawn

completely on all state transitions
1 The border has a different style when the pointer is

over it (the border is 'highlightable')
2 Reserved, must be zero

R9=5 (reason code)

On exit
R3=Filter flags word updated with this filter's behaviour for the icon
R9=-1 if handled, or preserved to pass to the next filter

Interrupts
Interrupts are enabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is not re-entrant

Use

This entry point is called when the WindowManager needs to know
about the filter's behaviour with the icon. The border type will have
been filtered by the mask supplied on registration. Filters may decide
to handle the border colours returning with R9 set to -1, or pass it on
to other border filters by preserving R9.

The filter may use any of the parameters to decide whether it wishes
to handle rendering of the border. Usually this is the same criteria
used to decide whether icon should be handled in the
IconBorder_Draw (on page 337) entry point. For example, a filter may
only handle certain sizes of boxes, or only icons which have a
particular combination of flags set. Care must be taken to ensure that
this presents a consistent experience to the user, as icons which
change in style may be confusing.

The entry point is used to decide whether to redraw it fully from the
background when a state change happens, or if the icon needs to be
drawn at all as the pointer moves over it. The filter should update the
flags by OR-ing any new flags into the supplied filter flags word and
returning the new value in R3.

Shape changes

If the rendered border changes shape when there are state
transitions, then bit 0 should be set on return. This might happen if
the icon had rounded edges normally and square edges when
selected, or if the outer edges were not drawn in any colour unless
the pointer was over the icon.

Highlightable borders

If the rendered border provides a form of highlighting when the
pointer is over the icon, then bit 1 should be set on return. The
highlighting will only be performed on border types 5 and 6.

Related SWIs
SWI Filter_RegisterIconBorderFilter (on page 334)

Related entry points
IconBorder_Draw (on page 337)
IconBorder_Fill (on page 339)
IconBorder_Colour (on page 343)
IconBorder_Size (on page 341)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 04 Aug 2021 Gerph Initial version

● Created the
documentation from
implementation
details, as original
documentation has
been lost.

Related:https://github.com/gerph/iconborders-example
Disclaimer:© Gerph, 2002-2021.

mailto:gerph@gerph.org
https://github.com/gerph/iconborders-example

Iconbar priorities

Introduction
Iconbar priorities have been vague at best, with some usages being
declared to be the 'easiest way to do things'. In addition to this, some
entities such as ADFSFiler have used incorrect iconbar priorities by
accident. This particular case means that Floppy discs do not appear
where they are documented to appear in the PRMs. Floppies are
documented to appear at &60000000. They actually appear at
&70000000. ShareFS used a priority of &68000000. This results in a
mismatched iconbar, where the three cases of documentation, logical
appearance and prior use cannot be resolved simultaneously.

Thus, it has been decided to clarify the usage of parts of the iconbar.
This should make for a more logical system, and the possibility of
multi-tier iconbars and other such changes.

Technical details
These categorisations provided here amend and expand on
documentation provided in the PRMs. The intent is to clarify the
system for a logically organised iconbar, with clearly defined
positioning for components, and whilst retaining the current state
wherever possible.

The iconbar should be viewed as:

Iconbar layout

Object sources and sinks

These are icons for devices to which objects can be sent or retrieved
from. They are ordered logically from read only devices on the left
through read/write devices to write only devices towards the right.
Alongside write only devices are the volatile devices; those devices
whose contents are not likely to remain permanent from session to
session (or even within a session).

The full ordering is:

Priority Name Meaning
&76000000 Scanners Read-only device
&74000000 CD-ROM Read-only device
&70000000 Hard disc Read-write device

Examples: Any fixed RW medium falls
into this category

&68000000 Floppies Read-write device
Examples: Any removable RW medium
falls into this category

&60000000 Network Read-write/Read-only device
Examples: Any network filing system
falls into this category

&40000000 Volatiles Read-write device
Examples: RAMFS, Transient, Trash
cans, Memphis, Scrap, etc

&0F000000 Printers Write-only device
&04000000 Accelerators Examples: ResourceFS, "Pinned" items,

Director, Menon, etc.

All devices in this category should have a name underneath, ideally
identifying the medium name with which they are associated. If no
medium is associated (eg. a removable, or unconfigured device), they
should display the medium name (eg. Zip disc, Printer, LanMan, etc),
or a generalised medium identifier (eg. the drive or port number).

These applications should not provide a "Quit" option.

Data source / sink controllers

This is basically a place for internet servers, connection systems and
other network utilities to live, as well as local servers. Like the Object
sources, these should have their name under them. Samba, TelnetD,
Newsbase, InetSuite, WebServe and Netplex would fall into this
category. These will grow to the right when the user loads a new
controller.

These applications should provide "Quit" options. Most should
provide a status window, and many will provide configuration
windows.

User applications

This is where user applications appear when loaded. They will grow
to the left as they are loaded, taking up the free gap space.

These applications should provide a "Quit" option.

They should not have text placed under them unless they are
configured into a particular state that must be described. Such
applications are discouraged unless there is a genuine need.

System control applications

This is where system control applications live. These are things that
will control the machine, the desktop or the way in which the system
works. Initially, this comprises the Task Manager and Display
Manager. Because of its high priority, Help lives here too. This may
be rationalised in future.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 08 Feb 2000 Gerph Initial version

● Released as part of
Technote
20000502-001.

2 12 Jan 2022 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation.

Related:http://www.riscos.com/support/developers/riscos6/
desktop/wimp/iconbarpriorities.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/desktop/wimp/iconbarpriorities.html
http://www.riscos.com/support/developers/riscos6/desktop/wimp/iconbarpriorities.html

Hardware timer device driver
(TimerManager)

Introduction
The Timer module provides an abstraction of the hardware timers. It
is used by the Kernel in order to provide the monotonic timer used
for the system clock, interval timer, monotonic timer, and system
timed events. The module also provides an interface to allow other
hardware timers to be controlled by other components. Timers may
run off independant clock sources and so may have different
granularity and ranges of rates at which they may generate
interrupts.

Each hardware implementation has an independant Timer module
implementation specific to the timers which are available to the
operating system.

Overview
The number of timers provided by the hardware can be read using
SWI Timer_ReturnNumber (on page 0). Timers may be claimed and
released by components using SWI Timer_Claim (on page 0) and SWI
Timer_Release (on page 0). The rate at which a timer is running can
be modified after it has been claimed by using SWI Timer_SetRate
(on page 0). The relationship between timer rates and external
measurements can be obtained by using SWI Timer_Convert (on page
0).

Technical details
A number of timers may be provided by a TimerManager hardware
device driver. These timers can be claimed by a single client at any
time. The timer's rate may be defined in a number of different forms,
to allow clients to specify the rate in the most natural manner. Not all
timers may support the exact rate requested, so clients should expect
to handle different forms of timers.

Timers are numbered from 0, and timer 0 is reserved for use by the
Kernel as the monotonic timer.

Measurement format

Many of the SWIs take a number of flags to indicate the
measurement format of the timer. The measurement format flags
take the form of 8 bits:

Bit(s) Meaning
0-2 Unit scaler:

Value Meaning
0 Invalid
2 Scaled by 1/1000000
3 Scaled by 1/1000
4 Scaled by 1
5 Scaled by 1000
6 Scaled by 1000000
7 Scaled by 1000000000

3 Reserved, must be zero
4-5 Measurement type:

Value Meaning
0 Native ticks
1 Frequency (interrupts per second)
2 Period (in seconds)
3 Invalid

6-7 Reserved, must be zero

For example, to request a frequency of 100 Hz one could use a
measurement type of 1, a scaler of 4 (scale by 1) and a value of 100.
Alternatively, this could be represented as a period of 1/100th second
by using a measurement type of 2, a scaler of 3 (scale by 1/1000) and
a value of 10.

For SWIs which take an input rate the measurement format flags are
held in the bits 0-7 of the SWI flags.

For SWIs which return a rate the measurement format flags are held
in bits 8-15 of the SWI flags.

SWI calls

TimerManager_ReturnNumber
(SWI &58B80)

Return number of supported timers

On entry
R0=Flags (must be 0)

On exit
R0=Number of timers available

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to find the number of timers available to the
operating system. Timers are numbered from 0, so the maximum
timer number that may be used is the value returned - 1.

Related APIs
None

TimerManager_Claim
(SWI &58B81)

Claim a hardware timer

On entry
R0=Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate
16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7
R3=Pointer to function to call on interrupt
R4=Value to pass in R12 to interrupt function

On exit
R2=Actual timer rate, using the measurement format from bits 8-15,

or 0 if the rate cannot be represented

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to claim a timer for dedicated use by a client. Only a
single client may claim a timer; subsequent claims will return an
error. The timer specified will be set to the rate given and interrupts
will call the routine specified. The interrupt routine may corrupt
R0-R3 but should preserve all other registers.

An error will be returned if the input measurement format in R0 bits
0-7 is not valid or cannot be provided by the timer.

If the meaurement format used for return in R0 bits 8-15 is invalid
the value returned in R2 will be 0, but no error will be raised. The
return value is provided as a convenience.

Related vectors
TimerManager_Release (on page 0)
TimerManager_SetRate (on page 0)
TimerManager_Convert (on page 0)

TimerManager_Release
(SWI &58B82)

Release a hardware timer

On entry
R0=Flags (must be zero)
R1=Timer number

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to release a previously claimed timer. The IRQ will
no longer cause the specified routine to be called.

Related vectors
TimerManager_Claim (on page 0)

TimerManager_SetRate
(SWI &58B83)

Change the rate used by a hardware timer

On entry
R0=Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate
16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7

On exit
R2=Actual timer rate, using the measurement format from bits 8-15,

or 0 if the rate cannot be represented

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to change the rate used by a timer. Only timers
which have been claimed can have their rate changed; unclaimed
timers will return an error. The timer specified will be set to the rate
given.

An error will be returned if the input measurement format in R0 bits
0-7 is not valid or cannot be provided by the timer.

If the meaurement format used for return in R0 bits 8-15 is invalid
the value returned in R2 will be 0, but no error will be raised. The

return value is provided as a convenience.

Related vectors
TimerManager_Claim (on page 0)
TimerManager_Convert (on page 0)

TimerManager_Convert
(SWI &58B84)

Convert between rate formats used by a hardware timer

On entry
R0=Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate
16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7

On exit
R2=Timer rate in form specified by R0 bits 8-15

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to convert between timer rate formats. The values
converted will be checked to ensure that the timer is capable of those
rates.

An error will be returned if the input measurement format in R0 bits
0-7 is not valid or cannot be provided by the timer.

An error will be returned if the meaurement format used for return in
R0 bits 8-15 is invalid.

Related vectors
TimerManager_Claim (on page 0)
TimerManager_SetRate (on page 0)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 17 Nov 2022 Gerph Initial version

● Created from Select
technical
documentation.

Related:http://www.riscos.com/support/developers/riscos6/
hardware/timer.html

Disclaimer:© Gerph, 2022.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/hardware/timer.html
http://www.riscos.com/support/developers/riscos6/hardware/timer.html

NVRAM vector

Introduction
The RISC OS system uses memory which is preserved whilst the
power is off to store configuration information. This allows the
system to start with the correct settings such as hardware
configuration and user preferences. Examples of hardware
configuration are settings such as the filing system to boot from and
which drive should be used. User preferences include the type and
volume of system beep.

Technical details
Under earlier versions of the operating system the non-volatile RAM
('NVRAM', also referred to as CMOS RAM, or battery backed RAM)
was handled entirely by the Kernel. From Kernel 9.48, the handling
of NVRAM is delegated to hardware support modules. The Kernel
communicates with these modules through the vector NVRAMV.

Driver modules which provide the NVRAMV vector should be
initialised with the early initialisation flag (module flags bit 1) set.
This allows the modules to be started before the configuration for
unplugged modules is required.

Terminology

The configuration data handled by NVRAMV has generally been
termed 'CMOS' or 'CMOS data'. Historically, the configuration
information was used CMOS technology to store the contents of the
memory, but this is not required. The name 'non-volative RAM' is a
more general term which does not imply the use of a particular
technology, so is used to describe the mecanishm for storing the
configuration data.

Software vectors

Vector NVRAMV
(Vector &3E)

Operations on non-volatile memory used for configuration

On entry
R0=reason code:

Value Meaning
0 Populate the cache with NVRAM data (on page 368)
1 Read a single value from NVRAM (on page 369)
2 Write a single value to NVRAM (on page 370)

On exit
R0=-1 if handled, preserved if not handled

R1 - R9=dependant on reason code

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called by the Kernel to control the configuration data
stored in the NVRAM.

Related SWIs
SWI OS_Byte 161SWI OS_Byte 162

Vector NVRAMV 0
FillCache

(Vector &3E)
Populate the cache with NVRAM data

On entry
R0=0 (reason code)
R1=pointer to cache block to fill
R2=number of bytes to fill

On exit
R0=-1 (operation complete)
R1preserved
R2=number of bytes populated

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called by the Kernel to fill in its cache of NVRAM
values. A cache is provided in order to reduce the impact of repeated
reading of configuration data by clients. Clients should write 0 to the
cache for unsupported values. The number of bytes to fill may take
any value. The total amount of NVRAM should be returned, not the
amount of NVRAM filled. Only the first 240 bytes of NVRAM will be
used by the Kernel initially.

Related APIs
None

Vector NVRAMV 1
ReadByte

(Vector &3E)
Read a single value from NVRAM

On entry
R0=1 (reason code)
R1=byte to read

On exit
R0=-1 (operation complete)
R1=value read, or 0 if byte is out of range

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called by the Kernel to read a single value. It will
usually only be used before the NVRAM cache has been populated
during system initialisation.

Related SWIs
SWI OS_Byte 161

Vector NVRAMV 2
WriteByte

(Vector &3E)
Write a single value to NVRAM

On entry
R0=2 (reason code)
R1=byte to read

On exit
R0=-1 (operation complete)
R1=value read, or 0 if byte is out of range

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called by the Kernel to write a single value to the
NVRAM.

Related SWIs
SWI OS_Byte 162

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 31 May 2023 Gerph Initial version

● Created from Select
technical
documentation.

Related:http://www.riscos.com/support/developers/riscos6/
hardware/nvramv.html

Disclaimer:© Gerph, 2023.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/hardware/nvramv.html
http://www.riscos.com/support/developers/riscos6/hardware/nvramv.html

Real Time Clock

Introduction
The Real Time Clock has previously been handled by the Kernel. With
Kernel 8.64 and later the clock is managed by the RTC module. This
communicates with the hardware driver through a vector (RTCV)
whose default claimant is the RTCHW module. The RTCHW module
provides implementations for the RiscPC, A7000-series, RiscStation,
and A9.

The RTC module provides the Kernel SWI OS_ResyncTime and all the
OS_Word 14 and 15 operations to control the clock. A new reason
code has been added to SWI OS_Word 15 (on page 0) for setting the
clock's 5 byte time directly.

A separate section describes the RTCV vector.

Service calls

Service_RTCSynchronised
(Service Call &DD)

Real time clock has been synchronised

On entry
R1=&DD (reason code)

On exit
R1preserved

Use

This service is issued by the RTC module to inform clients that the
software and hardware clocks have been synchronised. It may
indicate that an indeterminate period of inactivity has taken place,
such as after returning from a suspend state. Where possible, timed
events should be synchronised and where necessary appropriate
action taken to ensure that queued events take place.

This service should never be claimed.

Related SWIs
SWI OS_ResyncTime (on page 375)

SWI calls

OS_Word 15, 5
(SWI &7)

Set real time clock to UTC time as a 5-byte value

On entry
R0=15 (reason code)
R1=Pointer to time values:

Offset Contents
+0 5 (sub-reason code)
+1 5 bytes of time value as centiseconds since 1900 in

UTC

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This call is used to set the Real Time Clock to a time value as a UTC
time. It avoids the requirement to convert a UTC time to a locale-
specific time string first.

This call was new to RISC OS 4.

Related APIs
None

OS_ResyncTime
(SWI &6C)

Synchronisation operations for RTC

On entry
R0=Reason code:

Value Meaning
0 Synchronise with hardware clock

other Reserved

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to cause the software clock to be resynchronised
with the hardware clock, where available. When changed, a service
call Service_RTCSynchronised (on page 373) will be issued.

This call was new to RISC OS 4.

Related services
Service_RTCSynchronised (on page 373)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation.

Related:http://www.riscos.com/support/developers/riscos6/time/
rtc.html
http://www.riscos.com/support/developers/riscos6/time/
osword15.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/rtc.html
http://www.riscos.com/support/developers/riscos6/time/rtc.html
http://www.riscos.com/support/developers/riscos6/time/osword15.html
http://www.riscos.com/support/developers/riscos6/time/osword15.html

Real Time Clock Vector

Introduction
The Real Time Clock Vector is a means for alternate clock
implementations to be provided for differing hardware. The calls
which are provided by the Operating System (either within the
Kernel or through an extension module) for setting the system time -
OS_Word 14 calls - are decoded and passed to this vector for
processing.

The time values passed to the RTCV handlers will be specified as
UTC time. That is, they will have had any time zone or daylight
saving time adjustments removed from them. Handlers should use
the values directly with the suitable hardware.

Certain clock implementations, for example the RiscPC clock chip, do
not provide sufficient information to allow the values to be read
directly from the chip and returned. In such cases additional steps
may be taken by the hardware driver.

The RiscPC clock chip driver code is limited by only storing a year
value in the range 0-3. As such, two NVRAM bytes have been
allocated to augment this (byte &80 and &81). Should similar
adjustments be required for other hardware it is recommended that
these bytes be used. During the vector call it is safe to issue NVRAM
OS_Byte calls.

Software vectors

Vector RTCV
(Vector &3F)

Abstracted interface to the real time clock

On entry
R0=reason code:

Value Meaning
0 Read time from hardware Real Time Clock (on

page 379)
1 Update hardware Real Time Clock with a new

value (on page 381)
R0 - R8=Dependant on the reason code

On exit
R0=-1 if reason claimed

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

The Real Time Clock vector is called to manipulate the real time
clock.

Related APIs
None

Vector RTCV 0
ReadTime

(Vector &3F)
Read time from hardware Real Time Clock

On entry
R0=0 (reason code)

On exit
R0=-1 if reason claimed
R1=centiseconds (0-99)
R2=seconds (0-59)
R3=minutes (0-59)
R4=hours (0-23)
R5=day of month (1-31)
R6=month (1-12)
R7=year (0-99)
R8=century (19-21)

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This reason code is called when it is necessary to synchronise the
internal clock with the hardware-supplied time source. For devices
which take a significant time to be read the driver may initiate a
request of the time from the hardware and pass on the call. When the
hardware has been read such a driver should call SWI
OS_ResyncTime request to update the Operating System with the
new values and notify other clients of an updated internal clock.

Where inaccurate values are available from hardware the driver
should return the middle value for the relevant range.

Related vectors
RTCV 1 (on page 381)

Vector RTCV 1
WriteTime

(Vector &3F)
Update hardware Real Time Clock with a new value

On entry
R0=1 (reason code)
R1=centiseconds (0-99)
R2=seconds (0-59)
R3=minutes (0-59)
R4=hours (0-23)
R5=day of month (1-31)
R6=month (1-12)
R7=year (0-99)
R8=century (19-21)

On exit
R0=-1 if reason claimed

R1 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This reason code is called when a request is made to set the
hardware clock to a specific value. The Operating System's internal
representation will not yet have been updated to reflect these values.
Any of the values passed in R1-R8 value may be -1 to indicate that it
is not to be modified.

Related vectors
RTCV 0 (on page 379)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation

Related:http://www.riscos.com/support/developers/riscos6/time/
rtcv.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/rtcv.html
http://www.riscos.com/support/developers/riscos6/time/rtcv.html

System clock

Introduction
The system clock, as accessed by OS_Word 1 and 2, is no longer a
pair of incrementing timers. Because of this the 'timer switch' state
(OS_Byte 243) is no longer used and will return a constant value.

The system clock is not related to the interval timer (OS_Word 3,4) or
to the monotonic time (OS_ReadMonotonicTime) except that all are
triggered at 100Hz.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation

Related:http://www.riscos.com/support/developers/riscos6/time/
systemclock.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/systemclock.html
http://www.riscos.com/support/developers/riscos6/time/systemclock.html

ShareFS

Introduction
ShareFS provides a simple mechanism for accessing files on locally
networked RISC OS systems. The system uses Freeway to distribute
details of the shared discs. This allows any Freeway reachable system
(usually those on the local network, but may include any NetI
accessible networks), to access the shared files. Although the objects
are known as 'shared discs' they may refer to parts of a filing system.
Under Select 1, and later, the Filer menu offers the option to share
sub-directories.

In the past the SWI calls for ShareFS have been undocumented. They
are presented here to fill in this gap, but may be extended and
modified without notice. The flags on the SWIs are inconsistent for
legacy reasons.

From ShareFS 3.97 onward, the ShareFS Filer can be disabled by
setting the ShareFS$Filer variable to 'no'. The filer can be re-enabled
by setting it to any other value.

System variables

ShareFS$Filer
Whether the ShareFS Filer is enabled

Use

Controls whether the ShareFS Filer icon is displayed. It can be
disabled by setting the ShareFS$Filer variable to 'no'. The filer can
be re-enabled by setting it to any other value.

