
Contents

Contents |Commands| SWIs

(Number)

| UpCalls

(Number)

|Messages

(Number)

| Services

(Number)

| Vectors

(Number)

|SysVars| Entry
points

Introduction

About this documentation

Functional specs

Cut and paste specification

URI Handler specification

URL Fetcher specification

Browser Plug-in Protocol specification

Nested Window Manager specification

3rd Party

CryptRandom module

RISC OS 5

Drive Hints

RISC OS Select

Kernel

I/O

Pointer devices

Desktop

Icon bar file drags

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Icon border filters

Wimp

Iconbar priorities

Hardware

Hardware timer device driver (TimerManager)

NVRAM vector

Time

Real Time Clock

Real Time Clock vector

System clock

Networking

ShareFS module

Internet address collision

DCI Driver Link Status

RouterDiscovery

DHCPClient

ZeroConf

Graphics

Graphics modes specification

Image file renderer

Video drivers

Programmer

PathUtils

Contents |Commands| SWIs | UpCalls |Messages| Services | Vectors |SysVars| Entry

(Number) (Number) (Number) (Number) (Number)
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

About these documents

Contents
• Introduction
• Collection areas

◦ Functional specs ('acorn')
◦ 3rd Party documentation ('3rdparty')

Introduction
The documentation in this collection is a staging area for documentation
that does not yet have any home. It is intended to hold documents which
are partially complete, or which are useful but yet ready for acceptance
into general documentation.

Collection areas
There are different areas in this collection, which are intended to
arbitrarily divide the content into their source or intended use. The
structure here is not intended to be indicative of the final structure of the
documentation.

Functional specs ('acorn')

This area is intended to contain functional specifications from the Acorn
era which have not yet made it to PRM documentation. Functional
specifications contain references to design and implementation decisions
and discussion of problems with the system which are not appropriate for
the reference manuals. However they are important steps along to way to
creating documentation,

3rd Party documentation ('3rdparty')

This area contains 3rd party documentation from a variety of sources to
provide a staging point before these documents are made more widely
available.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 29 Aug 2021Gerph Initial version

• Created to hold cut and
paste, and demonstrate
indexing.

2 07 Oct 2021 Gerph Added 3rd party
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org

Cut-and-Paste

Contents
• 1. Overview

◦ 1.1 This Document
◦ 1.2 Cut-and-Paste
◦ 1.3 Drag-and-Drop
◦ 1.4 General

• 2. Outstanding Issues
◦ 2.1 Bounding Box Discrepancies

• 3. Technical Background
◦ 3.1 This Document
◦ 3.2 Previous Documents
◦ 3.3 Previous Applications

• 4.User Interface
◦ 4.1 Selection

▪ 4.1.1 Protocol
▪ 4.1.1.1 Rendering
▪ 4.1.1.2 Mouse Events
▪ 4.1.1.3 Keypresses
▪ 4.1.1.4 Scope

▪ 4.1.2 Clipboard Module
▪ 4.1.3 Writable Icons
▪ 4.1.3.1 Rendering
▪ 4.1.3.2 Scrolling
▪ 4.1.3.3 Mouse Events
▪ 4.1.3.4 Keypresses
▪ 4.1.3.5 Wimp Selections and Menus
▪ 4.1.3.6 Password icons
▪ 4.1.3.7 Application-altered Indirected Data
▪ 4.1.3.8 Scope
▪ 4.1.3.9 Draggable-Writable (Type 14) Icons

◦ 4.2. Cut and Copy
▪ 4.2.1. Protocol
▪ 4.2.2. Clipboard Module
▪ 4.2.3. Writable Icons

◦ 4.3. Paste
▪ 4.3.1. Protocol
▪ 4.3.2. Clipboard Module
▪ 4.3.3. Writable Icons

◦ 4.4. Drag
▪ 4.4.1. Protocol

▪ 4.4.1.1. General

▪ 4.4.1.2. Pointers
▪ 4.4.1.3. Dragboxes
▪ 4.4.1.4. Ghost Carets
▪ 4.4.1.5. Scrolling

▪ 4.4.2. Clipboard Module
▪ 4.4.3. Writable Icons

◦ 4.5. Drop
▪ 4.5.1. Protocol

▪ 4.5.1.1. Sending
▪ 4.5.1.2. Receiving

▪ 4.5.2. Clipboard Module
▪ 4.5.3. Writable Icons

• 5. Programming Interface and Data Interchange
◦ 5.1. Selection

▪ 5.1.1. Protocol
▪ ClaimEntity (&0000F)

▪ 5.1.2. Clipboard Module
▪ 5.1.3. Writable Icons

▪ 5.1.3.1. Wimp_SetCaretPosition API
▪ SWI Wimp_SetCaretPosition
▪ SWI Wimp_SetCaretPosition 0 - Remove
▪ SWI Wimp_SetCaretPosition 1 -