Related APIs
None

Service calls

Service_Sharing
(Service Call &801C8)

Change to shared directories

On entry
R0=pointer to zero-terminated filing system name ('ShareFS' in our

case)
R1=&801C8 (reason code)
R2=Share state: 0 if object is unshared, 1 if object is shared
R3=pointer to zero-terminated directory name being shared
R4=pointer to zero-terminated name of the shared object
R5=private data (filesystem specific)

On exit
R0 - R5preserved

Use

This service is issued when a path is shared or unshared by a filing
system. It should not be claimed.

Related SWIs
SWI ShareFS_CreateShare (on page 389)
SWI ShareFS_StopShare (on page 391)

SWI calls

ShareFS_CreateShare
(SWI &47AC0)

Share a directory through ShareFS

On entry
R0=Flags:

Bit(s) Meaning
0 Share is protected
1 Share is read only
2 Share is hidden
3 Share is a 'sub directory'
4 Share is a CD ROM
5 Share is authenticated (use R3 as key)

6-31 Reserved, must be zero
R1=Pointer to zero-terminated share name
R2=Pointer to zero-terminated directory name
R3=Authentication key number (if bit 5 of the flags is set)

On exit
R0 - R3preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to share a directory.

Related SWIs
SWI ShareFS_StopShare (on page 391)

Related messages
Message_FileShareDir (on page 395)

ShareFS_StopShare
(SWI &47AC1)

Stop sharing a directory through ShareFS

On entry
R0=Flags (reserved, must be 0)

R1=Pointer to zero-terminated share name, or directory name

On exit
R0 - R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to stop sharing a directory.

Related SWIs
SWI ShareFS_CreateShare (on page 389)

Related messages
Message_FileShareDir (on page 395)

ShareFS_EnumerateShares
(SWI &47AC2)

List the currently shared directories

On entry
R0=Flags:

Bit(s) Meaning
0 Share is protected
1 Share is read only
2 Share is hidden
3 Share is a 'sub directory'
4 Share is a CD ROM

5-30 Reserved, must be zero
31 Share is authenticated (use R5 as key)

R4=Opaque value for enumeration, starting from 0
R5=Authentication key number (if bit 5 of the flags is set)

On exit
R1=Pointer to zero-terminated disc name
R2=Pointer to zero-terminated directory name
R3=Flags used for the share
R4=New opaque value, or -1 if no more details

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to enumerate the shared discs.

Related SWIs
SWI ShareFS_CreateShare (on page 389)
SWI ShareFS_IdentifyShare (on page 394)

ShareFS_IdentifyShare
(SWI &47AC3)

Identify a shared disc

On entry
R0=Flags:

Bit(s) Meaning
0 Set: R1 contains share name

Clear: R1 contains directory name
1-31 Reserved, must be zero

R1=Pointer to zero-terminated share name or directory name
R2=Pointer to buffer for data
R3=Length of buffer

On exit
R0=Flags for share (see SWI ShareFS_CreateShare (on page 389))
R3=Length of data written to buffer, or -ve length if the name would

not fit

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to identify a share given its name or directory name.

Related SWIs
SWI ShareFS_CreateShare (on page 389)
SWI ShareFS_EnumerateShares (on page 392)

Wimp messages

Message_FileShareDir
(&408)

Request a dialogue for sharing directories

Message
Offset Contents
R1+20 Flags:

Bit(s) Meaning
0 Share is protected (public access attributes are

obeyed)
1 Share is read only
2 Share is hidden (doesn't appear in display)
3 Share is authenticated (blank password initially)
4 Share is a CD ROM (Read only, with a different

icon)
5-29 Reserved, must be zero

30 Open window at position given
31 Reserved, must be zero

R1+24 x co-ordinate to open at (if bit 30 set)
R1+28 y co-ordinate to open at (if bit 30 set)
R1+32 zero-terminated directory name to share

Source
Tasks

Destination
ShareFS Filer task

Delivery
Message must be broadcast (destination 0)

Message must be sent recorded delivery (reason code 18)

Use

This message will cause ShareFS to open a dialogue box showing the
share details requests, or the live share details if the directory is
already shared.

It should be sent by an application which wishes to present the user
with a set of options for sharing a directory. A window will be opened
either around the pointer, or at the position requested.

Related SWIs
SWI ShareFS_CreateShare (on page 389)

Related messages
Message_FileShareDir (on page 395)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 28 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original
documentation for
RISC OS Select.

Related:http://www.riscos.com/support/developers/riscos6/
networking/sharefs.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/sharefs.html
http://www.riscos.com/support/developers/riscos6/networking/sharefs.html

Internet address collisions

Introduction
The Internet module now issues a service when it detects another
system on the network with the same address. Components may
recover from this by reconfiguring the interface.

Service calls

Service_InternetStatus
(Service Call &B0)

Duplicate Internet address detected

On entry
R0=8 (subreason code)
R1=&B0 (reason code)
R2=pointer to zero-terminated interface name, eg 'ea0'
R3=pointer to Driver Information Block for interface
R4=IPv4 address which has been duplicated (network byte order)
R5=pointer to hardware address of system with a duplicate IP

address

On exit
R0 - R5preserved

R0=0 to claim service when duplicate address has been
resolved, or preserved to shut down the Internet module

Use

This service call is issued by the Internet module (version 5.08 or
later) when it detects a machine using a duplicate IP address. This is
normally detected when an incoming ARP packet is received with our
IP address but a different hardware address.

As a probe, whenever an interface is reconfigured, the Internet
module sends out an ARP request for our IP address to make any
such machines reply. That will then trigger this service call.

Normally, the Internet module will shut down outright as a safety
measure if this happens. However, if this service call is claimed it will
continue operation. It is expected that anyone claiming this service
call should take appropriate action; for example the DHCP module
might remove our IP address, send a DHCPDECLINE message and go
back into the DHCP INIT state.

Related APIs
None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 28 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation.

Related:http://home.gerph.org/~charles/Reference/RISCOS/
LastRODocs/HTML/Networking/AddressCollision.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://home.gerph.org/~charles/Reference/RISCOS/LastRODocs/HTML/Networking/AddressCollision.html
http://home.gerph.org/~charles/Reference/RISCOS/LastRODocs/HTML/Networking/AddressCollision.html

DCI Driver Link Status

Introduction
Under the DCI, network device drivers must announce their presence
through Service_DCIDriverStatus. It is assumed that devices
announcing themselves in this way are available for use. The device
may become unavailable, most likely due to link loss (such as a cable
being disconnected) or memory shortage. No indication is available
to the user as to the state of the device from the driver.

In order to allow notifications of such states to be provided to the
user (and to other clients who may need to be aware of network
infrastructure changes), it is proposed that the service call be
extended. Authors should consult the DCI driver specification or the
Internet chapter within PRM 5a for more details of the current
interface. In summary, Service_DCIDriverStatus is issued by drivers
to announce startup (reason 0) and shutdown (reason 1) of a driver
and its associated DIB (Device Information Block).

This has been extended to include announcement of link status
changes (Service_DCIDriverStatus 2 (on page 402)). Two new reason
codes are to be used for this purpose.

Service calls

Service_DCIDriverStatus 2
LinkActive

(Service Call &9D)
Notification that the link provided by a DCI driver has become active

On entry
R0=Pointer to Device Information Block
R1=&9D (reason code)
R2=2 (sub-reason code)
R3=DCI version supported

On exit
R0 - R3preserved

Use

This service is issued to announce changes to a Device Driver. An
'active link' indicates that the device driver is capable of sending and
receiving data. An 'inactive link' will never send or receive data. This
mirrors the use of the DCI statistics flag. For compatibility with
devices which are not aware of these new reason codes, all modules
should assume that a newly started device driver has an active link. It
follows that any device which starts up and is aware of these new
reason codes must issue the 'link inactive' (reason code 3) service if
its link is not available.

Expected uses for this service:

● Dynamic address configuration in presence of new network
infrastructure (eg ZeroConf address re-announcement,
DHCP lease renewal)

● User notification of network absence (eg Notifier protocol)

Non-module clients, and module clients wishing to obtain more
information about the state of the link should query the statistics for
the DCI driver in the usual manner.

Drivers may, but are not required to, defer announcement of inactive
links if their physical state is such that transient failures (in the order
of seconds) may occur. Drivers which can detect the physical nature
of the network to which they are connected must signal a link state
change when they detect such a change (eg configuration changes to

a wireless network SSID, encryption key, channel, etc).

Clients should expect that any 'link inactive' notification may indicate
that the previous network connection is invalid. On 'link active'
notification, clients may attempt to re-establish connections to
remote systems.

Clients should attempt to use the existing connections before
restarting a lengthy negotiation or configuration process. Where
confidential information is involved, clients should not attempt to re-
establish any connection without first confirming the action with the
user.

Related services
Service_DCIDriverStatus 3 (on page 0)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation

Related:http://www.riscos.com/support/developers/riscos6/
networking/dcidriverlink.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/dcidriverlink.html
http://www.riscos.com/support/developers/riscos6/networking/dcidriverlink.html

RouterDiscovery

Introduction
The RouterDiscovery module implements RFC1256 Router Discovery
for multiple interfaces as hosts or routers. The action of the
RouterDiscovery must be triggered by the user in order to be used. It
is expected that address configuration clients will perform this
trigger when appropriate. ZeroConf would be expected to trigger
RouterDiscovery if no other address has been configured. DHCP
would be expected to trigger RouterDiscovery if the relevant options
are returned in the DHCP packets from the configuration server.

The module will monitor interface changes and resend solicitations or
advertisements as appropriate. Non-availability of the router system
is not currently checked for.

Multiple interfaces are supported.

Service calls

Service_InternetStatus &40
(Service Call &B0)

RouterDiscovery has changed its host behaviour for an interface

On entry
R0=&40 (sub-reason code)
R1=&B0 (reason code)
R2=New state:

Value Meaning
0 No longer monitoring interface
1 Starting soliciting on interface
2 Starting monitoring interface

R3=Pointer to zero terminated interface name

On exit
R1 - R3preserved

Use

This service call is issued by the RouterDiscovery module when it
starts monitoring an interface for router advertisement packets. The
module will start by issuing solicitations. Once an advertisement is
received the module will modify the default route appropriately.

This service should never be claimed.

Related APIs
None

Service_InternetStatus &41
(Service Call &B0)

RouterDiscovery has changed its router behaviour for an interface

On entry
R0=&41 (sub-reason code)
R1=&B0 (reason code)
R2=New state:

Value Meaning
0 Ending advertisements
1 Starting advertisements

R3=Pointer to zero terminated interface name
R4=Number of routes being advertised
R5=Pointer to router/preference pairs for routers being advertised

On exit
R1 - R5preserved

Use

This service call is issued by the RouterDiscovery module when it
starts issuing advertisements on an interface. The module will
initially issue a few advertisements, before settling into a much more
leisurely advertisement every 10 minutes. If a solicitation is received
from a host, an advertisement will be made.

This service should never be claimed.

Related APIs
None

Service_InternetStatus &42
(Service Call &B0)

RouterDiscovery has changed the route

On entry
R0=&42 (sub-reason code)
R1=&B0 (reason code)
R2=Pointer to zero terminated interface name
R3=IP address of gateway through which packets will be routed, or

0 if the default route has been deleted due to non-
responsiveness.

On exit
R1 - R3preserved

Use

This service call is issued by the RouterDiscovery module when it
changes the default route based on information provided from
RouterDiscovery operations.

This service should never be claimed.

Related APIs
None

SWI calls

RouterDiscovery_Control
(SWI &57D80)

Control the operation of the RouterDiscovery module

On entry
R0=Reason code:

Value Meaning
0 Activate Host mode for the interface (on page 410)
1 Activate Router mode for the interface (on page 412)
2 Deactivate control of interface (on page 414)

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to control the operation of the RouterDiscovery
module.

Related APIs
None

RouterDiscovery_Control 0
ActivateHost

(SWI &57D80)
Activate Host mode for the interface

On entry
R0=0 (reason code)
R1=Pointer to zero terminated interface name to activate on
R2=IPv4 Aaddress to use for solicitations or special value:

Value Meaning
&0 use appropriate address based on interface

&FFFFFFFF use broadcast address
&E0000002 use 'all routers' multicast group

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to allow the RouterDiscovery module to control the
operation of an interface as a Host. Solicitations will be sent when
the interface changes state and a default route will be configured
based on those addresses.

Interface names will not be validated, allowing the interfaces to
become available at a future point. Absent interfaces will cause the
module to become quiescent until the interfaces become available.

Related SWIs
SWI RouterDiscovery_Control 2 (on page 414)

RouterDiscovery_Control 1
ActivateRouter
(SWI &57D80)

Activate Router mode for the interface

On entry
R0=1 (reason code)
R1=Pointer to zero terminated interface name to activate on
R2=IPv4 Aaddress to use for advertisements or special value:

Value Meaning
&0 use appropriate address based on interface

&FFFFFFFF use broadcast address
&E0000001 use 'all hosts' multicast group

R3=Minimum advertisement interval in seconds, or 0 for default
R4=Maximum advertisement interval in seconds, or 0 for default
R5=pointer to a list of router/preference pairs, terminated by a 0

word. A pointer of 0 will mean that the address of the interface
will be used, however the interface must be present for this to
function.

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to allow the RouterDiscovery module to issue
advertisements of router addresses on an interface. Advertisements
will be sent regularly, as specified, or when the interface changes
state.

Interface names will not be validated unless the pointer in R5 is 0.
Absent interfaces will cause the module to become quiescent until
the interfaces become available.

Related SWIs
SWI RouterDiscovery_Control 2 (on page 414)

RouterDiscovery_Control 2
Deactivate

(SWI &57D80)
Deactivate control of interface

On entry
R0=2 (reason code)
R1=Pointer to zero terminated interface name to deactivate

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to stop an interface being monitored by the
RouterDiscovery module.

An interface being killed will not implicitly cause this to happen in
order that interfaces can be restarted without affecting the operation
of RouterDiscovery.

Related SWIs
SWI RouterDiscovery_Control 0 (on page 410)
SWI RouterDiscovery_Control 1 (on page 412)

RouterDiscovery_Status
(SWI &57D81)

Return information about the RouterDiscovery module

On entry
R0=Reason code (none defined)

On exit
None

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is not implemented.

Related APIs
None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 09 May 2022 Gerph PRM-in-XML
conversion
● Created from

original
documentation for
RISC OS Select.

Related:http://www.riscos.com/support/developers/riscos6/
networking/routerdiscovery.html

Disclaimer:© Gerph, 2022.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/routerdiscovery.html
http://www.riscos.com/support/developers/riscos6/networking/routerdiscovery.html

DHCPClient

Introduction
The DHCPClient module provides an implementation of the 'Dynamic
Host Configuration Protocol'. This allows a server to allocate
addresses to a client based on its internal ethernet 'MAC' address.

The module is able to control multiple interfaces simultaneously.
Information about the DHCP configuration process is recorded to the
DHCP log.

Service calls

Service_InternetStatus 4
BootPReply

(Service Call &B0)
Response received for BootP/DHCP request

On entry
R0=4 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=Pointer to Device Information Block for interface
R4=Pointer to BootP/DHCP reply message buffer
R5=Size of BootP/DHCP reply

On exit
R0preserved
R1=0 to claim service, else preserved

R2 - R5preserved

Use

This service call is issued by the Internet module (version 5.28 or
later) when a BOOTP/DHCP reply is received. Clients may inspect the
contents of the buffer to extract any configuration information.

If you want to alter information in the buffer you may do so, but you
must then claim the service call by setting R1 to zero on exit. If the
service call is claimed the Internet module will reprocess the buffer
as if it had just arrived from the network. Another
Service_InternetStatus 4 will arrive in due course.

You should not normally claim this service call.

Related APIs
None

Service_InternetStatus 5
DHCPOffer

(Service Call &B0)
DHCPOffer has been received

On entry
R0=5 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=Pointer to Device Information Block for interface
R4=Pointer to DHCPOFFER message buffer
R5=Size of DHCPOFFER message

On exit
R0preserved
R1=0 to claim service, else preserved

R2 - R5preserved

Use

This service call is issued by the DHCPClient module whenever it
receives an offer of an IP address lease which is better than its
current best choice (or if it is the first acceptable offer). You may
inspect the buffer, but it must not be modified.

If clients choose to retain information about offers they MUST use
the value of OPTION_SERVERIDENTIFIER as an opaque key to
identify which offer has been chosen.

If you claim this service the DHCPClient module will not accept the
offer, but will wait for another offer to be made.

You should not normally claim this service call.

Related APIs
None

Service_InternetStatus 48
DHCPLeaseGained
(Service Call &B0)

DHCP address has been configured on an interface

On entry
R0=48 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=IP address assigned to interface

On exit
R0 - R3preserved

Use

This service call is issued by the DHCPClient module (after 0.37)
when it has successfully configured an interface with an address
leased from a DHCP server. If the interface is reconfigured, the
server releases the lease, the server fails to renew the lease, a
duplicate address is identified, or the network stack is stopped, the
lease will be lost and InternetStatus_DHCPLeaseLost will be issued.
This service will not be reissued for renewals of the lease.

This service should never be claimed.

Related services
Service_InternetStatus 49 (on page 421)

Service_InternetStatus 49
DHCPLeaseLost

(Service Call &B0)
DHCP address has been removed from an interface

On entry
R0=49 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=IP address that was assigned to interface

On exit
R0 - R3preserved

Use

This service call is issued by the DHCPClient module (after 0.37)
when it has lost the DHCP server leased address allocated to an
interface. A new address may be established by the DHCPClient if the
server responds, or the interface may be manually reconfigured
(however, this service may have been issued because of a manual
reconfiguration). See Service_InternetStatus 48 (on page 420) for
details of circumstances in which this service will be issued.

This service should never be claimed.

Related services
Service_InternetStatus 49 (on page 421)

SWI calls

DHCPClient_Control
(SWI &55E00)

Controls the DHCPClient interface management

On entry
R0=Reason code:

Value Meaning
0 Add interface
1 Remove interface
2 Renew lease/re-try obtaining a lease on an interface

R1=Pointer to zero-terminated interface name

On exit
R0 - R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to add or remove an interface from the
DHCPClient's control. Once placed under the control of the
DHCPClient the interface will continue to operate according to the
DHCP protocol until either the interface is configured manually or it
is removed from the module's control by being reconfigured.

Related * commands
*DHCP (on page 426)

DHCPClient_State
(SWI &55E01)

Reads the status of a DHCPClient managed interface

On entry
R0=Pointer to zero-terminated interface name
R1=Pointer to a list of information types as words, terminated by -1.

Information types:

Value Meaning
0 Interface state (1 word):

Value Meaning
0 sleeping
1 initreboot
2 init
3 rebooting
4 selecting
5 requesting
6 bound
7 renewing
8 rebinding

1 Bound address - 'yiaddr' (1 word)
2 Server address - 'siaddr' (1 word)
3 Gateway address - 'giaddr' (1 word)
4 lease period in centiseconds (1 word)
5 T1 period in centiseconds (1 word)
6 T2 period in centiseconds (1 word)
7 DHCP start (8 bytes; 5 bytes time, 3 bytes padding)
8 Lease start (8 bytes; 5 bytes time, 3 bytes padding)
9 Lease end (8 bytes; 5 bytes time, 3 bytes padding)

10 T1 end (8 bytes; 5 bytes time, 3 bytes padding)
11 T2 end (8 bytes; 5 bytes time, 3 bytes padding)

R2=Pointer to buffer for returned data
R3=Size of the output buffer

On exit
R0preserved
R1=Pointer to invalid option, or -1 if all types are valid
R2=Pointer to first free byte in the output block
R3=Space left, or negative space needed if data would not fit

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to read the current DHCP client state for an
interface. R1 points to a list of types which will be returned in the
output buffer in the order in which they were supplied. If the block
was not large enough, a 'Buffer overflow' error will be returned, with
R3 set to the -ve size required. If the type of information requested
was invalid, an error will return and R1 will point to the invalid entry.

Related * commands
*DHCPStatus (on page 427)

DHCPClient_Enumerate
(SWI &55E02)

Enumerates names of interfaces controlled by DHCPClient

On entry
R0=Pointer to zero-terminated interface name of the last interface,

or 0 initially
R1=Pointer to buffer for returned data
R2=Size of the output buffer

On exit
R0=Number of state transitions
R1=pointer to buffer on entry, or 0 if no interfaces remain
R2=Space left, or negative space needed if data would not fit

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI enumerates the interfaces under DHCPClient control.

Related SWIs
SWI DHCPClient_State (on page 423)

*Commands

*DHCP
Modify the DHCP control of an interface

Syntax
*DHCP [-+] <interface>

Parameters
<interface> - Name of the interface to change management of.

Use

This command is used to control whether the DHCPClient module
will configure the network automatically using the DHCP protocol.

If no prefix is applied to the interface name the interface will be
added to the list of those controlled by the DHCP module.

If a '-' prefix is used, the interface name will be removed from those
controlled by the DHCP module and any address which is in use will
be removed.

If a '+' prefix is used, an existing DHCP lease on that interface will be
renewed, or a new attempt to obtain a lease will be made.

Examples
*DHCP eh0

Related APIs
None

*DHCPStatus
Display information on DHCP controlled interfaces

Syntax
*DHCPStatus

Parameters
None

Use

This command is used to display information about interfaces
controlled by the DHCPClient module.

Examples
*DHCP eh0

Related * commands
*ShowStat

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation

Related:http://www.riscos.com/support/developers/riscos6/
networking/dhcpclient.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/dhcpclient.html
http://www.riscos.com/support/developers/riscos6/networking/dhcpclient.html

Chapter Title

Introduction
The ZeroConf module deals with Link-Local zero-configuration
network address assignment. This module has been present since
Select 3. The implementation follows that of RFC3927. The module
can only handle a single interface. It will be automatically configured
by the InetConfigure module when 'Dynamic' network addressing is
configured.

The ZeroConf module will always configure alias 9 of an interface, for
example 'eh0:9'.

Conformance

The ZeroConf module and other components of the stack follow the
protocol laid down by this RFC with certain caveats:

● Link-local addresses assigned to interfaces with routable
addresses will continue to be advertised by the Internet
stack through the SIOCGIFCONF interface. (1.9 rule 2)

● No operational changes have been made to prevent the
issuing of link-local packets to a router, or forwarding by a
router if so configured. (2.6.2, 2.7, 7)

● The use of subnetting is not prevented. (2.8)
● DNS addresses supplied by external sources may be cached

for link-local addresses. (2.9)
● DNS server may provide locally known link-local addresses.

(2.9)
● Operation where multiple interfaces use link-local

addresses is not supported by the ZeroConf module and,
where manual configuration occurs is not expected to route
correctly. (3)

Select 3 ZeroConf implementation follows draft 7 of the link-local
standard and had the following differences from the released RFC:

● 4 probes will be sent initially (RFC now states 3).
● The maximum number of conflicts before rate limiting was

60 (RFC now states 10).

Service calls

Service_InternetStatus 32
ZeroConfAddressAcquired

(Service Call &B0)
Address has been acquired by the ZeroConf module

On entry
R0=32 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated aliased interface name
R3=IP address assigned to the interface

On exit
R1 - R3preserved

Use

This service call is issued by the ZeroConf module when it has
successfully configured an interface with a link-local address. This
address may be used just like any other address. This address may be
changed (and the appropriate services issued) if collisions occur or if
manually modified.

This service should never be claimed.

Related services
Service_InternetStatus 33 (on page 431)

Service_InternetStatus 33
ZeroConfAddressLost

(Service Call &B0)
Address has been lost by the ZeroConf module

On entry
R0=33 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated aliased interface name
R3=IP address that was assigned to the interface

On exit
R1 - R3preserved

Use

This service call is issued by the ZeroConf module when it has lost
the link-local address allocated to an interface. A new address may be
reestablished by the ZeroConf module if the reason for the address
loss was due to a collision.

This service should never be claimed.

Related services
Service_InternetStatus 32 (on page 430)

SWI calls

ZeroConf_Control
(SWI &56A00)

Controls the ZeroConf interface management

On entry
R0=Reason code:

Value Meaning
0 Places an interface under management by

ZeroConf (on page 433)
1 Releases an interface from management by

ZeroConf (on page 434)
R1 - R8=Dependant on reason code

On exit
R0 - R8=Dependant on reason code

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to control the operation of the ZeroConf module.

Related APIs
None

ZeroConf_Control 0
ZeroConfAddInterface

(SWI &56A00)
Places an interface under management by ZeroConf

On entry
R0=0 (reason code)
R1=Pointer to zero-terminated interface name

On exit
R0 - R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to add an interface to those that the ZeroConf
module controls. Only a single interface can be controlled by the
ZeroConf module. An error will be returned if the interface cannot be
added.

Related APIs
None

ZeroConf_Control 1
ZeroConfRemoveInterface

(SWI &56A00)
Releases an interface from management by ZeroConf

On entry
R0=0 (reason code)
R1=Pointer to zero-terminated interface name

On exit
R0 - R1preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to remove an interface from those that the ZeroConf
module controls. If the interface named is not controlled by
ZeroConf, an error will be returned.

Related APIs
None

ZeroConf_Status
(SWI &56A01)

Reads the status of the ZeroConf module

On entry
R1=Status type:

Value Meaning
0 Reads the current configuration status (on page

436)
R1 - R8=Dependant on reason code

On exit
R0 - R8=Dependant on reason code

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to read the status of the ZeroConf module.

Related APIs
None

ZeroConf_Status 0
ConfigurationState

(SWI &56A01)
Reads the current configuration status

On entry
R1=0 (reason code)

On exit
R0=State of the ZeroConf module

Value Meaning
0 idle
1 probing for address
2 announcing address assignment
3 configured
4 configured, defending against address collision

R1=Pointer to zero-terminated interface name

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to read the state of the operation of the ZeroConf
module.

Related APIs
None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 2006 Gerph Initial version

● Released as RISC
OS Select
documentation.

2 30 Dec 2021 Gerph PRM-in-XML
conversion
● Created from

original Select
documentation

Related:http://www.riscos.com/support/developers/riscos6/
networking/zeroconf.html

Disclaimer:© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/zeroconf.html
http://www.riscos.com/support/developers/riscos6/networking/zeroconf.html

Graphics Mode Specification

Introduction and Overview
Graphics modes can be specified in a number of ways, which have
been added to with each iteration of the Operating System. Originally
only mode numbers were allowed, but hardware improved and more
flexibility was required, so the mode specification was extended.

Graphics modes may be supplied to a number of interfaces, most of
which will eventually come down to a call to OS_ReadModeVariable.
Some of the interfaces that you may find using mode specifications
are:

Interface Usage
OS_ReadModeVariable Read values for a given mode.

OS_CheckModeValid Return whether the mode specified can be
selected.

OS_ScreenMode Operations on the graphics mode
ColourTrans_*ForMode Colour operations for a given mode

OS_SpriteOp Sprite creation operations may be supplied
modes

Sprite Header Defines the type of data within a sprite
Wimp_SetMode Selects the mode used by the Window

Manager

Technical details
Mode specifiers

Mode specification is always through a single 32bit word value
known as a mode specifier. This allows it to be supplied in many of
the places that a mode number was used in earlier interfaces. This
mode specifier can represent a number of ways of describing a mode.
The following mode specifier formats are defined:

● Mode number
● Sprite mode word
● Sprite pointer
● Mode selector

These can be distinguished by the following algorithm:

● If the mode specifier is < 256:
● This is a mode number, and shadow bank

selection.
● The mode number is in the low 7 bits, and shadow

bank selection is given in bit 7.
● If the mode number is not recognised

Service_ModeExtension is issued to determine the
mode's parameters.

● Modes up to 7 are supported from the BBC
onwards.

● Shadow modes are supported from the Master
onwards (although they are less reliable from
RISC OS 3.6 onwards)

● If the mode specifier has bit 0 set, this is a sprite mode
word:

● Sprite mode words are given in the sprite header,
but may also be supplied to many of the mode
functions (except for display selection).

● They only contain the DPI (and thus eigenfactors),
and type of data within the sprite. No resolution
information is available.

● Sprite mode words are supported from RISC OS
3.5 onwards.

● If the mode specifier has bit 0 and 1 clear, this is a pointer
to data, whose meaning is differentiated by the value of the
first word.

● If the first word has bit 0 clear, the data is a sprite
(the mode specifier is a sprite pointer):

● Sprite pointers allow information about
the width and height to be included in
the information, and allow the use of
palette data as well. These types of mode
specification are usually only used with

ColourTrans_*operations.
● Sprite pointers are supported from RISC

OS 3 onwards.
● If the first word has bit 0 set, the data is a mode

selector:
● Mode selectors expose the base

specifications for the mode and
modifications to mode variables.

● Mode selectors allow for extended
formats, but only a single format is
currently defined.

● Mode selectors are supported from RISC
OS 3.5 onwards.

● If the value has bit 0 clear and bit 1 set, this is an invalid
mode specification.

Mode numbers

Mode numbers may be extended through the Service_ModeExtension
interface. This allows new numbered modes to be defined, either
completely or based on other modes.

Sprite mode words

Sprite mode words allow some of the parameters of the mode to be
determined, but because they do not include resolution information
they cannot be selected. Sprite mode words are only supported from
RISC OS 3.5 onwards.

The sprite mode word format has undergone a few revisions. The
current definition of the sprite mode word is:

Bit(s) Meaning
0 Set (indicator that this is a new format sprite, together with

set bits in bits 27-31)
1-13 Horizontal dots per inch, should be 180, 90, 45, 23/22, 11

14-26 Vertical dots per inch, should be 180, 90, 45, 23/22, 11
27-30 Sprite type :

Value Meaning
0 Old format mode word (mode is a standard number)
1 1 bpp
2 2 bpp
3 4 bpp
4 8 bpp
5 15 bpp in 16bit values
6 24 bpp in 32bit values
7 CMYK
8 24 bpp compact format (allocated but not used)
9 JPEG data (allocated but not used)

10-15 Reserved

31 Set: Alpha channel data present. May not be set for type
0 sprites

Clear: Binary mask data present

For sprite types 1-4, the palette is only supported from RISC OS 3.6
onwards.

Although the DPI value should be the values defined above, values
outside these may be supported. Certain interfaces, such as
PlotSpriteTransformed, may use this information to render the
sprites to the correct size for the display. Other interfaces, such as
OS_ReadModeVariable and PlotSpriteScaled, may quantise these DPI
values to the closest eigenfactor.

CMYK format sprites are supported from Select 2 onwards. JPEG
data has been supported by third party extensions.

Compatibility
RISC OS < 3.5

Does not support sprite mode words.

RISC OS ≥ 3.5
Sprite types 0 to 6 supported, but does not support palettes on
types 1-4.

RISC OS ≥ 3.6
Supports palettes on sprite types 1-4.

RISCOS Ltd RISC OS ≥ Select 2
Sprite types 0-6 and 7 (CMHK) supported.

RISCOS Ltd RISC OS ≥ Select 3
Supports alpha channel data in addition to the types supported
by Select 2.

RISC OS Pyromaniac RISC OS ≥ 7.19
Sprite types 0-6 supported.

Gerph JPEGSprites
Adds support for sprite type 9 (JPEG) to those supported by RISC
OS 3.5.

Mode selectors

A mode selector is a word-aligned structure that defines the
properties of a mode. This includes its resolution, numbers of
colours, frame rate and other mode variables.

A mode selector has the following format:

Offset Contents
+0 mode selector flags:

Bit(s) Meaning
0 1 (this differentiates it from a sprite pointer)

1-7 mode specifier format (0 for this format)
8-31 other flags (reserved - must be zero)

+4 x-resolution (in pixels)
+8 y-resolution (in pixels)
+12 colour data format and depth:

Value Meaning
0 1 bpp
1 2 bpp
2 4 bpp
3 8 bpp
4 15 bpp in 16 bit values
5 24 bpp in 32 bit values

+16 frame rate (in Hz); -1 => use highest rate available
+20 pairs of [mode variable index, value] words; there may be

any number of these, including zero
+n -1 (terminator)

Mode variables may be given in any order, although it is
recommended that they be supplied in ascending order. Repeating a
variable definition has undefined behaviour.

Compatibility
RISC OS < 3.5

Does not support mode selectors.

RISC OS ≥ 3.5
Supports mode selectors as described.

RISC OS Pyromaniac RISC OS ≥ 7.19
Supports mode selectors as described.

Mode strings

To allow modes to be described within a string specification, a mode
string is able to be supplied to various interfaces. Mode strings must
be converted to a mode specifier before they can be used with many
interfaces. OS_ScreenMode allows these mode strings to be
converted to and from mode specifiers.

The mode string takes the form of a space or comma separated list of
parameters. Each parameter is a sequence of alphabetic characters
defining the parmeter, followed by a number sequence and possible
qualifiers.

The mode string parameters have the following format:

Parameter Meaning
X# X resolution in pixels
Y# Y resolution in pixels
C# Number of colours (# = 2, 4, 16, 64, 256, 32T, 32K,

16M)
G# Number of greys (# = 4, 16, 256)
T# Teletext mode, with specified number of colours (# as

C)
EX# X eigen factor (# = 0, 1, 2, 3)
EY# Y eigen factor (# = 0, 1, 2, 3)

F# Frame rate in Hz
TX# Teletext display width in characters
TY# Teletext display height in characters

Up to RISC OS Select 3, the X and Y resolution must be values from
100-9999. From Select 3 inwards, any value other than 0 may be
supplied, although support for resolutions above 16384 may not be
reliable.

Teletext mode selection and character width/height is supported from
RISC OS Select 3 onwards.

Selection of modes with 64 colours results in an old-style VIDC 1
mode selection of a 256 colour mode with 192 derived colours. Prior
to Select 3, selection of 'C256' would result in a the old-style VIDC 1
mode being selected.

The OS_ScreenMode interface for converting and selecting mode
strings is supported from RISC OS Select 3 onwards.

*WimpMode supports selecting mode strings from RISC OS 3.5
onwards.

Compatibility
RISC OS ≥ 3.5

Supports mode string specifications X, Y, C, G, EX, EY and F, but
only through '*WimpMode'.

RISCOS Ltd RISC OS ≥ Select 3
Supports specifications for T, TX and TY in addition to those
supported by RISC OS 3.5. C256 will select a full 256 colour
palette, whilst C64 will support a VIDC 1 palette.
OS_ScreenMode mode string processing supported.

RISC OS Pyromaniac RISC OS ≥ 7.19
Supports specifications for T, TX and TY in line with RISC OS
Select 3. C64 will emulate old VIDC 1 palettes. OS_ScreenMode
mode string processing supported.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 22 Nov 2020 Gerph Initial version

● Created from PRM
and Select technical
documentation.

2 19 May 2023 Gerph Compatibility with
Pyromaniac
● Added details about

the compatibility of
the interfaces with
RISC OS
Pyromaniac and
RISC OS Select.

Disclaimer:© Gerph, 2020-2023.

mailto:gerph@gerph.org

The Image File Renderer

Introduction and Overview
A number of graphics formats are supported natively by RISC OS.
JPEG, DrawFiles and Sprites are directly renderable, and PNGs are
supported through a number of conversion calls. Each of these
formats, however, is rendered using slightly different calls. The
ImageFileRender module simplifies rendering these (and potentially
other third party) image files.

All graphics formats have two things in common :

● They cover a region (even empty files must say what space
they cover).

● They have a resolution at which they are drawn.

The region they cover is known as the 'bounding box'. For many
graphics formats, this will be aligned with the origin - for example a
bitmap graphic. For others, this bounding box may be elsewhere in
the image - for example vector formats such as DrawFiles.

The resolution at which they have been drawn describes how
accurately the images is stored. Usually this is stored in 'dots per
inch' (DPI) along with the image itself. Screen resolution is usually -
this depends on the eigenfactors for the screen mode in use - treated
as 90 DPI. Some formats may use much more accurate internal
representations than this; for example DrawFiles are stored at 2048
DPI.

For the purposes of rendering the image file, we ignore the colour
depth because the rendering process will generate its results in the
most accurate manner possible for output depth.

Images may be rendered using a number of transformation types,
allowing them to be rendered to fit a region, to a scale, or using a
more general transformation.

Within each image file there may be a number of individual images.
These can be accessed by a sequence number which indicates their
logical location within the file. The images may be related - as would
be the case with frames of an animation - or they may be unrelated -
as would be the case with a collection of resources.

When accessing images, additional information may be provided to
the renderer which may perform specific operation on the image.

This extra data is specific to the renderer and cannot be handled
generically.

Technical Details
Sequence numbers

Graphics files may contain multiple logical images which may either
be frames of an animation, alternate versions, or other image
resources. These images are accessed through a sequence number
which must be supplied to all images. A sequence number of 0 will
render the 'default' image within the file. This may be the first image
in some formats, the last in others, or some arbitrary image. A
sequence number higher than that of the last image should be
treated as the last image. A sequence number of 1 indicates the first
image should be processed.

Rendering quality

Image files may contain data which is more accurate than can be
represented by the display. This is usually the case for bitmap images
at high colour depths and almost always the case for bitmap images.
In order to allow some control over the quality of the rendered image
(and usually the rendering speed) a 'quality' parameter can be
provided to the renderer. This is a value from 1 to a renderer specific
limit (with a maximum of 15) and will be bounded to the maximum
that the renderer supports. Thus, if the highest quality is required, a
value of 15 should be supplied. If the lowest quality is required, a
value of 1 should be supplied. In the majority of cases, however, the
'default' will be required. This is a value which the renderer feels is
suitable for most operations and does not require excessive
processing to complete. To request the default quality, a value of 0
should be specified as the quality.

Transformation types

Graphics files may be transformed in a number of ways. This allows
us to provide a simpler interface for rendering based on the
requirements of the application. At present, there are three
transformation types provided by the module:

Value Meaning
0 Render to fit
1 Render scaled
2 Render transformed

For all rendering types an x and y origin are supplied from which all
operations will be based. This allows the same details to be used for
the fit, scale or transform regardless of the images location on the
screen.

Render to fit

When rendering to fit, a width and height must be supplied by the
application. The image file will be scaled to fit within this region. In
addition, a border and angle may be provided to specify an area
around the image which should be left clear, and to specify the angle
through which the image should be rotated.

Rotation is performed anti-clockwise. The centre of the rotation is not
strictly relevant to this operation because the image is always scaled
to fit the width and height supplied.

The 'fit' block has the following structure:

Offset Contents
+0 width (in OS units)
+4 height (in OS units)
+8 border (to apply to all edges)
+12 angle (in degrees clockwise, as a 16.16 fixed point value)

As the shape is scaled to fit the size specified, the point about which
rotation occurs is not important. It can be considered to be the centre
of the image.

Render scaled

When rendering scaled, a pair of multiplication and division factors
should be supplied which describe the scale at which the image
should be rendered. The scale block is a standard RISC OS scale
block (as used by SpriteExtend)

The scaling block has the following structure :

Offset Contents
+0 X multiplication factor
+4 Y multiplication factor
+8 X division factor
+12 Y division factor

Render transformed

Rendering images through a transformation matrix is the most
flexible method of rendering that the ImageFileRender module
provides. Transformation matrices are provided in standard RISC OS
tranformation blocks (as used by SpriteExtend, Draw, DrawFile and
others).

The transformation has the following structure:

Offset Contents
+0 m00
+4 m10
+8 m01
+12 m11
+16 m20
+20 m21

where the matrix is constructed:

{ m00, m01, 0 }

{ m10, m11, 0 }

{ m20, m21, 1 }

m00, m01, m10, and m11 are 16.16 fixed point values.

m20 and m21 are 24.8 fixed point values.

Arbitrary transformations

Not all image formats support arbitrary transformations. Because of
this, certain formats will be unable to render when a complex
transformation is in use. A typical example of such limitations is that
of JPEGs. The internal renderer can only render JPEGs as a scaled
object. If rotation, or other complex transformations are applied to
files which are not capable of those transformations, an error will be
returned.

Clipping

All images will be clipped to the standard graphics rectangles. If an
image must not pass outside a region, a graphics window should be
used. This can be set through a VDU 24 sequence.

Image file origins

Whilst most images are based at the origin, some images will have a
bounding box which are not. When the image is rendered 'to fit', the
image origin is implicitly ignored. When scaling and transforming
however, the origin is maintained and will be scaled with the image
itself. Because this can make manipulating such images more
complex, this origin offset can be negated by the ImageFileRender
module. In this mode, the image can be treated as if it does not have
any offset from the origin.

Colour mapping

In order to provide highlighting and other colour manipulation on the
image, the ImageFileRender module can use colour mapping
functions (as used by SpriteExtend, DrawFile, and ColourTrans).
These allow the colours in the image to be manipulated to provide
effects such as highlighting or shading.

Extensions for more complex colour mapping

The operations that can be provided in a generic manner by the
ImageFileRender module do not cover the full range of operations
that might be applied to every image file format. Because of this,
extension data may be provided which is specific to the renderer in
use. Because each renderer may provide specific data to enable it to
render images, and there may be multiple providers of rendering
facilities, a 'magic' identifier is allocated to each renderer. This is
ensures the the renderer is not given data in a form which it does not
understand.

Where a magic identifier is supplied and a suitable renderer is
available, it will be used. If no suitable renderer can be found, the
last registered renderer will be used. This ensures that the where
extension data is used it is passed to the appropriate renderer, and
falls back to using the most recent renderer installed.

The extension data block must be word aligned, and the first word
contains the magic identifier for the render that it is intended for. The
remainder of the extension data block is specific to the renderer in
use.

The magic identifier may be any 32bit value, but we recommend that
these are registered with RISCOS Ltd to ensure that there are no
duplicated identifiers. At present, allocations are of the form
&6699ccii, where cc indicates the company or individual producing
the renderer, and ii is some image format number at the company or
individual's discretion.

Sprite file extensions

When rendering sprite files, by default the first sprite is rendered
from the file. This covers the majority of the situations that it will be
required, but where different sprites are required, the extension
block describes which to use. The identifier for the RISCOS Ltd sprite
renderer is &66990101. The named sprite will only be used when the
sequence number is left as 'default'.

Offset Contents
+0 &66990101
+4 Sprite name, up to 12 characters

Renderers

Custom renderers

Custom renderers may be registered with the ImageFileRender
module. These renderers can provided additional rendering facilities
for third party filetypes, or provide additional facilities over those of
the standard renderers.

Renderers have four components:

1. A routine which calculates the bounding box and resolution of
an image

2. A routine which renders an image
3. A routine which declares fonts in a document (may be omitted)
4. A routine which returns information about an image

In addition, they provide a number of informational fields which
describe the renderer's capabilities:

● The filetype that the renderer applies to
● The name of the renderer (including the version and author)
● A flags word that describes the renderers capabilities
● The renderers 'magic' identifier (or 0 if it provides no

special operations)

Renderer name

The renderer name provides details about the renderer in order that
diagnostics may be performed and information about the installed
renderers is available. The renderer name consists of three, tab
(ASCII 9) separated, fields:

● The renderer name
● The version number in the form x.xx
● The authors (or publishers) name

Renderer flags

Not all renderers have the same capabilities, as stated earlier. The
flags provide details to ImageFileRender of the capabilities of the
renderer. This is a bit field, structured:

Bit(s) Meaning
0-1 Renderer transformation capabilities:

Value Meaning
0 Renderer cannot draw anything but identity scaling

and translation
1 Renderer can translate and scale, but scaling must

be by identical factors
2 Renderer can translate and scale by any values in

both axes
3 Renderer supports any form of transformation

These bits should be set to the capabilities of the renderer.

Attempts to render files of which the capabilities word
indicates are not possible by the renderer will be faulted by
ImageFileRender module.

2 Renderer supports colour mapping.

This bit should be set if the renderer can perform colour
mapping. If unset, attempts to use colour mapping on this
file type will be faulted by ImageFileRender.

3 Renderer can draw irregular shapes so must be called to
calculate bounding boxes.

This bit should be set if transforming a shape using a
complex matrix (eg skew or rotate) may result in a different
bounding box than that which would be generated for a
rectangular area. If unset, the renderer will be called to
calculate the bounds of an identity transform only.
ImageFileRender will perform the remainder of the
calculations.

If a renderer can only render rectangular areas then leaving
this bit clear simplifies the implementation.

4-7 Maximum number of 'quality' levels supported (1-15).

The highest quality level which is supported by the renderer.

If the quality level requested by a client exceeds this, the
renderer will be called with this value.

8-11 Default 'quality' level to use (1-15).

Where quality settings are omitted (ie when 'default' quality

Bit(s) Meaning

is selected) the default quality will be passed to the
renderer. A value of 0 means that quality levels are ignored.

Service calls

Service_ImageFileRender_Started
(Service Call &80D40)

ImageFileRenderer has initialised

On entry
R0=API version (102 at present)
R1=&80D40

On exit
None

Use

This service is issued after the ImageFileRender module has
initialised. Renderers should register themselves with the module.

Related services
Service_ImageFileRender_Dying (on page 457)

Service_ImageFileRender_Dying
(Service Call &80D41)

ImageFileRenderer about to finalise

On entry
R0=API version (102 at present)
R1=&80D41

On exit
None

Use

This service is issued as the ImageFileRender module finalises to
notify clients that it is no longer providing rendering facilities.

Related services
Service_ImageFileRender_Started (on page 456)

Service_ImageFileRender_RendererChanged
(Service Call &80D42)

A renderer has initialised or finalised

On entry
R0=API version (102 at present)
R1=&80D42
R2=Filetype affected

On exit
None

Use

This service is issued when a renderer registers or deregisters with
the ImageFileRender module. Clients which have cached details of
other renderers should re-read any renderer values necessary after
checking whether the filetype matches those which they are
interested in.

Related SWIs
SWI ImageFileRender_Register (on page 471)

SWI calls

ImageFileRender_Render
(SWI &562C0)

Render an image

On entry
R0=Rendering flags:

Bit(s) Meaning
0-2 Transformation type:

Value Meaning
0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved
3 Colour mapping function supplied
4 Ignore document origin
5 Reserved, must be zero

6-9 Quality to render at:
Value Meaning

0 Use default quality
1 Lowest quality

2-14 Renderer specific values
15 Highest quality

10-16 Reserved, must be zero
17-31 Reserved, must be zero

R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number, or 0 for default image
R6=X coord for origin
R7=Y coord for origin
R8=Transformation data:

Value Name Transformation type in R0
0 Pointer to size Image file origin is ignored
1 Pointer to scale block Offset Contents

+0 X mult
+4 Y mult
+8 X div
+12 Y div

2 Pointer to
transformation matrix

Standard draw transformation
matrix format

R9=Pointer to colour map descriptor

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to render an image file.

Related entry points
IFR_Render (on page 493)

ImageFileRender_BBox
(SWI &562C1)

Calculates an image's bounding box

On entry
R0=Rendering flags:

Bit(s) Meaning
0-2 Transformation type:

Value Meaning
0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved
3 Reserved, must be zero
4 Ignore document origin
5 Return in OS units (otherwise bounding box will be

returned in draw units
6-31 Reserved, must be zero

R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension, or 0 if none
R5=Image sequence number, or 0 for default image
R6=Pointer to transformation data (see above)
R7=Pointer to bounding box to fill in

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to calculate the bounding box for a transformation
operation.

Related entry points
IFR_BBox (on page 495)

ImageFileRender_Transform
(SWI &562C2)

Return transformation matrix for render operation

On entry
R0=Rendering flags:

Bit(s) Meaning
0-2 Transformation type:

Value Meaning
0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved
3 Reserved, must be zero
4 Ignore document origin

5-31 Reserved, must be zero
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension, or 0 if none
R5=Image sequence number
R6=Pointer to transformation data
R7=Pointer to output transformation block to fill in

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to calculate the transformation matrix that would be
used for an operation without performing that operation. Where
clients wish to combine a transform matrix with the operation applied
by the scaling specified, this call can obtain the transformation
matrix which ImageFileRender will use.

Related APIs
None

ImageFileRender_DeclareFonts
(SWI &562C3)

Declare fonts prior to printing

On entry
R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number
R6=Flags to pass to PDriver_DeclareFont

On exit
R0 - R6preserved

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI should be used when printing images using the
ImageFileRender module before any printing operations begin. Refer
to the section 'Declare the fonts your document uses' in the chapter
on Printing for more details.

Related entry points
IFR_DeclareFonts (on page 497)

ImageFileRender_Info
(SWI &56264)

Discover miscellaneous image information

On entry
R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number
R6=Query type:

Value Meaning
&00000000 Base details

&00000001-&00000FFF Reserved for system use
&00001000-&0000FFFF Reserved for developers
&00FF0000-&00FFFFFF Reserved for private use

Others are reserved for future expansion.
R7=Pointer to query block
R8=Length of query block

On exit
R8=If successful, R8 returns the length of block used.

If the block was too small, R8 returns a negative value showing
how much space was required. If another error occurs, R8 will
be positive.

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI should be used to find out information which is not provided
by the generic APIs. It may be used (for example) to read the time
between frames for a custom renderer, or to read additional
information about the image which would otherwise not be available.

The base details query returns the following:

Offset Contents
+0 Sequence number
+4 X DPI
+8 Y DPI
+12 Colour type:

Value Meaning
0 Unspecified colour type (usually 'free' colour

selection)
1 1bpp RGB
2 2bpp RGB
3 4bpp RGB
4 8bpp RGB
5 16bpp RGB
6 24bpp RGB
7 CMYK

Others Reserved
+16 Image flags:

Bit(s) Meaning
0 If set, the image is solid and covers the entire

bounding box described. If clear, the image may
have sections which reflect the background colour.

1-31 Reserved, must be zero

The base query is used to get generic information on an image in the
file which was not necessary for the rendering of the file. This call is
most commonly used to find the sequence number of the default and
last logical image within a file. The sequence number may be set to
&FFFFFFFF to indicate that the sequence number is not known. This
might be the case if the format has no indication of the number of
images present.

The image flags provide additional information about the image
which might be useful to renderers. The only defined flag at present
is that indicating if the image is 'solid' or not. This can be used by
clients to decide whether drawing a background behind the image is
neccessary or not.

Related entry points
IFR_Info (on page 499)

ImageFileRender_RendererInfo
(SWI &56265)

Discover information on the renderer

On entry
R0=Flags (must be 0)
R1=Filetype
R2=Magic identifier

On exit
R0=Pointer to renderer definition block (read only)
R1=Pointer to renderer name

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to return information about a renderer.

Related SWIs
SWI ImageFileRender_EnumerateRenderers (on page 474)

ImageFileRender_Register
(SWI &56266)

Register a renderer

On entry
R0=Flags (reserved, must be 0)
R1=Pointer to definition (all will be copied):

Offset Contents
+0 API version (102 at present)
+4 Renderer flags (on page 453)
+8 Filetype
+12 Magic value, or 0 if none
+16 Pointer to name to be copied, in the format:

<name><tab><version x.xx><tab><author>
+20 Workspace value for R12
+24 Pointer to start entry point (IFR_Start (on page 489))
+28 Pointer to stop entry point (IFR_Stop (on page 491))
+32 Pointer to render entry point (IFR_Render (on page

493))
+36 Pointer to bounding box entry point (IFR_BBox (on

page 495))
+40 Pointer to declare fonts entry point (IFR_DeclareFonts

(on page 497))
+44 Pointer to information entry point (IFR_Info (on page

499))
Or use 0 to get the current API version

On exit
R1=API version (even if an error occurred)

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to register a new renderer.

Related SWIs
SWI ImageFileRender_Deregister (on page 473)

ImageFileRender_Deregister
(SWI &56267)

Deregister a renderer

On entry
R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to name used on registration
R3=Magic value to match (must be the same as when registered

On exit
R0 - R3preserved

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to deregister a renderer.

Related SWIs
SWI ImageFileRender_Register (on page 471)

ImageFileRender_EnumerateRenderers
(SWI &56268)

Enumerate the active renderers

On entry
R0=Flags (reserved, must be 0)
R1=Last filetype, or -1 for first call
R2=Magic value, or 0 for first call

On exit
R0=Pointer to renderer definition block (read only)
R1=Filetype of this renderer, or -1 if there are no more
R2=Magic value of this renderer

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is re-entrant

Use

This SWI is used to enumerate the renderers which have been
registered with the ImageFileRender module.

Related SWIs
SWI ImageFileRender_RendererInfo (on page 470)

Error Messages

Error_IFR_BadTransformType
(Error &81A800)

Bad transform type

Use

This error is returned when the transformation type specified is
invalid.

Error_IFR_Reserved
(Error &81A801)

Reserved flags set for ImageFileRender SWI

Use

This error is returned when a SWI has been called with flags set
which have been defined as reserved. Where possible, this will be
returned to allow clients to use new features when they are available,
and to fall back to older methods where the features requested are
not avialable.

Error_IFR_ReservedRendererFlags
(Error &81A802)

Reserved flags set for ImageFileRender renderer

Use

This error is returned during renderer registration when the flags
specified in the renderer definition has flags set which have defined
as reserved.

Error_IFR_Memory
(Error &81A803)

Not enough memory for ImageFileRender

Use

This error is returned when there is not enough memory for the
rendering (or other) operation.

Error_IFR_NoSuchRendererToRemove
(Error &81A804)

Renderer not known

Use

This error is returned when the renderer being deregistered is not
known to the ImageFileRender module.

Error_IFR_NoRenderr
(Error &81A805)

No renderer registered for that filetype

Use

This error is returned when an operation is attempted on a filetype
for which no renderer has been registered.

Error_IFR_BadAPI
(Error &81A806)

Bad API version

Use

This error is returned when an operation is attempted for which the
renderer API is not understood by the renderer. This will most likely
not be seen by external clients. Clients who proxy their rendering
through another renderer may see this if the APIs provided do not
match between the proxy and the client.

Error_IFR_CantTransform
(Error &81A807)

Transformation type not supported by filetype

Use

This error is returned when the rendering operation cannot be
performed because the renderer does not support the transformation
requested by the client. The most likely cause for this error is
attempted to skew or rotate a filetype which cannot be skewed or
rotated (for example JPEGs).

Error_IFR_NoColourMap
(Error &81A808)

Colour mapping not supported by filetype

Use

This error is returned when a rendering operation cannot be
performed because the renderer does not support colourmapping and
colourmapping has been requested by the client.

Error_IFR_BadInfoQuery
(Error &81A809)

Query type not recognised

Use

This error is returned when the ImageFileRender_Info query type has
not been recognised by the renderer.

Error_IFR_BadInfoLength
(Error &81A80A)

Bad query length

Use

This error is returned when the ImageFileRender_Info query type has
been recognised by the renderer, but the length supplied was not
understood.

Error_IFR_BadSpriteMode
(Error &81A810)

Bad sprite mode

Use

This error is returned by the sprite renderer when the image being
rendered uses a mode which is not understood by the system.

Error_IFR_BadSpriteFile
(Error &81A811)

Sprite file corrupt or contains unrecognised data

Use

This error is returned by the sprite renderer when the image being
rendered is malformed or contains data which is not understood.

Error_IFR_NoSuchSprite
(Error &81A812)

Sprite not found

Use

This error is returned by the sprite renderer when it cannot locate
the sprite named in the extension data.

Entry Points

IFR_Start
(0)

Initialisation routine for ImageFileRender

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data, 0 initially

R2=0
R12=Workspace value on entry to ImageFileRender_Register

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The 'start' routine is called before any operations are applied to an
image. This allows clients to cache information relevant to the image
such that subsequent calls do not have to re-read the data. If the
image data is not recognised, it should be faulted. Errors should be
reported by setting V and returning an error block in R0.

Clients may fill in the private word with cached data. Usually this is a
pointer to some workspace specific to this image.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)

Related entry points
IFR_Stop (on page 491)

IFR_Stop
(1)

Finalisation routine for ImageFileRender

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data

R2=0
R12=Workspace value on entry to ImageFileRender_Register

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The 'stop' routine is called after all operations are applied to an
image. This allows clients to release space allocated for cache
information relevant to the image. If there is any internal error, the
client should tidy up as best it can and return an error. Errors should
be reported by setting V and returning an error block in R0.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)

Related entry points
IFR_Start (on page 489)

IFR_Render
(2)

Rendering routine for ImageFileRender

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data

R2=Pointer to rendering descriptor:
Offset Contents
+0 Flags :

Bit(s) Meaning
0-2 Reserved, must be zero

3 Colour mapping function supplied
4-5 Reserved, must be zero
6-9 Quality to render at:

Value Meaning
0 Use default quality
1 Lowest quality

2-14 Renderer specific values
15 Highest quality

10-31 Reserved, must be zero
+4-24 Transformation matrix to apply (standard format)
+28 Minimum X clipping rectangle in external coordinates
+32 Minimum Y clipping rectangle in external coordinates
+36 Maximum X clipping rectangle in external

coordinates
+40 Maximum Y clipping rectangle in external

coordinates
+44 Pointer to colour mapping routine
+48 Workspace for colour mapping routine

R12=Workspace value on entry to ImageFileRender_Register

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The rendering routine is called to render an image using a given
transformation. If the image data is not recognised, it should be
faulted. Errors should be reported by setting V and returning an
error block in R0.

The clipping rectangle passed represents the graphics rectangle as
external coorinates (OS units) which is currently in use. It is provided
for information such that rendering can take advantage of fast
rejection of regions which do not need to be redrawn.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)
SWI ImageFileRender_Render (on page 459)

IFR_BBox
(3)

Bounding box function for ImageFileRenderer

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data

R2=Pointer to bounding box descriptor:
Offset Contents
+0 Flags (0)
+4-24 Transformation matrix to apply (standard format)
+28 Minimum X position in Draw coordinates
+32 Minimum Y position in Draw coordinates
+36 Maximum X position in Draw coordinates
+40 Maximum Y position in Draw coordinates

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The bounding box routine is called to calculate the bounding box for
a given transformation. If the image data is not recognised, it should
be faulted. Errors should be reported by setting V and returning an
error block in R0. The bounding box should be returned in draw
coordinates for the images extent. That is, OS units * 256. Resolution
values should be provided for information. If no DPI information is
available, 180 (the screen resolution) should be returned.

If bit 3 of the renderer flags was clear on registration, the
transformation matrix will be an identity matrix and can effectively
be ignored. The scaling to the clients required size will be performed
by ImageFileRender module based on the bounding box returned.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)
SWI ImageFileRender_BBox (on page 462)

IFR_DeclareFonts
(4)

Declare fonts function for ImageFileRenderer

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data

R2=Pointer to declare fonts descriptor:
Offset Contents
+0 Flags (0)
+4 Flags to pass to PDriver_DeclareFont

On exit
None

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The font declaration routine need only be provided by renderers
which use fonts. The renderer should call SWI PDriver_DeclareFont
with the names of all fonts and the flags passed in R4. If the image
data is not recognised, it should be faulted. Errors should be
reported by setting V and returning an error block in R0.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)
SWI ImageFileRender_DeclareFonts (on page 466)

IFR_Info
(5)

Information function for ImageFileRenderer

On entry
R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data
+12 Image sequence number
+16 Private image data

R2=Pointer to information descriptor:
Offset Contents
+0 Query type
+4 Query data length
+8 Pointer to data block to take details from / fill in

On exit
R0=If V flag set, a pointer to an error block, or a special error code :

Value Meaning
1 Invalid query type - the query was not understood.
2 Invalid query length - the query was understood but its

length was invalid.

Interrupts
Interrupts are disabled
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Entry point is re-entrant

Use

The information routine should be provided by renderers to query
information about the images. The routine should fault invalid
queries and invalid query lengths.

Related SWIs
SWI ImageFileRender_Register (on page 471)
SWI ImageFileRender_Deregister (on page 473)
SWI ImageFileRender_Info (on page 467)

*Commands

*ImageFileRenderers
List renderers registered with ImageFileRender

Syntax
*ImageFileRenderers

Parameters
None

Use

*ImageFileRenderers is used to list the renderers known to the
ImageFileRender module. This can be used to check which file
formats are available for use with ImageFileRender from the
command line.

Examples
*ImageFileRenderers &695 00000000 ConvertGIF 0.08 RISCOS
Ltd (via IFC)
&69c 00000000 ConvertBMP 0.05 RISCOS Ltd (via IFC)
&69e 00000000 ConvertPNM 0.02 RISCOS Ltd (via IFC)
&aff 00000000 ImageFileRender 0.25 RISCOS Ltd
&b60 00000000 ConvertPNG 0.09 RISCOS Ltd (via IFC)
&b61 00000000 ConvertXBM 0.06 RISCOS Ltd (via IFC)
&c85 00000000 ImageFileRender 0.25 RISCOS Ltd
&d94 00000000 IFR Artworks 0.08 RISCOS Ltd
&fc9 00000000 ConvertSun 0.05 RISCOS Ltd (via IFC)
&ff9 66990101 ImageFileRender 0.25 RISCOS Ltd

Related SWIs
SWI ImageFileRender_EnumerateRenderers (on page 474)
SWI ImageFileRender_Register (on page 471)

*ImageFileViewer
Sets the default viewer to use for files known to ImageFileRender

Syntax
*ImageFileViewer [<command>]

Parameters
None

Use

*ImageFileViewer is used to register a command which can be used
to view files known to ImageFileRender. The Alias$@RunType_XXX
variables will be set for filetypes known to ImageFileRender which
have not already been set. If no parameter is passed to the command,
the default viewer wil be cleared and all the variables will be unset.

The effect of issuing this command is that any files know to
ImageFileRender which are not recognised by running applications
when double-clicked in Filer (or run explicitly) will cause the
command specified to be run, passing the filename of the file run as
the first parameter.

Examples
*ImageFileViewer /<ImgViewer$Dir>.!Run -file %*0

Related APIs
None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
pre-1 AMH Pre-release

● Converted from original text
to XML

pre-2 AMH Pre-release
● Modified

ImageFileRender_BBox to
add sequence number.

● Modified service call names
to Render rather than
Renderer.

● Updated the base details
query.

pre-3 20 Nov 2002 ROL Validated
● XML validated.
● Corrected sections which

were undefined (IRQ, FIQ,
Reentrancy).

pre-4 21 Jan 2003 ROL Misc corrections
● Corrected the DPI size

given for drawfiles.
● Added details of start and

stop operations.
● Finished off remaining

undefined sections.
● Added error message

definitions.
pre-5 31 Jan 2003 ROL Added Enumerate SWI

● Added documentation about
EnumerateRenderers SWI.

pre-6 21 Jan 2003 ROL Misc corrections
● Correction for

ImageFileRender_Transform
description.

pre-7 15 Feb 2003 ROL New commands
● Added documentation of

ImageFileRenderers and
ImageFileViewer
commands.

pre-8 06 Apr 2003 ROL Misc corrections
● Added magic error values

for IFR_Info.
● Corrected documentation of

IFR_BBox parameter block.
● Added hyperlinks to

mailto:gerph@gerph.org

ImageFileRender_Register
and a few related
references.

pre-8 01 May 2004 ROL Table correction
● ImageFileRender_Render's

R8 table has been clarified.
1 17 Oct 2020 Gerph Backported text file changes

● Backported changes from
the text version.

● Bitfields for the quality were
incorrectly specified one bit
short (should be bits 6-9)

● Range for query types didn't
actually match up
consistently.

● Renderer name wasn't
specified in the
documentation, although it
was expected for
presentation.

Disclaimer:Part or all of this document has been worked upon by Andrew Hill
of MH Software as part of the RISC OS Documentation Project.
Those portions are Copyright © MH Software, 2001-2003. They
are to be distributed by RISC OS Ltd. with permission for
publication on the select.riscos.com website and Select CD.
The remainder of this work retains the copyrights stated above.
No responsibility will be borne by MH Software for the accuracy
of this work, nor for any losses which may result from it.

Video drivers (supplement for RISC
OS Pyromaniac)

Introduction and Overview
The video system was traditionally been part of the RISC OS Kernel.
However, this overly complicated the assembler portion of the Kernel,
made new hardware harder to support, and meant that providing
more flexible and faster rendering was significantly impeded. In RISC
OS Select 3, the video system was moved out of the Kernel and
became a set of regular modules.

There are a number of parts of the video system which were handled
by the RISC OS Kernel, and which have been made available through
a standard RISC OS vector. These parts are, from lowest level to
highest level:

● Mode and frame buffer initialisation. These are handled by
a hardware driver such as VideoHWVIDC, VideoHWVF or
VideoHWPL110.

● Pointer operations. These are usually handled by the
hardware driver.

● VDU 4 text. These are, by default, handled by the software
driver, VideoSW, but may be accelerated.

● Graphics operations. These are also handled by the
software driver.

● Sprite operations. These are still handled by the Kernel, but
are already vectored through SpriteV.

● Teletext operations. These are handled by the VideoTTX
module.

This separation makes the maintenance of the video system much
easier, and allows runtime modifications to its behaviour. In
additioon, the video system has been extended to allow for multiple
displays by allowing a separate driver to take over the graphics
system. Although in RISC OS Select this was a limited operation,
allowing only a single active display at any time, the framework
provided allows for greater flexibility in the future.

Technical details
The graphics system has been split up in modern versions of RISC
OS. The intention of the division of the system is to allow for
accelerated graphics drivers. Graphics operations will be passed to
drivers using the new VideoV (on page 510) vector (&2C). The
operation to be performed is passed in a fixed register to the vector.

The reason codes for the vector are grouped into the major regions
that they cover:

● &000 - &00F - Text (VDU 4) operations
● &010 - &1FF - Graphics (OS_Plot and similar) operations
● &200 - &2FF - Pointer operations
● &300 - &3FF - Mode and display driver operations
● &400 - &4FF - Teletext operations

Text and graphics operations are provided by the VideoSW module on
the VideoV vector. Should there be no accelerated handler earlier on
the vector the VideoSW driver will provide the operation.

Text operations

Text operations may be accelerated by the driver, or if no
implementation is provided they will be provided by the VideoSW
module. Drivers should pay attention to the current display start as
set with VideoV 18 (on page 529) in order to know whether their
display, or a sprite output has been selected.

Graphics operations

Graphics operations may be accelerated by the driver, or if no
implementation is provided they will be provided by the VideoSW
module. Drivers should pay attention to the current display start as
set with VideoV 18 (on page 529) in order to know whether their
display, or a sprite output has been selected.

Coordinates

All coordinates passed to the functions have taken account of the
eigen-factors for the output. They describe the pixels from the bottom
left corner of the output. Many interfaces will require that these
coordinates be inverted by subtracting them from the screen height
to get the offset from the top of the screen. Coordinates are signed.

Colour operation

The graphic operations may use a special values in R6 to indicate the
type of colour operation being performed. Whilst these may be a

fixed 'OR-EOR' pattern (see VideoV 16 (on page 526) and VideoV 17
(on page 528) for more details), they may also take one of 4 special
values. Clients may use these values as a short hand notation to
remove the need to check on every graphic operation the whether
the operation can be accelerated or not. The values are :

Value Meaning
0 No effect - the operation can just return
1 Use the last set Colour 1
2 Use the last set Colour 2
3 Invert destination

Any value other than these special values is a pointer to an ECF. If
either of bit 0 or 1 is set on these pointers it should be ignored by the
driver. This allows for future expansion.

Graphics context

The graphics operations may use a block in R7 to determine the
current graphics context. This contains a number of values which
may vary between calls. Clients should check these against each
operation.

Offset Contents
+0 Graphics clipping window x-min (inclusive)
+4 Graphics clipping window y-min (inclusive)
+8 Graphics clipping window x-max (exclusive)
+12 Graphics clipping window y-max (exclusive)
+16 Function to call to render a bounded horizontal line (on

page 615)
+20 Function to call to render a unbounded horizontal line (on

page 615)
+24 Function to call to render a bounded point (on page 617)
+28 Function to call to render a unbounded point (on page 615)

The functions for bounded and unbounded point rendering have the
same interface, but the bounded entry points should clip the
rendering to the supplied clipping window.

Pointer operations

Pointer operations are generated by the OSPointer module. The
hardware driver should provide an implementation which does not
affect the screen buffer (for example, by hardware overlay).

Mode operations

The mode operations are generally only handled by hardware drivers.
Each driver will usually decide whether to handle the operation
based on the display number. The only exception to this is the display
selection entry point (on page 587) which must be handled by all
clients in order to determine whether the display is selected.

Teletext operations

Teletext operations are provided as a software supported device
driver. Once a teletext mode has been selected, the teletext
operations will be passed through the vector in place of the standard
text operations. A few of the operations have been modified in order
to provide more specialised operations in the teletext modes. Only a
single teletext mode is ever in use at any time. Sprite redirection
does not allow for teletext within sprite images.

Display device registration

Display devices should register themselves with the Operating
System using OS_ScreenMode 255, and deregister when they have
been terminated with OS_ScreenMode 254.

The order of operations for a display driver on initialisation should be
along the lines of:

● Set private display number variable to -1.
● Initialise any video hardware to a functioning, but disabled

state. This may include setting up a display buffer.
● Claim VideoV vector.
● Construct a display device descriptor for the hardware.
● Call OS_ScreenMode 255 to register the display.
● If an error was returned, release all resources and exit with

the error.
● Set private display number variable to the value returned.
● Store the VSync dispatcher and its workspace pointer for

use later
● If R3 was set to 1, issue OS_ScreenMode 11 to select the

display number supplied.
● If an error was returned from the display selection, attempt

to select a known supported mode with OS_ScreenMode 0.
If a further error is returned, release all resources and exit
with the error.

● Complete initialisation and return with no error.

During finalisation it is important that the device shut itself down
safely. The following sequence is recommended:

● Set the private display number variable to -1, such that no

vector calls will be interpreted and that VSyncs will no
longer be triggered by the driver.

● Release the VideoV vector to prevent any other calls being
serviced.

● Disable VSyncs for the hardware.
● Call OS_ScreenMode 254 to deregister the display.
● Release other hardware resources, shutting the hardware

down to its most quiescent state.
● Release any other claimed resources.
● Complete finalisation and return with no error.

During the reset sequence, Service_PreReset will be issued. As with
other hardware drivers, the hardware should be placed into a
quiescent state, and interrupts disabled where necessary. The driver
should place itself in a state similar to that of finalisation, except that
the VideoV vector may be called and operations on the display buffer
may still be performed by other components. Hardware may not have
any reset lines asserted or similar within the system and it must be
possible for the initialisation sequence to successfully start the
hardware from the state which Service_PreReset placed it.

Details of OS_ScreenMode 255, 254 and the display device descriptor
can be found in the OSScreenMode documentation.

Software vectors

Vector VideoV
(Vector &2C)

Graphics operation abstraction

On entry
R0 - R6=Dependant on reason code

R7=Display number (where relevant)
R8=Reason code

Value Meaning
0 Notifies the text system when redirection occurs

(on page 515)
1 Defines the bitmap of a text character (on page

517)
2 Change the colour used for rendering text (on

page 518)
3 Render a character on the screen (on page 520)
4 Render a cursor on the screen (on page 522)
5 Clear a region of the screen for text (on page 524)

16 Selects a colour to use as the primary drawing
colour (on page 526)

17 Selects a colour to use as the secondary drawing
colour (background) (on page 528)

18 Notifies the graphics system when redirection
occurs (on page 529)

19 Notifies the graphics system that the destination
base has changed (on page 531)

20 Read primitive operations to use for the current
output (on page 532)

21 Render a rectangle (on page 534)
22 Render a triangle (on page 536)
23 Render a parallelogram (on page 538)
24 Copy a rectangle (on page 540)
25 Render the outline of a circle (on page 542)
26 Render a filled circle (on page 544)
27 Render the outline of an circle arc (on page 546)
28 Render a filled segment of a circle (on page 548)
29 Render a filled sector of a circle (on page 550)
30 Render the outline of an ellipse (on page 552)
31 Render a filled ellipse (on page 554)
32 Fill a line right from a position (on page 556)
33 Fill a line left and right from a position (on page

558)
34 Flood fill a region (on page 560)
35 Fill multiple horizontal lines (on page 562)

512 Define a pointer shape (on page 564)
513 Select a pointer for use (on page 565)
514 Updates the location of the pointer on the screen

(on page 566)
515 Removes the pointer from the screen (on page

Value Meaning
567)

516 Set a colour used by the pointer (on page 568)
768 Check the validity of a mode (on page 569)
769 Select a screen mode for use (on page 571)
770 Hardware scroll of the display (on page 573)
771 Change displayed colours in paletted modes (on

page 575)
772 Enable display hardware (on page 577)
773 Disable display hardware (on page 578)
774 Select a power saving mode for the display (on

page 579)
775 Modify RGB mapping tables (gamma tables) (on

page 581)
776 Configure acceleration options (on page 583)
777 Immediate control operations for acceleration (on

page 585)
778 Select a display for use (on page 587)
800 Read number of supported screen banks (on page

588)
801 Change the displayed screen bank (on page 590)
802 Change the screen bank used by VDU drivers (on

page 592)
803 Copy a screen bank (on page 594)

1024 Initialise teletext mode (on page 596)
1025 Clear a region of the display (on page 598)
1026 Update the frame buffer with teletext changes (on

page 600)
1027 Write a character to the teletext screen (on page

601)
1028 Scroll a region of the teletext buffer (on page 603)
1029 Change the flash state of the teletext buffer (on

page 605)
1030 Read a character from the teletext buffer (on page

607)
1031 Invert the text cursor in the teletext screen (on

page 609)
1032 Change the quality of teletext rendering (on page

611)
1033 Change the reveal state for hidden characters (on

page 613)

On exit
R0 - R7=Dependant on reason code

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

The vector should be claimed when it is handled entirely within the
driver.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Only teletext calls are issued by the graphics system.

Related APIs
None

Vector VideoV 0
Text_ChangeDestination

(Vector &2C)
Notifies the text system when redirection occurs

On entry
R0=pointer to the base of the destination (DisplayStart)
R1=line length for this destination (LineLength)
R2=maximum height in text lines (ScrBRow)
R3=destination log2bpp depth (Log2BPP)
R4=mode flags for destination (ModeFlags)
R8=0 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called a new destination has been selected for output.
In particular, it will be called on mode change and sprite redirection.
Clients should initialise any variables which are necessary for their
operation. Clients wishing to handle the entire Text interface may
claim this call point, but it is strongly recommended that the call be
passed on.

The mode flags will indicate any special features which are present in
the mode specified. In particular:

Bit(s) Meaning
2 'Gap mode', indicating that characters will be spaced 9 rows

apart, rather than 8 - leaving a single line which will not be
written to.

This flag is deprecated and support is not required of any
clients.

3 'BBC gap mode', should be treated as identical to Bit 2.

This flag is deprecated and support is not required of any
clients.

5 Double height-VDU characters, indicating that characters
should be written 16 units high, rather than 8

This flag is deprecated and support is not required of any
clients.

This vector should never be claimed.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1
Text_DefineChar

(Vector &2C)
Defines the bitmap of a text character

On entry
R0=the character to define (32-255)
R0=pointer to word aligned 8 bytes to use as the character
R8=1 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to define a character. Clients should normally
make a note of the changes and pass this call on.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 2
Text_SetTextColour

(Vector &2C)
Change the colour used for rendering text

On entry
R0=foreground screen colour
R1=background screen colour
R2=BPP of the current mode
R8=2 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called whenever the text colour has been changed and
text output is about to be performed. It is expected that clients
initialise any cached data they require in order to render characters
in the new colours. The colours supplied are values to be written to
the screen for that pixel, for example, in 2 BPP modes, a foreground
colour of 3 would be used to indicate that all pixels set for that
character would use the value 3 in memory. Clients may need to
replicate these bits across a word in order to perform operations
more rapidly, however implementation details are left to the client's
discretion.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)
VideoV 3 (on page 520)

Vector VideoV 3
Text_WriteTextChar

(Vector &2C)
Render a character on the screen

On entry
R0=character to write (32-255)
R1=pointer to address of top left pixel to write (word aligned) on the

screen
R2=character x (origin top left)
R3=character y (origin top left)
R8=3 (reason code)

On exit
R0 - R8corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to render a character on the screen at a text
position. Characters are 8x8 pixels in all modes and should be
rendered in the colours specified by VideoV 2 (on page 518). Unset
pixel data for the character should use the background colour, and
set pixel data for the character should use the foreground colour.
Registers R2 and R3 are provided for clients which require the actual
pixel position to render the character.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 4
Text_TextCursor

(Vector &2C)
Render a cursor on the screen

On entry
R0=composite cursor position (&SS0000EE)
R1=pointer to address of top left pixel for the character (word

aligned) on the screen
R2=character x (origin top left)
R3=character y (origin top left)
R4=offset of start of the cursor, from R1
R5=offset of line after the end of the cursor, from R1
R8=4 (reason code)

On exit
R0 - R8corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to render a 'cursor' at a text position. This
should be an inverted rectangle which spans the lines of the
character requested by R0, or R4 and R5. The composite cursor mask
is provided for clients which use the pixel position of the character to
render the shape. The cursor should be rendered at the character
specified by inverting the current contents of that location. The
vector will be called repeatedly in order to 'flash' the cursor. In 'split'
editing mode, the vector will be called to render whichever cursor
requires redrawing.

The composite cursor position indicates the start and end lines of the

cursor by the SS and EE values. The EE value is the last line that
should be drawn. Thus, SS=6, EE=7 would invert lines 6 and 7 within
the character. Similarly, SS=8, EE=9 would invert lines 8 and 9
within the character. Line 8 and 9 are only applicable to gap-modes.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 5
Text_ClearBox
(Vector &2C)

Clear a region of the screen for text

On entry
R0=pointer to box description

Offset Contents
+0 left char x
+4 bottom char y
+12 right char x
+16 top char y
+20 top left address to start at (might be byte aligned)
+24 number of bytes to fill per line (might be byte aligned;

usually will be the same as LineLength)
+28 number of lines to fill
+32 character line size (8, 10, 16, 20)
+36 fill word for first 8/16 lines of each character
+40 fill word for subsequent lines (gap fill)

R8=5 (reason code)

On exit
R0 - R8corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to clear a region of the text window. The
supplied description block gives the character positions, and the
memory positions which require clearing. The clear operation should
be performed using the fill words given in +36 and +40. These words
will be the same unless the user is in a BBC-style gap mode. Such
modes are not expected to be used by clients in the future and
support may be omitted from accelerated modules. The software
implementation provides support for all combinations.

As with other text operations, the character positions are specified
with their origin at the top left.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 16
Graf_SetColour1

(Vector &2C)
Selects a colour to use as the primary drawing colour

On entry
R0=action type, for information purposes
R1=pointer to OR-EOR pattern to use

Offset Contents
+0 Value to OR in word for line 0
+4 Value to EOR in word for line 0
+8 Value to OR in word for line 1
+12 Value to EOR in word for line 1
+16 Value to OR in word for line 2
+20 Value to EOR in word for line 2
+24 Value to OR in word for line 3
+28 Value to EOR in word for line 3
+32 Value to OR in word for line 4
+36 Value to EOR in word for line 4
+40 Value to OR in word for line 5
+44 Value to EOR in word for line 5
+48 Value to OR in word for line 6
+52 Value to EOR in word for line 6
+56 Value to OR in word for line 7
+60 Value to EOR in word for line 7

R8=&10 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to set the primary colours to use for plotting
graphics operations. Clients should record the details. They may pre-
cache the values after determining whether they can handle the
operation type.

Lines are measured from the top left of the screen and should be
ANDed with 7. Consult the example VideoSW code for more details
(s/GrafPoint gives an obvious use).

Whilst many store and invert operations will be simple to accelerate
within drivers, the more complex operations may be deferred to the
software driver where necessary. In particular, drivers should be
aware that the operation pattern may not correspond directly to any
PLOT reason code. Users may manually select different colour
operations for different bit regions or lines.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)
VideoV 16 (on page 526)

Vector VideoV 17
Graf_SetColour2

(Vector &2C)
Selects a colour to use as the secondary drawing colour (background)

On entry
R0=action type, for information purposes
R1=pointer to OR-EOR pattern to use, as for VideoV 16 (on page

526)
R8=&11 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to set the secondary colour used for graphics
operations. This is commonly called the 'background colour'. The
operation is identical to that of VideoV 16 (on page 526).

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)
VideoV 16 (on page 526)

Vector VideoV 18
Graf_ChangeDestination

(Vector &2C)
Notifies the graphics system when redirection occurs

On entry
R0=pointer to context information

Offset Contents
+0 Mode flags
+4 Text screen width-1
+8 Text screen height-1
+12 Number of colours
+16 X-eigen factor
+20 Y-eigen factor
+24 Line length
+28 Total output size
+32 Base of the output buffer
+36 Log2 Bits Per Pixel
+40 Log2 Bits Per Addressable Pixel (hang-over from

double-width pixel modes)
+44 Graphics screen width-1
+48 Graphics screen height-2

R1=0 if the destination is the screen, otherwise the destination is a
sprite

R8=&12 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called whenever the output changes destination,
usually due to a mode change or sprite redirection. Drivers should
cache the context information for use within other calls. This vector
should never be claimed.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 19
Graf_ChangeBase

(Vector &2C)
Notifies the graphics system that the destination base has changed

On entry
R0=pointer to base of the buffer
R8=&13 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called when the output destination base address has
changed. It may be called under a number of circumstances,
including sprite deletion, mask changes and hardware scrolling.
Drivers should make a note of the new address and base all their
calculations from it.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 20
Graf_ReadPrimitives

(Vector &2C)
Read primitive operations to use for the current output

On entry
R0=pointer to where to store HLine handler (r12, function)
R1=pointer to where to store Point handler (r12, function)
R2=pointer to where to store VLine handler (r12, function)
R8=&14 (reason code)

On exit
R0=new pointer to where to store HLine details at
R1=new pointer to where to store Point details at
R2=new pointer to where to store VLine details at
R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to read the primitive operations which can be
used to render a horizontal line, a point and a vertical line. Since
these operations are expected to be called regularly it is important
that they be fast. Rather than using the vector dispatch for every line
or point to be rendered, a single function dispatch can be used -
obviating the need for a SWI call, and subsequent vector dispatch.
Consult the Graf_ReadPrimitives source for more details of the
operation.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 21
Graf_Rectangle

(Vector &2C)
Render a rectangle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x-min (inclusive)
+4 y-min (inclusive)
+8 x-max (exclusive)
+12 y-max (exclusive)

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&15 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a rectangle. Clients should bound the
coordinates if necessary and then plot the rectangle.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 22
Graf_Triangle
(Vector &2C)

Render a triangle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x0
+4 y0
+8 x1
+12 y1
+16 x2
+20 y2

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&16 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a triangle. Clients should plot the triangle,
bounded by the coordinates given.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 23
Graf_Parallelogram

(Vector &2C)
Render a parallelogram

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x0
+4 y0
+8 x1
+12 y1
+16 x2
+20 y2

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&17 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a parallelogram. Clients should plot the
parallelogram, bounded by the coordinates given. The coordinates
given are in no particular order. The fourth verex can be calculated
from the other three.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 24
Graf_BlockCopy

(Vector &2C)
Copy a rectangle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 source x0
+4 source y0
+8 source x1
+12 source y1
+16 destination x0
+20 destination y0
+24 destination x1
+28 destination y1

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&18 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to copy a rectangle from part of the display
elsewhere. No context or colour operation is provided. The region
has already been bounded to the screen and graphics window (both
the source and destination are guarenteed to be within the buffer).
The source data, where not overwritten, should be unaffected by the
copy operation.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 25
Graf_CircleOutline

(Vector &2C)
Render the outline of a circle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x edge
+12 y edge

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&19 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 26
Graf_CircleFill
(Vector &2C)

Render a filled circle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x edge
+12 y edge

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1A (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a circle. Clients should plot the circle,
bounded by the coordinates supplied if necessary.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 27
Graf_CircleArc

(Vector &2C)
Render the outline of an circle arc

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x start
+12 y start
+16 x end
+20 y end

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1B (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to draw an arc. Clients should plot the arc,
bounded by the coordinates supplied if necessary. The coordinate
order and meaning is identical to that used by the PLOT arc
operation. That is, first coordinate pair indicates the centre of the
circle, the second pair provides the start position on the edge of the
circle, and the final pair provides the end position as a point on a line
that intersects the circle. The arc should be drawn anti-clockwise.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 28
Graf_CircleSegment

(Vector &2C)
Render a filled segment of a circle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x start
+12 y start
+16 x end
+20 y end

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1C (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to draw a segment. Clients should plot the
segment, bounded by the coordinates supplied if necessary. The
coordinate order is the same as VideoV 27 (on page 546). A segment
fills the arc shape, closing it with a line from the start position to the
intersection of the end position line and the circle.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 29
Graf_CircleSector

(Vector &2C)
Render a filled sector of a circle

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x start
+12 y start
+16 x end
+20 y end

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1D (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to draw a sector. Clients should plot the sector,
bounded by the coordinates supplied if necessary. The coordinate
order is the same as VideoV 27 (on page 546). A segment fills the arc
shape, closing it with a pair of lines from the start position to the
centre of the circle, and from the intersection of the end position line
and the circle to the centre of the circle. The shape is often known as
a 'pie' from the common shape produced by removing sections from
pies.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 30
Graf_EllipseOutline

(Vector &2C)
Render the outline of an ellipse

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x width
+12 ignored
+16 x limit point
+20 y limit point

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1E (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to draw an ellipse. Clients should plot the ellipse,
outline bounded by the coordinates supplied if necessary. The
coordinate order is the same as the equivilent PLOT ellipse
operation. That is, the first pair gives the centre position of the
ellipse, the second pair gives the width of the ellipse at centre line
(the y coordinate is ignored), and the final pair gives the position of
the top-most, or bottom-most limit of the ellipse.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 31
Graf_EllipseFill

(Vector &2C)
Render a filled ellipse

On entry
R0=pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x width
+12 ignored
+16 x limit point
+20 y limit point

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&1F (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to draw an ellipse. Clients should plot the solid
ellipse, bounded by the coordinates supplied if necessary. The
coordinate order is as for the VideoV 30 (on page 552) operation.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 32
Graf_FillRight
(Vector &2C)

Fill a line right from a position

On entry
R0=x start
R1=y start
R2=delimiting colour
R3=delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour
R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&20 (reason code)

On exit
R0corrupted
R1=right x position where fill ended
R2corrupted
R3=1 if anything was filled, 0 if nothing was filled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a line right until a given condition is met
(denoted by R2 and R3).

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 33
Graf_FillLeftAndRight

(Vector &2C)
Fill a line left and right from a position

On entry
R0=x start
R1=y start
R2=delimiting colour
R3=delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour
R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&21 (reason code)

On exit
R0=left x position where fill ended
R1=right x position where fill ended
R2corrupted
R3=1 if anything was filled, 0 if nothing was filled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to fill a line left and right until a given condition
is met (denoted by R2 and R3).

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 34
Graf_FillFlood
(Vector &2C)

Flood fill a region

On entry
R0=x start
R1=y start
R2=delimiting colour
R3=delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour
R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&22 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to perform a flood fill operation, stopping at a
given condition (denoted by R2 and R3).

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 35
Graf_PolyHLine

(Vector &2C)
Fill multiple horizontal lines

On entry
R0=pointer to buffer of horizontal line segments:

Offset Contents
+0 number of horizontal lines to draw
+4 1st horizontal line segment: x left position
+8 1st horizontal line segment: y position
+12 1st horizontal line segment: x right position
+16... Subsequent horizontal line segments

R6=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)
R8=&23 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to perform many horizontal line fill operations as
a single step. The block supplied must be copied if the driver is
intending to buffer these operations. Because this call is always
issued through the vector, clients should try to ensure that it is
worthwhile calling using this interface rather than the direct HLine
interface (see OS_ReadVduVariables).

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 512
Pointer_Define

(Vector &2C)
Define a pointer shape

On entry
R0=width
R1=pointer to pointer data
R2=height
R6=pointer number to define (0-3)
R7=display number
R8=&200 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to define one of the 4 pointer shapes. Pointer
shapes are pre-compensated for the 'active' position.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 513
Pointer_Select

(Vector &2C)
Select a pointer for use

On entry
R0=pointer number
R7=display number
R8=&201 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to select one of the pointers for use. Only one
pointer is ever displayed at a time.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 514
Pointer_Update

(Vector &2C)
Updates the location of the pointer on the screen

On entry
R0=height of the pointer
R1=y coordinate
R2=x coordinate
R3=screen height
R7=display number
R8=&202 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to update the location of the pointer on the
screen.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 515
Pointer_Remove

(Vector &2C)
Removes the pointer from the screen

On entry
R3=screen height
R7=display number
R8=&203 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to remove the pointer from the screen.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 516
Pointer_SetPalette

(Vector &2C)
Set a colour used by the pointer

On entry
R0=colour number to update
R1=colour number in form &00BBGGRR
R7=display number
R8=&204 (reason code)

On exit
R0 - R3corrupted

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to set the colour of the pointer.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 768
Mode_VetMode

(Vector &2C)
Check the validity of a mode

On entry
R0=pointer to a VIDC type 3 table
R1=memory required for the mode
R7=display number
R8=&300 (reason code)

On exit
V

flag
If set, indicates an error. The usual error pointer may be
supplied in R0, or if R0 is set to 0 this indicates that a generic
error will be returned.

If clear, indicates the mode is acceptable.

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to check the validity of a mode prior to selecting
it. Drivers should reject modes which they are incapable of
displaying.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 769
Mode_SetMode

(Vector &2C)
Select a screen mode for use

On entry
R0=pointer to a VIDC type 3 table
R1=memory required for the mode
R7=display number
R8=&301 (reason code)

On exit
R0=Pointer to base of screen area
R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to select a screen mode for use. It has already
passed the vetting procedure above so should be able to be selected.

Drivers should perform the following actions on a mode change:

● Default to the first screen bank for display and driver
● Release any claimed memory for alternate screen banks
● Clear the palette to black

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 770
Mode_Scroll

(Vector &2C)
Hardware scroll of the display

On entry
R0=number of scanlines to move down by (may be negative to scroll

up)
R1=number of bytes to which this equates
R2=background colour (word) to fill lines with
R3=background colour (word) to fill 'gaps' with
R7=display number
R8=&302 (reason code)

On exit
R0=address of screen base, or 0 if hardware scroll is not

supported. The address may be the same as the current
base if the operation can be performed with acceleration
(ie a 'move' operation). The address should be in the lower
mapping of the screen buffer if a doubly mapped area is in
use.

R1=State of exposed region:

Value Meaning
1 the exposed region has been cleared to the

requested background
0 the exposed region has not been cleared and must

be cleared by the OS
R2 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to request a hardware scroll of the device. The
scroll may be a change of the base of the area, as used by the VIDC
driver, or an accelerated copy operation. Drivers can just ignore this
operation, or return 0 for both R0 and R1 to indicate that the
hardware scroll is not supported. The Kernel can perform the
necessary operations if they are not supported by the driver.

Note: (R0 AND NOT 7) lines should be filled with R2.
(R0 AND 7) lines should be filled with R3.

This allows the system to provide gap modes in the same manner as
the BBC did.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 771
Mode_SetPalette

(Vector &2C)
Change displayed colours in paletted modes

On entry
R0=0-255 for regular palette entries

256 for 'border'

R1=colour in form &0sBBGGRR, where 's' indicates a supremacy
nibble which may be used for hardware masking operations. Its
default will be 0.

R7=display number
R8=&303 (reason code)

On exit
R0 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to change the displayed colours. The operation
of regular palette entries is defined within paletted modes only.
Drivers or hardware not supporting the screen 'border' colour should
ignore the operation. Drivers which cannot provide the full 24bit
colour specification should make best effort to match the colours
requested. The colours should be transformed by any RGB tables
specified in a separate call if the hardware does not support any
specific transformation configuration.

Where RGB tables are not supported by the hardware, it will be

necessary to take a copy of the palette entries.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 772
Mode_Enable
(Vector &2C)

Enable display hardware

On entry
R7=display number
R8=&304 (reason code)

On exit
R0 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to enable the display hardware. This operation is
intended to allow components to restart the display hardware for
client defined reasons. The Portable module may use this to control
the power to the hardware when requested.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 773
Mode_Disable
(Vector &2C)

Disable display hardware

On entry
R7=display number
R8=&305 (reason code)

On exit
R0 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to disable the display hardware. This operation
is intended to allow components to shut down and restart the display
hardware for client defined reasons. The Portable module may use
this to control the power to the hardware when requested.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 774
Mode_PowerSave

(Vector &2C)
Select a power saving mode for the display

On entry
R0=power saving state:

Value Meaning
-1 D0 DPMS state - Normal operation, display enabled
0 D0 DPMS state - No DPMS but display disabled if

possible (rest of the system will blank palette in this
state; VIDC will disable disable refresh and DMA in this
state)

1 D1 DPMS state - 'Standby'
2 D2 DPMS state - 'Suspend'
3 D3 DPMS state - 'Active off'
4 DPMS state supplied in modes VIDC type 3 table (ie

'default')
other will not be used

R7=display number
R8=&306 (reason code)

On exit
R0 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to select an immediate power-save mode should
be entered. Regardless of whether this call is handled or not, the
palette will be set to black. Drivers should expect to get palette
operations whilst blanked. They may wish to ignore these.

The state values (with the exception of -1) are directly modelled after
the DPMS states. -1 can be treated as equivilent to 0 for the purposes
of H/V sync control.

If mapping directly to HSync and VSync lines, these values are:

Value Meaning
0 HSync On, VSync On
1 HSync Off, VSync On
2 HSync On, VSync Off
3 HSync Off, VSync Off

Hardware may promote or demote these settings as it sees fit, but
this should be documented in hardware documentation as
appropriate.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 775
Mode_SetRGBTable

(Vector &2C)
Modify RGB mapping tables (gamma tables)

On entry
R0=pointer to 768 byte table of R, G, B mappings

R7=display number
R8=&307 (reason code)

On exit
R0 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to modify the RGB mapping tables, through
which the palette entries will be transformed. The palette should be
affected immediately. Where the hardware does not support RGB
mapping tables it will be necessary to translate all palette operations
through the tables. It is expected that unpaletted modes (16bpp,
32bpp) support this operation, even though they do not use palette
entries.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 776
Mode_AccelConfigure

(Vector &2C)
Configure acceleration options

On entry
R0=configuration flags, or -1 to read current state:

Bit(s) Meaning
0 suspend cached screen until mode change
1 suspend automatic screen cleaning until mode change
2 disable all hardware acceleration

3-30 reserved, must be 0
31 must be set

R1=automatic screen cleaning level, 1-3 or -1 to read current state
R7=display number
R8=&308 (reason code)

On exit
R0=new or current flags, modified to acceptable values
R1=new or current automatic cleaning level

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to control the generic acceleration options
provided by the video driver. The core acceleration options are to
provide a CPU cached screen. One effect of CPU cached screen is an
undesirable delay on data being written to the physical screen
memory from the processor. This data should be flushed by the driver
regularly, if it detects that data has been written to the screen. It is
usual to use abort trapping, domain mapped dynamic areas to
manage this process (consult the example VIDC driver).

Bit 0 and 1 can be used to suspend this operation until the next mode
change. Clients will probably use this for specialised tasks to ensure
that their output is immediately visible, such as within games or high
responsiveness applications.

Bit 2 is intended to allow clients to disable all hardware acceleration.
Whilst this is generally not desirable, it may be useful to clients who
either believe there to be faults within the hardware acceleration or
who wish to determine the difference made by hardware
acceleration. Hardware acceleration is should not be re-enabled by a
mode change as the client may wish to examine mode change
timings, or it may be believed that mode change acceleration is
faulty.

This vector call is triggered by OS_ScreenMode 4.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 777
Mode_AccelControl

(Vector &2C)
Immediate control operations for acceleration

On entry
R0=operation:

Value Meaning
0 clean cache immediately, if necessary and not

suspended
1 clean cache immediately, if necessary

other reserved
R1 - R6=dependant on reason code

R7=display number
R8=&309 (reason code)

On exit
R1 - R6=dependant on reason code

R7=display number

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to cause the screen to be made up to date if
necessary such that the data written to it is visible to the user. It is
likely that these operations will be used by games. The
WindowManager will use this call at the end of a series of redraw
operations.

This vector call is triggered by OS_ScreenMode 5 and 6 at present.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 778
Mode_DisplaySelect

(Vector &2C)
Select a display for use

On entry
R7=display number
R8=&30A (reason code)

On exit
R7=display number

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to inform display device drivers of a device
selection. Drivers should claim VSync interrupts when they are
enabled and begin generating VSyncs through the VSync dispatch
entry point returned when they registered with OS_ScreenMode 255.
Drivers should release the VSync interrupts when another device is
selected.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 800
Mode_BankCount

(Vector &2C)
Read number of supported screen banks

On entry
R0=size of current mode, in bytes
R7=display number
R8=&320 (reason code)

On exit
R0=number of banks available (1 if only a single bank

available)
R1 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to request the number of screen banks that can
be supported by the current configuration of the display. The driver
should return the maximum number of banks that may be supported
at the instant that the request was made. Subsequent driver
operations may cause this value to change.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 801
Mode_BankDisplay

(Vector &2C)
Change the displayed screen bank

On entry
R0=bank to display (0 .. max-1)
R1=size of current mode, in bytes
R7=display number
R8=&321 (reason code)

On exit
R0=bank we are displaying
R1=pointer to address of bank
R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to request a change of display bank. The display
bank is presented to the user. Both display and driver banks should
be available in memory simultaneously once selected and may both
be written to directly. They may be coincident. Once requested (and
the request honoured), the Driver should maintain the memory
allocated for that bank until the next mode change. Drivers are not
required to page all available, or used, banks into logical memory at
any time. At the drivers discretion it may remove mappings a bank
which is not the driver or display from logical memory. Clients are
not expected to access banks which are not selected. Drivers are not
expected to support hardware scrolling of any bank but the display
bank. Selection of a pre-existing bank should not clear its contents.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 802
Mode_BankDriver

(Vector &2C)
Change the screen bank used by VDU drivers

On entry
R0=bank to update through VDU drivers (0 .. max-1)
R1=size of current mode, in bytes
R7=display number
R8=&322 (reason code)

On exit
R0=bank we are displaying
R1=pointer to address of bank
R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to request a change of driver bank. The driver
bank is presented to the video drivers for writing to. Both display and
driver banks should be available in memory simultaneously once
selected and may both be written to directly. They may be coincident.
Once requested (and the request honoured), the Driver should
maintain the memory allocated for that bank until the next mode
change. Drivers are not required to page all available, or used, banks
into logical memory at any time. At the drivers discretion it may
remove mappings a bank which is not the driver or display from
logical memory. Clients are not expected to access banks which are
not selected. Drivers are not expected to support hardware scrolling
of any bank but the display bank. Selection of a pre-existing bank
should not clear its contents.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 803
Mode_BankCopy

(Vector &2C)
Copy a screen bank

On entry
R0=source bank number (0..max-1)
R1=destination bank number (0..max-1)
R2=size of current mode, in bytes
R7=display number
R8=&323 (reason code)

On exit
R2 - R3corrupted

R7=-1 if handled

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called when a client requests a copy of a screen bank
be made. If the destination bank has not yet been allocated it should
be allocated. The banks requested need not be paged in to logical
memory. Drivers which require the banks to be paged in to logical
memory for the copy to take place should take the necessary steps to
achieve this. This operation must not affect any other bank by the
destination. Clients are expected to perform a bank switch to update
the display bank, rather than a bank copy.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1024
TTX_Init

(Vector &2C)
Initialise teletext mode

On entry
R0=requested maximum text columns (ScrRCol)
R1=requested maximum text rows (ScrBRow)
R2=maximum horizontal pixel coordinate (XWindLimit)
R3=maximum vertical pixel coordinate (YWindLimit)
R4=x eigen factor
R5=y eigen factor
R7=display number
R8=&400 (reason code)

On exit
R0=acceptable text columns
R1=acceptable text rows

R2 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to initialise teletext mode. The values supplied in
R0 and R1 are the requested number of columns and rows for the
mode. The driver should either fit those values within the graphics
limitations of the mode, or modify the values to be acceptable before
return. The frame buffer does not need to be initialised.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1025
TTX_ClearBox
(Vector &2C)

Clear a region of the display

On entry
R0=left char x
R1=bottom char y
R2=right char x
R3=top char y
R7=display number
R8=&401 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to clear a region of the display. It is used after
mode selection and for CLS operations. The frame buffer does not
need to be updated.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1026
TTX_Update

(Vector &2C)
Update the frame buffer with teletext changes

On entry
R7=display number
R8=&402 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to update the frame buffer with the previously
applied changes. This is the primary point at which the frame buffer
should be modified.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1027
TTX_WriteChar

(Vector &2C)
Write a character to the teletext screen

On entry
R0=character
R1=x position
R2=y position
R7=display number
R8=&403 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to change the character at a given position. The
frame buffer does not need to be updated. The change of the
character may change not only the representation of the character at
that position, but also all subsequent character on that line and
(potentially) the characters on the line below.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1028
TTX_Scroll

(Vector &2C)
Scroll a region of the teletext buffer

On entry
R0=left char x
R1=bottom char y
R2=right char x
R3=top char y
R4=change in x position (negative = left, positive = right)
R5=change in y position (negative = up, positive = down)
R7=display number
R8=&404 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to scroll a region of the teletext buffer. The
frame buffer does not need to be updated. The change of the region
may also result in surrounding characters being changed in their
representation.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1029
TTX_FlashState

(Vector &2C)
Change the flash state of the teletext buffer

On entry
R0=Flags:

Bit(s) Meaning
0 Flash characters visible

1-31 Reserved, must be zero
R7=display number
R8=&405 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to update the state of the display with respect to
flashing characters. The frame buffer does not need to be updated.
This entry point may be called under interrupts.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1030
TTX_ReadChar

(Vector &2C)
Read a character from the teletext buffer

On entry
R0=x position
R1=y position
R7=display number
R8=&406 (reason code)

On exit
R0=character read

R1 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to read a character from the display at a
position. It is used during the character copying routines, via the
OS_Byte mechanisms.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1031
TTX_TextCursor

(Vector &2C)
Invert the text cursor in the teletext screen

On entry
R0=composite cursor position (&SS0000EE)
R2=x position (origin top left)
R3=y position (origin top left)
R7=display number
R8=&407 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called to invert a cursor on the screen. It is used to
flash the cursor whilst updating the display. It may be called under
interrupts.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1032
TTX_SetQuality

(Vector &2C)
Change the quality of teletext rendering

On entry
R0=Flags:

Bit(s) Meaning
0 High quality requested

1-31 Reserved, must be zero
R7=display number
R8=&408 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called in response to VDU23,18,16,flags| to set the
quality of the display. Display drivers may use it to provide a higher
quality (and potentially slower) implementation.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Vector VideoV 1033
TTX_RevealState

(Vector &2C)
Change the reveal state for hidden characters

On entry
R0=Flags:

Bit(s) Meaning
0 Concealed characters visible

1-31 Reserved, must be zero
R7=display number
R8=&409 (reason code)

On exit
R0 - R8preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
Vector is not re-entrant

Use

This vector is called in response to VDU23,18,2,flags| to change the
reveal state. Display drivers may update the hidden characters to be
visible immediately or defer this until an update.

Compatibility
RISCOS Ltd RISC OS ≥ Select 3

Supported

RISC OS Pyromaniac RISC OS ≥ 7.47
Supported

Related vectors
VideoV (on page 510)

Entry points

VideoV_Context_HLine
Draw horizontal line

On entry
R0=X left coordinate
R1=Y coordinate
R2=X right coordinate
R3=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)

On exit
R0 - R7preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
Not defined

Use

This entry point is provided as part of the graphics context. It may be
used by any of the operations called by VideoV to effect a horizontal
line. This allows a VideoV claimant who has been requested to draw a
shape to render without knowing the specifics of how to access the
screen.

The VideoV system will pass the request to draw the line to the
registered drivers as a primitive rendering operation.

The functions for bounded and unbounded line rendering have the
same interface, but the bounded entry points should clip the
rendering to the supplied clipping window.

Related entry points
VideoV_Context_Point (on page 617)

VideoV_Context_Point
Plot a point

On entry
R0=X coordinate
R1=Y coordinate
R2=Colour operation (on page 506)
R7=pointer to Graphics context (on page 507)

On exit
R0 - R7preserved

Interrupts
Interrupts are undefined
Fast interrupts are undefined

Processor mode
Processor is in undefined mode

Re-entrancy
Not defined

Use

This entry point is provided as part of the graphics context. It may be
used by any of the operations called by VideoV to effect a single
point. This allows a VideoV claimant who has been requested to draw
a shape to render without knowing the specifics of how to access the
screen.

The VideoV system will pass the request to plot the point to the
registered drivers as a primitive rendering operation.

The functions for bounded and unbounded point rendering have the
same interface, but the bounded entry points should clip the
rendering to the supplied clipping window.

Related entry points
VideoV_Context_HLine (on page 615)

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: Revision Date Author Changes
1 28 Oct 2006 Gerph Initial version

● Released as part of
the Video SDK

2 30 Mar 2023 Gerph Updated for PRM-in-
XML
● Transferred content

to PRM-in-XML
format

3 17 May 2023 Gerph Updated for RISC OS
Pyromaniac
● Updated with

details of
compatibility

● Fixed some validity
problems

Disclaimer:© Gerph, 2006-2023.

mailto:gerph@gerph.org

PathUtils

Introduction
The PathUtils module provides an interface to manipulate system
variables used as path variables by FileSwitch. That is, variables
ending '$Path' which are used as references to multiple paths in
filenames.

SWI calls

PathUtils_EnumeratePath
(SWI &53B80)

Enumerate the components of a path variable

On entry
R0=Flags:

Bit(s) Meaning
0 Set: Return all components of the path recursively

Clear: Return only leaf components of the path
1-31 Reserved, must be 0

R1=Pointer to path to process
R2=Pointer to output buffer
R3=Maximum length of the buffer, or 0 to request length
R4=Opaque context value, or 0 for the first call

On exit
R0 - R2preserved

R3=Number of spare bytes in the buffer
R4=Context value, or -1 if complete (and the other registers are

invalid)
R5=Variable type that the value was expanded from
R6=Depth the value was expanded from

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to enumerate the components of a path variables.
The path variable is expanded recursively. If R0 bit 0 is set, each path
component will be returned in the results, even it is not terminal
itself.

Related APIs
None

PathUtils_JoinPath
(SWI &53B81)

Join a new path to a path variable

On entry
R0=Flags:

Bit(s) Meaning
0 Set: Append the supplied path

Clear: Prepend the supplied path
1-31 Reserved, must be 0

R1=Pointer to variable name to modify
R2=Pointer to path component to join

On exit
R0 - R2preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to join a path to an existing path variable. If the
component already exists in the path variable, it will not be added.

Related * commands
*AppPath (on page 624)
*PrepPath (on page 625)

PathUtils_RemovePath
(SWI &53B82)

Remove a path from a path variable

On entry
R0=Flags:

Bit(s) Meaning
0-31 Reserved, must be 0

R1=Pointer to variable name to modify
R2=Pointer to path component to remove

On exit
R0 - R2preserved

Interrupts
Interrupts are undefined
Fast interrupts are enabled

Processor mode
Processor is in SVC mode

Re-entrancy
SWI is not re-entrant

Use

This SWI is used to remove a path from an existing path variable. If
the component is not present, the variable will not be modified.

Related * commands
*RemPath (on page 626)

*Commands

*AppPath
Append a path component to a path variable

Syntax
*AppPath <path-variable> <path-component>

Parameters
<path-variable> - name of the path variable to append to
<path-component> - name of the path to append to the variable

Use

This command appends a given path component to a path variable. If
the path is already present, it has no effect.

Examples
*AppPath Run$Path $.Library.

Related * commands
*PrepPath (on page 625)

Related SWIs
SWI PathUtils_JoinPath (on page 622)

*PrepPath
Prepend a path component to a path variable

Syntax
*PrepPath <path-variable> <path-component>

Parameters
<path-
variable>

- name of the path variable to append to

<path-
component>

- name of the path to insert at the start of the path
variable

Use

This command prepends a given path component to a path variable,
inserting the path at the start of the variable's value. If the path is
already present, it has no effect.

Examples
*PrepPath Run$Path $.Library.

Related * commands
*AppPath (on page 624)

Related SWIs
SWI PathUtils_JoinPath (on page 622)

*RemPath
Remove a path component from a path variable

Syntax
*RemPath <path-variable> <path-component>

Parameters
<path-variable> - name of the path variable to change
<path-
component>

- name of the path to remove from the path
variable

Use

This command removes a given path component from a path variable.
If the variable is not present, the variable is not changed.

Examples
*RemPath Run$Path $.Library.

Related SWIs
SWI PathUtils_RemovePath (on page 623)

Document information
Maintainer(s):Gerph <Gerph@gerph.org>

History: Revision Date Author Changes
1 6 Oct 2006 gerph Initial version

● Original
documentation.

2 8 May 2023 gerph PRM-in-XML version
● Recreated

documentation in
PRM-in-XML format.

Disclaimer:© Gerph, 2006-2023.

mailto:Gerph@gerph.org

Index (Commands)
Commands Page
*AppPath 624
*DHCP 426
*DHCPStatus 427
*Desktop_AcornURI 126
*ImageFileRenderers 501
*ImageFileViewer 502
*PrepPath 625
*RemPath 626
*URIdispatch 129
*URIinfo 128
*URLProtoShow 189

*AppPath

Index (SWIs)
Number SWIs Page
&4E004 Clipboard_CatchDrop 88
&4E001 Clipboard_Get 60
&4E002 Clipboard_GetDataType 68
&4E000 Clipboard_Put 54
&4E003 Clipboard_StartDrag 84
&51982 CryptRandom_AddNoise 296
&51983 CryptRandom_Block 297
&51980 CryptRandom_Byte 294
&51981 CryptRandom_Stir 295
&51984 CryptRandom_Word 298
&55E00 DHCPClient_Control 422
&55E02 DHCPClient_Enumerate 425
&55E01 DHCPClient_State 423
&4264D Filter_DeRegisterIconBorderFilter 336
&4264C Filter_RegisterIconBorderFilter 334
&562C1 ImageFileRender_BBox 462
&562C3 ImageFileRender_DeclareFonts 466
&56267 ImageFileRender_Deregister 473
&56268 ImageFileRender_EnumerateRenderers 474
&56264 ImageFileRender_Info 467
&56266 ImageFileRender_Register 471
&562C0 ImageFileRender_Render 459
&56265 ImageFileRender_RendererInfo 470
&562C2 ImageFileRender_Transform 464
&1C OS_Mouse 309
&64 OS_Pointer 2 - ReadAltPosition 311
&6C OS_ResyncTime 375
&7 OS_Word 15, 5 374
&53B80 PathUtils_EnumeratePath 620
&53B81 PathUtils_JoinPath 622
&53B82 PathUtils_RemovePath 623
&57D80 RouterDiscovery_Control 409
&57D80 RouterDiscovery_Control 0 -

ActivateHost
410

&57D80 RouterDiscovery_Control 1 -
ActivateRouter

412

&57D80 RouterDiscovery_Control 2 - Deactivate 414
&57D81 RouterDiscovery_Status 415
&47AC0 ShareFS_CreateShare 389
&47AC2 ShareFS_EnumerateShares 392

Number SWIs Page
&47AC3 ShareFS_IdentifyShare 394
&47AC1 ShareFS_StopShare 391
&58B81 TimerManager_Claim 357
&58B84 TimerManager_Convert 362
&58B82 TimerManager_Release 359
&58B80 TimerManager_ReturnNumber 356
&58B83 TimerManager_SetRate 360
&4E381 URI_Dispatch 109
&4E383 URI_InvalidateURI 114
&4E382 URI_RequestURI 112
&4E380 URI_Version 107
&83E06 URL_Deregister 154
&83E09 URL_EnumerateProxies 168
&83E08 URL_EnumerateSchemes 166
&83E01 URL_GetURL 143
&83E07 URL_ParseURL 155
&83E07 URL_ParseURL 0 - ReturnLengths 158
&83E07 URL_ParseURL 1 - ReturnData 160
&83E07 URL_ParseURL 2 -

ComposeFromComponents
162

&83E07 URL_ParseURL 3 - QuickResolve 164
&83E21 URL_ProtocolDeregister 174
&83E20 URL_ProtocolRegister 171
&83E03 URL_ReadData 148
&83E00 URL_Register 141
&83E04 URL_SetProxy 150
&83E02 URL_Status 146
&83E05 URL_Stop 152
&400C2 Wimp_CreateIcon 267
&400C1 Wimp_CreateWindow 262
&400FB Wimp_Extend 279
&400D1 Wimp_ForceRedraw 274
&400D3 Wimp_GetCaretPosition 51
&400CC Wimp_GetWindowInfo 273
&400E0 Wimp_GetWindowOutline 276
&400CB Wimp_GetWindowState 272
&400C0 Wimp_Initialise 261
&400C5 Wimp_OpenWindow 269
&400F5 Wimp_RegisterFilter 277
&400D2 Wimp_SetCaretPosition 35
&400D2 Wimp_SetCaretPosition 0 - Remove 39

ShareFS_IdentifyShare

Number SWIs Page
&400D2 Wimp_SetCaretPosition 1 -

SetUserCaretOrUserGhostCaret
40

&400D2 Wimp_SetCaretPosition 2 -
SetIconCaretByIndex

41

&400D2 Wimp_SetCaretPosition 3 -
SetIconCaretAndFlags

42

&400D2 Wimp_SetCaretPosition 4 -
SetIconCaretByScreenPosition

43

&400D2 Wimp_SetCaretPosition 5 -
SetIconCaretOrGhostCaret

45

&400D2 Wimp_SetCaretPosition 6 -
SetIconSelectionCentred

47

&400D2 Wimp_SetCaretPosition 7 -
SetIconSelection

49

&56A00 ZeroConf_Control 432
&56A00 ZeroConf_Control 0 -

ZeroConfAddInterface
433

&56A00 ZeroConf_Control 1 -
ZeroConfRemoveInterface

434

&56A01 ZeroConf_Status 435
&56A01 ZeroConf_Status 0 - ConfigurationState 436
URLFetcherProtocol+00 Protocol_GetData 176
URLFetcherProtocol+02 Protocol_ReadData 180
URLFetcherProtocol+01 Protocol_Status 178
URLFetcherProtocol+03 Protocol_Stop 182

Index (SWIs by number)
Number SWIs Page
URLFetcherProtocol+00 Protocol_GetData 176
URLFetcherProtocol+01 Protocol_Status 178
URLFetcherProtocol+02 Protocol_ReadData 180
URLFetcherProtocol+03 Protocol_Stop 182
&7 OS_Word 15, 5 374
&1C OS_Mouse 309
&64 OS_Pointer 2 - ReadAltPosition 311
&6C OS_ResyncTime 375
&400C0 Wimp_Initialise 261
&400C1 Wimp_CreateWindow 262
&400C2 Wimp_CreateIcon 267
&400C5 Wimp_OpenWindow 269
&400CB Wimp_GetWindowState 272
&400CC Wimp_GetWindowInfo 273
&400D1 Wimp_ForceRedraw 274
&400D2 Wimp_SetCaretPosition 35
&400D2 Wimp_SetCaretPosition 0 - Remove 39
&400D2 Wimp_SetCaretPosition 1 -

SetUserCaretOrUserGhostCaret
40

&400D2 Wimp_SetCaretPosition 2 -
SetIconCaretByIndex

41

&400D2 Wimp_SetCaretPosition 3 -
SetIconCaretAndFlags

42

&400D2 Wimp_SetCaretPosition 4 -
SetIconCaretByScreenPosition

43

&400D2 Wimp_SetCaretPosition 5 -
SetIconCaretOrGhostCaret

45

&400D2 Wimp_SetCaretPosition 6 -
SetIconSelectionCentred

47

&400D2 Wimp_SetCaretPosition 7 -
SetIconSelection

49

&400D3 Wimp_GetCaretPosition 51
&400E0 Wimp_GetWindowOutline 276
&400F5 Wimp_RegisterFilter 277
&400FB Wimp_Extend 279
&4264C Filter_RegisterIconBorderFilter 334
&4264D Filter_DeRegisterIconBorderFilter 336
&47AC0 ShareFS_CreateShare 389
&47AC1 ShareFS_StopShare 391
&47AC2 ShareFS_EnumerateShares 392
&47AC3 ShareFS_IdentifyShare 394

URLFetcherProtocol+00

Number SWIs Page
&4E000 Clipboard_Put 54
&4E001 Clipboard_Get 60
&4E002 Clipboard_GetDataType 68
&4E003 Clipboard_StartDrag 84
&4E004 Clipboard_CatchDrop 88
&4E380 URI_Version 107
&4E381 URI_Dispatch 109
&4E382 URI_RequestURI 112
&4E383 URI_InvalidateURI 114
&51980 CryptRandom_Byte 294
&51981 CryptRandom_Stir 295
&51982 CryptRandom_AddNoise 296
&51983 CryptRandom_Block 297
&51984 CryptRandom_Word 298
&53B80 PathUtils_EnumeratePath 620
&53B81 PathUtils_JoinPath 622
&53B82 PathUtils_RemovePath 623
&55E00 DHCPClient_Control 422
&55E01 DHCPClient_State 423
&55E02 DHCPClient_Enumerate 425
&56264 ImageFileRender_Info 467
&56265 ImageFileRender_RendererInfo 470
&56266 ImageFileRender_Register 471
&56267 ImageFileRender_Deregister 473
&56268 ImageFileRender_EnumerateRenderers 474
&562C0 ImageFileRender_Render 459
&562C1 ImageFileRender_BBox 462
&562C2 ImageFileRender_Transform 464
&562C3 ImageFileRender_DeclareFonts 466
&56A00 ZeroConf_Control 432
&56A00 ZeroConf_Control 0 -

ZeroConfAddInterface
433

&56A00 ZeroConf_Control 1 -
ZeroConfRemoveInterface

434

&56A01 ZeroConf_Status 435
&56A01 ZeroConf_Status 0 - ConfigurationState 436
&57D80 RouterDiscovery_Control 409
&57D80 RouterDiscovery_Control 0 -

ActivateHost
410

&57D80 RouterDiscovery_Control 1 -
ActivateRouter

412

&57D80 RouterDiscovery_Control 2 - Deactivate 414
&57D81 RouterDiscovery_Status 415

Number SWIs Page
&58B80 TimerManager_ReturnNumber 356
&58B81 TimerManager_Claim 357
&58B82 TimerManager_Release 359
&58B83 TimerManager_SetRate 360
&58B84 TimerManager_Convert 362
&83E00 URL_Register 141
&83E01 URL_GetURL 143
&83E02 URL_Status 146
&83E03 URL_ReadData 148
&83E04 URL_SetProxy 150
&83E05 URL_Stop 152
&83E06 URL_Deregister 154
&83E07 URL_ParseURL 155
&83E07 URL_ParseURL 0 - ReturnLengths 158
&83E07 URL_ParseURL 1 - ReturnData 160
&83E07 URL_ParseURL 2 -

ComposeFromComponents
162

&83E07 URL_ParseURL 3 - QuickResolve 164
&83E08 URL_EnumerateSchemes 166
&83E09 URL_EnumerateProxies 168
&83E20 URL_ProtocolRegister 171
&83E21 URL_ProtocolDeregister 174

&58B80

Index (UpCalls)
Number UpCalls Page
&18 DriveAdded 302
&19 DriveRemoved 304

Index (UpCalls by number)
Number UpCalls Page
&18 DriveAdded 302
&19 DriveRemoved 304

&18

Index (Messages)
Number Messages Page
&0000F ClaimEntity 33
&00010 DataRequest 57
&4E002 DataTypeIs 70
&00012 DragClaim 75
&00011 Dragging 73
&408 FileShareDir 395
&408 FilerDevicePath 323
&4E001 Paste 64
&4D552 PlugIn_Abort 240
&4D551 PlugIn_Action 238
&4D550 PlugIn_Busy 236
&4D542 PlugIn_Close 212
&4D543 PlugIn_Closed 213
&4D546 PlugIn_Focus 219
&4D54E PlugIn_Notify 233
&4D540 PlugIn_Open 208
&4D541 PlugIn_Opening 210
&4D544 PlugIn_Reshape 215
&4D545 PlugIn_Reshape_Request 217
&4D54F PlugIn_Status 235
&4D54C PlugIn_Stream_As_File 229
&4D549 PlugIn_Stream_Destroy 223
&4D548 PlugIn_Stream_New 221
&4D54A PlugIn_Stream_Write 225
&4D54B PlugIn_Stream_Written 227
&4D54D PlugIn_URL_Access 231
&4D547 PlugIn_Unlock 220
&4E000 PutRequest 62
&4E381 URI_MDying 122
&4E382 URI_MProcess 123
&4E384 URI_MProcessAck 126
&4E383 URI_MReturnResult 125
&4E380 URI_MStarted 121

Index (Messages by number)
Number Messages Page
&0000F ClaimEntity 33
&00010 DataRequest 57
&00011 Dragging 73
&00012 DragClaim 75
&408 FilerDevicePath 323
&408 FileShareDir 395
&4D540 PlugIn_Open 208
&4D541 PlugIn_Opening 210
&4D542 PlugIn_Close 212
&4D543 PlugIn_Closed 213
&4D544 PlugIn_Reshape 215
&4D545 PlugIn_Reshape_Request 217
&4D546 PlugIn_Focus 219
&4D547 PlugIn_Unlock 220
&4D548 PlugIn_Stream_New 221
&4D549 PlugIn_Stream_Destroy 223
&4D54A PlugIn_Stream_Write 225
&4D54B PlugIn_Stream_Written 227
&4D54C PlugIn_Stream_As_File 229
&4D54D PlugIn_URL_Access 231
&4D54E PlugIn_Notify 233
&4D54F PlugIn_Status 235
&4D550 PlugIn_Busy 236
&4D551 PlugIn_Action 238
&4D552 PlugIn_Abort 240
&4E000 PutRequest 62
&4E001 Paste 64
&4E002 DataTypeIs 70
&4E380 URI_MStarted 121
&4E381 URI_MDying 122
&4E382 URI_MProcess 123
&4E383 URI_MReturnResult 125
&4E384 URI_MProcessAck 126

&0000F

Index (Services)
Number Services Page
&9D DCIDriverStatus 2 - LinkActive 402
&9D DCIDriverStatus 3 - LinkInactive 0
&80D41 ImageFileRender_Dying 457
&80D42 ImageFileRender_RendererChanged 458
&80D40 ImageFileRender_Started 456
&B0 InternetStatus 399
&B0 InternetStatus &40 406
&B0 InternetStatus &41 407
&B0 InternetStatus &42 408
&B0 InternetStatus 4 - BootPReply 418
&B0 InternetStatus 5 - DHCPOffer 419
&B0 InternetStatus 32 - ZeroConfAddressAcquired 430
&B0 InternetStatus 33 - ZeroConfAddressLost 431
&B0 InternetStatus 48 - DHCPLeaseGained 420
&B0 InternetStatus 49 - DHCPLeaseLost 421
&DD RTCSynchronised 373
&801C8 Sharing 388
&A7 URI 116
&A7 URI 0 - Started 117
&A7 URI 1 - Dying 118
&A7 URI 2 - Process 119
&A7 URI 3 - ReturnResult 120
&83E00 URLProtocolModule 184
&83E00 URLProtocolModule 0 - UrlModuleStarted 185
&83E00 URLProtocolModule 1 - UrlModuleDying 186
&83E01 URLProtocolModule_ProtocolModule 187

Index (Services by number)
Number Services Page
&9D DCIDriverStatus 2 - LinkActive 402
&9D DCIDriverStatus 3 - LinkInactive 0
&A7 URI 116
&A7 URI 0 - Started 117
&A7 URI 1 - Dying 118
&A7 URI 2 - Process 119
&A7 URI 3 - ReturnResult 120
&B0 InternetStatus 399
&B0 InternetStatus &40 406
&B0 InternetStatus &41 407
&B0 InternetStatus &42 408
&B0 InternetStatus 4 - BootPReply 418
&B0 InternetStatus 5 - DHCPOffer 419
&B0 InternetStatus 32 - ZeroConfAddressAcquired 430
&B0 InternetStatus 33 - ZeroConfAddressLost 431
&B0 InternetStatus 48 - DHCPLeaseGained 420
&B0 InternetStatus 49 - DHCPLeaseLost 421
&DD RTCSynchronised 373
&801C8 Sharing 388
&80D40 ImageFileRender_Started 456
&80D41 ImageFileRender_Dying 457
&80D42 ImageFileRender_RendererChanged 458
&83E00 URLProtocolModule 184
&83E00 URLProtocolModule 0 - UrlModuleStarted 185
&83E00 URLProtocolModule 1 - UrlModuleDying 186
&83E01 URLProtocolModule_ProtocolModule 187

&9D

Index (Vectors)
Number Vectors Page
&10 EventV 21,4 - ExpansionMouseScroll 313
&3E NVRAMV 367
&3E NVRAMV 0 - FillCache 368
&3E NVRAMV 1 - ReadByte 369
&3E NVRAMV 2 - WriteByte 370
&38 PointerV 4 - ExtendedRequest 315
&3F RTCV 378
&3F RTCV 0 - ReadTime 379
&3F RTCV 1 - WriteTime 381
&2C VideoV 510
&2C VideoV 0 - Text_ChangeDestination 515
&2C VideoV 1 - Text_DefineChar 517
&2C VideoV 2 - Text_SetTextColour 518
&2C VideoV 3 - Text_WriteTextChar 520
&2C VideoV 4 - Text_TextCursor 522
&2C VideoV 5 - Text_ClearBox 524
&2C VideoV 16 - Graf_SetColour1 526
&2C VideoV 17 - Graf_SetColour2 528
&2C VideoV 18 - Graf_ChangeDestination 529
&2C VideoV 19 - Graf_ChangeBase 531
&2C VideoV 20 - Graf_ReadPrimitives 532
&2C VideoV 21 - Graf_Rectangle 534
&2C VideoV 22 - Graf_Triangle 536
&2C VideoV 23 - Graf_Parallelogram 538
&2C VideoV 24 - Graf_BlockCopy 540
&2C VideoV 25 - Graf_CircleOutline 542
&2C VideoV 26 - Graf_CircleFill 544
&2C VideoV 27 - Graf_CircleArc 546
&2C VideoV 28 - Graf_CircleSegment 548
&2C VideoV 29 - Graf_CircleSector 550
&2C VideoV 30 - Graf_EllipseOutline 552
&2C VideoV 31 - Graf_EllipseFill 554
&2C VideoV 32 - Graf_FillRight 556
&2C VideoV 33 - Graf_FillLeftAndRight 558
&2C VideoV 34 - Graf_FillFlood 560
&2C VideoV 35 - Graf_PolyHLine 562
&2C VideoV 512 - Pointer_Define 564
&2C VideoV 513 - Pointer_Select 565
&2C VideoV 514 - Pointer_Update 566

Number Vectors Page
&2C VideoV 515 - Pointer_Remove 567
&2C VideoV 516 - Pointer_SetPalette 568
&2C VideoV 768 - Mode_VetMode 569
&2C VideoV 769 - Mode_SetMode 571
&2C VideoV 770 - Mode_Scroll 573
&2C VideoV 771 - Mode_SetPalette 575
&2C VideoV 772 - Mode_Enable 577
&2C VideoV 773 - Mode_Disable 578
&2C VideoV 774 - Mode_PowerSave 579
&2C VideoV 775 - Mode_SetRGBTable 581
&2C VideoV 776 - Mode_AccelConfigure 583
&2C VideoV 777 - Mode_AccelControl 585
&2C VideoV 778 - Mode_DisplaySelect 587
&2C VideoV 800 - Mode_BankCount 588
&2C VideoV 801 - Mode_BankDisplay 590
&2C VideoV 802 - Mode_BankDriver 592
&2C VideoV 803 - Mode_BankCopy 594
&2C VideoV 1024 - TTX_Init 596
&2C VideoV 1025 - TTX_ClearBox 598
&2C VideoV 1026 - TTX_Update 600
&2C VideoV 1027 - TTX_WriteChar 601
&2C VideoV 1028 - TTX_Scroll 603
&2C VideoV 1029 - TTX_FlashState 605
&2C VideoV 1030 - TTX_ReadChar 607
&2C VideoV 1031 - TTX_TextCursor 609
&2C VideoV 1032 - TTX_SetQuality 611
&2C VideoV 1033 - TTX_RevealState 613

VideoV

Index (Vectors by number)
Number Vectors Page
&10 EventV 21,4 - ExpansionMouseScroll 313
&2C VideoV 510
&2C VideoV 0 - Text_ChangeDestination 515
&2C VideoV 1 - Text_DefineChar 517
&2C VideoV 2 - Text_SetTextColour 518
&2C VideoV 3 - Text_WriteTextChar 520
&2C VideoV 4 - Text_TextCursor 522
&2C VideoV 5 - Text_ClearBox 524
&2C VideoV 16 - Graf_SetColour1 526
&2C VideoV 17 - Graf_SetColour2 528
&2C VideoV 18 - Graf_ChangeDestination 529
&2C VideoV 19 - Graf_ChangeBase 531
&2C VideoV 20 - Graf_ReadPrimitives 532
&2C VideoV 21 - Graf_Rectangle 534
&2C VideoV 22 - Graf_Triangle 536
&2C VideoV 23 - Graf_Parallelogram 538
&2C VideoV 24 - Graf_BlockCopy 540
&2C VideoV 25 - Graf_CircleOutline 542
&2C VideoV 26 - Graf_CircleFill 544
&2C VideoV 27 - Graf_CircleArc 546
&2C VideoV 28 - Graf_CircleSegment 548
&2C VideoV 29 - Graf_CircleSector 550
&2C VideoV 30 - Graf_EllipseOutline 552
&2C VideoV 31 - Graf_EllipseFill 554
&2C VideoV 32 - Graf_FillRight 556
&2C VideoV 33 - Graf_FillLeftAndRight 558
&2C VideoV 34 - Graf_FillFlood 560
&2C VideoV 35 - Graf_PolyHLine 562
&2C VideoV 512 - Pointer_Define 564
&2C VideoV 513 - Pointer_Select 565
&2C VideoV 514 - Pointer_Update 566
&2C VideoV 515 - Pointer_Remove 567
&2C VideoV 516 - Pointer_SetPalette 568
&2C VideoV 768 - Mode_VetMode 569
&2C VideoV 769 - Mode_SetMode 571
&2C VideoV 770 - Mode_Scroll 573
&2C VideoV 771 - Mode_SetPalette 575
&2C VideoV 772 - Mode_Enable 577
&2C VideoV 773 - Mode_Disable 578

Number Vectors Page
&2C VideoV 774 - Mode_PowerSave 579
&2C VideoV 775 - Mode_SetRGBTable 581
&2C VideoV 776 - Mode_AccelConfigure 583
&2C VideoV 777 - Mode_AccelControl 585
&2C VideoV 778 - Mode_DisplaySelect 587
&2C VideoV 800 - Mode_BankCount 588
&2C VideoV 801 - Mode_BankDisplay 590
&2C VideoV 802 - Mode_BankDriver 592
&2C VideoV 803 - Mode_BankCopy 594
&2C VideoV 1024 - TTX_Init 596
&2C VideoV 1025 - TTX_ClearBox 598
&2C VideoV 1026 - TTX_Update 600
&2C VideoV 1027 - TTX_WriteChar 601
&2C VideoV 1028 - TTX_Scroll 603
&2C VideoV 1029 - TTX_FlashState 605
&2C VideoV 1030 - TTX_ReadChar 607
&2C VideoV 1031 - TTX_TextCursor 609
&2C VideoV 1032 - TTX_SetQuality 611
&2C VideoV 1033 - TTX_RevealState 613
&38 PointerV 4 - ExtendedRequest 315
&3E NVRAMV 367
&3E NVRAMV 0 - FillCache 368
&3E NVRAMV 1 - ReadByte 369
&3E NVRAMV 2 - WriteByte 370
&3F RTCV 378
&3F RTCV 0 - ReadTime 379
&3F RTCV 1 - WriteTime 381

&2C

Index (SysVars)
SysVars Page
FSFiler$DefaultPath 322
ShareFS$Filer 387

Index (Entry points)
Entry points Page
Get Rectangle Filter 283
IFR_BBox 495
IFR_DeclareFonts 497
IFR_Info 499
IFR_Render 493
IFR_Start 489
IFR_Stop 491
IconBorder_Colour 343
IconBorder_Draw 337
IconBorder_Fill 339
IconBorder_Size 341
IconBorder_State 345
Post-Icon Filter 286
Post-Rectangle Filter 284
Rectangle Copy Filter 281
VideoV_Context_HLine 615
VideoV_Context_Point 617

Get Rectangle Filter

Index (Errors)
Number Errors Page
&81A806 IFR_BadAPI 481
&81A80A IFR_BadInfoLength 485
&81A809 IFR_BadInfoQuery 484
&81A811 IFR_BadSpriteFile 487
&81A810 IFR_BadSpriteMode 486
&81A800 IFR_BadTransformType 475
&81A807 IFR_CantTransform 482
&81A803 IFR_Memory 478
&81A808 IFR_NoColourMap 483
&81A805 IFR_NoRenderr 480
&81A804 IFR_NoSuchRendererToRemove 479
&81A812 IFR_NoSuchSprite 488
&81A801 IFR_Reserved 476
&81A802 IFR_ReservedRendererFlags 477

Index (Errors by number)
Number Errors Page
&81A800 IFR_BadTransformType 475
&81A801 IFR_Reserved 476
&81A802 IFR_ReservedRendererFlags 477
&81A803 IFR_Memory 478
&81A804 IFR_NoSuchRendererToRemove 479
&81A805 IFR_NoRenderr 480
&81A806 IFR_BadAPI 481
&81A807 IFR_CantTransform 482
&81A808 IFR_NoColourMap 483
&81A809 IFR_BadInfoQuery 484
&81A80A IFR_BadInfoLength 485
&81A810 IFR_BadSpriteMode 486
&81A811 IFR_BadSpriteFile 487
&81A812 IFR_NoSuchSprite 488

&81A800

Index (VDU codes)
VDU codes Page

Index (TBox methods)
Number TBox methods Page

Index (TBox methods by number)
Number TBox methods Page

Index (TBox messages)
Number TBox messages Page

Index (TBox messages by number)
Number TBox messages Page

	Contents
	Introduction
	Functional specs
	3rd Party
	RISC OS 5
	RISC OS Select
	Kernel
	I/O
	Desktop
	Wimp
	Hardware
	Time
	Networking
	Graphics
	Programmer

	About these documents
	Introduction
	Collection areas
	Functional specs ('acorn')
	3rd Party documentation ('3rdparty')

	Document information
	Initial version
	Added 3rd party

	Cut-and-Paste
	1. Overview
	1.1 This Document
	1.2 Cut-and-Paste
	1.3 Drag-and-Drop
	1.4 General

	2. Outstanding Issues
	2.1 Bounding Box Discrepancies

	3. Technical Background
	3.1 This Document
	3.2 Previous Documents
	3.3 Previous Applications

	4.User Interface
	4.1 Selection
	4.1.1 Protocol
	4.1.1.1 Rendering
	4.1.1.2 Mouse Events
	4.1.1.3 Keypresses
	4.1.1.4 Scope

	4.1.2 Clipboard Module

	4.1.3 Writable Icons
	4.1.3.1 Rendering
	4.1.3.2 Scrolling
	4.1.3.3 Mouse Events
	4.1.3.4 Keypresses
	4.1.3.5 Wimp Selections and Menus
	4.1.3.6 Password icons
	4.1.3.7 Application-altered Indirected Data
	4.1.3.8 Scope
	4.1.3.9 Draggable-Writable (Type 14) Icons

	4.2. Cut and Copy
	4.2.1. Protocol
	4.2.2. Clipboard Module
	4.2.3. Writable Icons

	4.3. Paste
	4.3.1. Protocol
	4.3.2. Clipboard Module
	4.3.3. Writable Icons

	4.4. Drag
	4.4.1. Protocol
	4.4.1.1. General
	4.4.1.2. Pointers
	4.4.1.3. Dragboxes
	4.4.1.4. Ghost Carets
	4.4.1.5. Scrolling

	4.4.2. Clipboard Module
	4.4.3. Writable Icons

	4.5. Drop
	4.5.1. Protocol
	4.5.1.1. Sending
	4.5.1.2. Receiving

	4.5.2. Clipboard Module
	4.5.3. Writable Icons

	5. Programming Interface and Data Interchange
	5.1. Selection
	5.1.1. Protocol
	5.1.2. Clipboard Module
	5.1.3. Writable Icons
	5.1.3.1. Wimp_SetCaretPosition API
	5.1.3.2. Wimp_GetCaretPosition API

	5.2. Cut and Copy
	5.2.1. Protocol
	5.2.2. Clipboard Module
	5.2.3. Writable Icons

	5.3. Paste
	5.3.1. Protocol
	5.3.2. Clipboard Module
	5.3.2.1. The Complete Paste Process
	5.3.2.2. Interactions
	5.3.2.3. Clipboard Data Type Determination

	5.3.3. Writable Icons

	5.4. Drag and Drop
	5.4.1. Protocol
	5.4.1.1. Responsibilities
	5.4.1.2. Messaging
	5.4.1.3. Use

	5.4.2. Clipboard Module
	5.4.2.1. Use
	5.4.2.2. Messaging

	5.4.3. Writable Icons

	6. Data Formats
	7. Dependencies
	8. Acceptance Test
	8.1. Clipboard Module
	8.1.1. Compatibility
	8.1.2. Reliability/Robustness
	8.1.3. Performance
	8.1.4. Memory Usage

	8.2. Wimp Writable Icon Code
	8.2.1. Compatibility
	8.2.2. Reliability/Robustness
	8.2.3. Performance
	8.2.4. Memory Usage

	9. Non Compliances
	10. Development Test Strategy
	11. Product Organisation
	12. Future Enhancements
	13. Glossary
	14. References
	15. History
	Document information
	Started
	First release for comment
	Released for review
	Prepared for D.O
	Started reworking document for Java 1.2 project, didn't get far before cancelled again
	Finally finished integrating the Ursula review comments and 8 years' worth of mental notes, for initial release alongside shared source code
	Updated the page references in the Style Guide
	Shared Source RISC OS release (formerly Ursula and Java 1.2) Ref: 1309,419/FS
	Initial version in PRMinXML format

	URI Handler Functional Specification
	Overview
	Deliverable 'product'
	Programmer's interface
	URI SWIs
	URI service calls
	WIMP messages
	* Commands
	URI handler errors
	Defined errors
	Error generators

	Use of the URI filetype
	Use of URI environment variables

	Performance targets
	Document information
	(Developers only) Original Version
	(General release of 1307,260/FS)
	(General release of 1215,215/FS)
	Initial version in PRMinXML format

	Acorn URL Fetcher API Specification
	Overview
	Outstanding issues
	Client to URL module interface
	Table of method numbers

	Protocol module to URL module interface
	URL module to protocol module interface
	URL module service calls
	URL module *-commands
	URL errors
	Performance targets
	Glossary
	References
	Document information
	(Developers only)
	First formal version of specification based on uncontrolled textual programmer's notes (RCE)
	Incorporated notes from ADH and SB
	Incorporated details of service calls
	Incporated details of URL parsing SWI
	All other updates incorporated
	Comments after first review incorporated. Added details of proxy enumeration SWI
	No longer live. ECO 4082.
	Multiple changes
	Initial version in PRMinXML format
	Tiny tweaks to formatting

	Acorn Plug-In Protocol Functional Specification
	Overview
	Outstanding issues
	Technical background
	User interface
	Programmer interface
	Invocation
	Shutdown
	Plug-in death
	Browser death
	Window events
	Data pointers
	Stream protocol
	Initial transfer
	Plug-in requests data be fetched or posted
	Plug-in write to browser

	System variables
	The OBJECT tag
	Helper applications
	Help protocol
	About plug-in

	Data interchange
	Data formats
	API Versions

	External dependencies
	Acceptance test
	Non-compliances
	Development test strategy
	Glossary
	References
	Director Player Software Functional Specification
	Java Software Functional Specification
	[NC] Browser Software Functional Specification
	Acorn Nested Window Manager Functional Specification
	Wimp message protocol
	Wimp Help protocol

	Document information
	(Developers only)
	Created from 2103,740 and added BUSY notification protocol
	New format
	Fixed errors in Message numbers
	Added PASSWORDS. Changed API version. Added Glossary
	Changed PASSWORDS to file. Added Message_PlugIn_Action. Added Helper app info
	Added ABORT message to replace some uses of STOP
	Fixed error in states. Changed API info
	Added mute
	Added missing history comments for 1.10 and 1.11, updated with comments from SG. Added glossary, references and development test strategy. Added Helper launching system variable
	Fixed typos after review
	Fixed some links
	Signed off, AMR allocated
	Few small changes; then signed off, ECO 3995 allocated
	(Developers only)
	Added 'About Plug-in'
	Added BGCOLOR special parameter (PW); AMR 4903 allocated
	(General release)
	AMR allocation details corrected in this history section
	ECO 4049 allocated
	Created revision 1.3 purely to fix the erroneous reference to the Nested Wimp specification which gave an incorrect drawing number. No ECO allocated for such a trivial change
	Initial version in PRMinXML format

	Acorn Nested Window Manager Functional Specification
	Overview
	Technical Background
	User Interface
	Child and Nested Windows
	Child Windows Without a Work Area
	Furniture Windows

	Windows in General
	Invalid Rectangle Handling
	Standard Window Furniture
	Minimum Sizes
	Shift-Toggle-Sized Windows
	Error Report Dialogue Boxes

	Icons
	Menus
	Icon Bar
	Panic Redraws

	Programmer's interface
	Filter Entry Points
	References
	The Filter Manager
	The Window Manager: Wimp_RegisterFilter
	Acorn Filter Manager v0.18: Functional Specification

	Document information
	Original Version (not released)
	General Release
	Initial version in PRMinXML format

	CryptRandom
	Introduction
	Overview
	Installation
	Lineage

	Technical details
	contact
	Sources

	SWIs
	Document information
	Text documentation
	PRM-in-XML documentation

	Filing system drive information
	Introduction
	Technical details
	UpCalls
	Document information
	Initial version

	Pointer devices (supplement for Pyromaniac)
	Introduction and overview
	Technical details
	PointerV
	Driver updates in RISC OS Select
	Quadrature mouse driver
	PS 2 mouse driver
	Touch screen or tablet drivers

	OSPointer handling of extended requests
	Additional buttons
	Programmers interface

	SWI calls
	Software vectors
	Document information
	Initial version

	Icon bar file drags
	Introduction
	Technical details
	Icon bar save protocol
	Icon bar copy protocol

	System variables
	Wimp messages
	Document information
	Initial version
	Conversion to PRM-in-XML

	Icon bordering filters
	Introduction
	Overview
	Technical details
	Registration
	Rendering icons
	Customisable features
	Border colouring
	Fill colouring
	Bordering
	Filling
	Sizing the text
	Highlighting

	Common parameters
	Icon flags word
	Icon border rendering box
	Icon border colour table
	Icon rendering flags

	Configuration

	SWI calls
	Entry points
	Shape changes
	Highlightable borders

	Document information
	Initial version

	Iconbar priorities
	Introduction
	Technical details
	Object sources and sinks
	Data source / sink controllers
	User applications
	System control applications

	Document information
	Initial version
	PRM-in-XML conversion

	Hardware timer device driver (TimerManager)
	Introduction
	Overview
	Technical details
	Measurement format

	SWI calls
	Document information
	Initial version

	NVRAM vector
	Introduction
	Technical details
	Terminology

	Software vectors
	Document information
	Initial version

	Real Time Clock
	Introduction
	Service calls
	SWI calls
	Document information
	Initial version
	PRM-in-XML conversion

	Real Time Clock Vector
	Introduction
	Software vectors
	Document information
	Initial version
	PRM-in-XML conversion

	System clock
	Introduction
	Document information
	Initial version
	PRM-in-XML conversion

	ShareFS
	Introduction
	System variables
	Service calls
	SWI calls
	Wimp messages
	Document information
	Initial version
	PRM-in-XML conversion

	Internet address collisions
	Introduction
	Service calls
	Document information
	Initial version
	PRM-in-XML conversion

	DCI Driver Link Status
	Introduction
	Service calls
	Document information
	Initial version
	PRM-in-XML conversion

	RouterDiscovery
	Introduction
	Service calls
	SWI calls
	Document information
	Initial version
	PRM-in-XML conversion

	DHCPClient
	Introduction
	Service calls
	SWI calls
	*Commands
	Document information
	Initial version
	PRM-in-XML conversion

	Chapter Title
	Introduction
	Conformance

	Service calls
	SWI calls
	Document information
	Initial version
	PRM-in-XML conversion

	Graphics Mode Specification
	Introduction and Overview
	Technical details
	Mode specifiers
	Mode numbers
	Sprite mode words
	Mode selectors
	Mode strings

	Document information
	Initial version
	Compatibility with Pyromaniac

	The Image File Renderer
	Introduction and Overview
	Technical Details
	Sequence numbers
	Rendering quality
	Transformation types
	Render to fit
	Render scaled
	Render transformed
	Arbitrary transformations

	Clipping
	Image file origins
	Colour mapping
	Extensions for more complex colour mapping

	Sprite file extensions
	Renderers
	Custom renderers
	Renderer name
	Renderer flags

	Service calls
	SWI calls
	Error Messages
	Entry Points
	*Commands
	Document information
	Pre-release
	Pre-release
	Validated
	Misc corrections
	Added Enumerate SWI
	Misc corrections
	New commands
	Misc corrections
	Table correction
	Backported text file changes

	Video drivers (supplement for RISC OS Pyromaniac)
	Introduction and Overview
	Technical details
	Text operations
	Graphics operations
	Coordinates
	Colour operation
	Graphics context

	Pointer operations
	Mode operations
	Teletext operations
	Display device registration

	Software vectors
	Entry points
	Document information
	Initial version
	Updated for PRM-in-XML
	Updated for RISC OS Pyromaniac

	PathUtils
	Introduction
	SWI calls
	*Commands
	Document information
	Initial version
	PRM-in-XML version

	Index (Commands)
	Index (SWIs)
	Index (SWIs by number)
	Index (UpCalls)
	Index (UpCalls by number)
	Index (Messages)
	Index (Messages by number)
	Index (Services)
	Index (Services by number)
	Index (Vectors)
	Index (Vectors by number)
	Index (SysVars)
	Index (Entry points)
	Index (Errors)
	Index (Errors by number)
	Index (VDU codes)
	Index (TBox methods)
	Index (TBox methods by number)
	Index (TBox messages)
	Index (TBox messages by number)