SetUserCaretOrUserGhostCaret
▪ SWI Wimp_SetCaretPosition 2 -

SetIconCaretByIndex
▪ SWI Wimp_SetCaretPosition 3 -

SetIconCaretAndFlags
▪ SWI Wimp_SetCaretPosition 4 -

SetIconCaretByScreenPosition
▪ SWI Wimp_SetCaretPosition 5 -

SetIconCaretOrGhostCaret
▪ SWI Wimp_SetCaretPosition 6 -

SetIconSelectionCentred
▪ SWI Wimp_SetCaretPosition 7 -

SetIconSelection
▪ 5.1.3.2. Wimp_GetCaretPosition API

▪ SWI Wimp_GetCaretPosition
◦ 5.2. Cut and Copy

▪ 5.2.1. Protocol
▪ 5.2.2. Clipboard Module

▪ SWI Clipboard_Put
▪ 5.2.3. Writable Icons

◦ 5.3. Paste
▪ 5.3.1. Protocol

▪ DataRequest (&00010)
▪ 5.3.2. Clipboard Module

▪ 5.3.2.1. The Complete Paste Process
▪ SWI Clipboard_Get

▪ PutRequest (&4E000)
▪ Paste (&4E001)

▪ 5.3.2.2. Interactions
▪ 5.3.2.3. Clipboard Data Type Determination

▪ SWI Clipboard_GetDataType
▪ DataTypeIs (&4E002)

▪ 5.3.3. Writable Icons
◦ 5.4. Drag and Drop

▪ 5.4.1. Protocol
▪ 5.4.1.1. Responsibilities
▪ 5.4.1.2. Messaging

▪ Dragging (&00011)
▪ DragClaim (&00012)

▪ 5.4.1.3. Use
▪ 5.4.2. Clipboard Module

▪ 5.4.2.1. Use
▪ 5.4.2.2. Messaging

▪ SWI Clipboard_StartDrag
▪ SWI Clipboard_CatchDrop

▪ 5.4.3. Writable Icons
• 6. Data Formats
• 7. Dependencies
• 8. Acceptance Test

◦ 8.1. Clipboard Module
▪ 8.1.1. Compatibility
▪ 8.1.2. Reliability/Robustness
▪ 8.1.3. Performance
▪ 8.1.4. Memory Usage

◦ 8.2. Wimp Writable Icon Code
▪ 8.2.1. Compatibility
▪ 8.2.2. Reliability/Robustness
▪ 8.2.3. Performance
▪ 8.2.4. Memory Usage

• 9. Non Compliances
• 10. Development Test Strategy
• 11. Product Organisation
• 12. Future Enhancements
• 13. Glossary
• 14. References
• 15. History

1. Overview
1.1 This Document

This document supersedes the cut-and-paste and drag-and-drop protocol
application notes [1] and [2], and specifies the cut-and-paste / drag-and-

drop abilities to be added to the Wimp, plus the Clipboard module that
supports the Wimp (and whose facilities will also be of use to future
applications intended to support the protocols).

Key terms are defined and some familiar terms are also redefined more
precisely in the glossary (§13), and the reader is recommended to read this
first.

Where information is fundamentally new in this specification - non-obvious
consequences of and clarifications and extensions to the existing protocol,
the relevant section is underlined to bring attention to the fact.

The document may be slightly weighted towards text-handling
applications, but this is because the user interface is generally more
complicated in such cases. It is expected that the reader be able to
extrapolate meanings to apply to any possible fundamental type of data.

1.2 Cut-and-Paste

Global-clipboard-based or cut-and-paste data transfer involves data being
removed or copied from any document in the desktop to a notional
"clipboard", then pasted from the clipboard into the same document, or
any other document in the desktop, whether managed by the same
application or not. On the way, data translation is performed in such a way
as to minimise the information loss about the data.

This interface involves three operations, cut, copy and paste, which may
be performed in any order. Any one data transfer will require at least two
of these operations, in addition to the choice of the original selection and
the destination point; the process is somewhat clumsy (and unintuitive,
since the clipboard is hidden from view), so this is the least preferred
technique of the two described in this document. However, it must still be
provided, as it does allow some operations which cannot be achieved in
any other way, and can perform other operations faster than by drag-and-
drop.

1.3 Drag-and-Drop

Drag-and-drop is similar to cut-and-paste, but with the cut/copy performed
by pressing a mouse button, and the paste by releasing the button at the
destination. Full drag-and-drop compliance combines the features of
conventional, simple drag-and-drop, as commonly used in Save dialogue
boxes, with the data translation abilities of the global clipboard, and
overcomes the abstract nature of the global clipboard by the displaying
throughout the drag a bounding box, dithered sprite/object or
representation of the insertion point.

The user interface is simpler to use - consisting typically of two mouse

drags (one to select and one to move or copy), with a requirement for at
most one keypress (the Shift key swaps the meaning of copying and
moving). However, the programming interface is more complicated,
because continuously negotiated transferable data types, destination
positioning and rendering of objects and pointers are required in addition
to everything needed for cut-and-paste. This complexity is possibly
responsible for the low implementation rate of the protocol to date.

1.4 General

The Clipboard module is primarily to enable cut-and-paste and drag-and-
drop to be reliably implemented for writable icons, which are handled
automatically by the Wimp. (The fundamental problem is that the
established cut-and-paste and drag-and-drop systems are Wimp-message-
based, and the Wimp itself is poorly equipped to send and receive
messages.)

However, the module is secondarily to handle the complex protocols on
behalf of any application that chooses to do so - and in the process,
producing a more uniform user interface. This is to be the preferred
method of implementing the protocols in future, although in special cases,
the tasks it performs can be split into four separate areas, any
combination of which can be taken advantage of by the same application:

• clipboard management - supporting cut and copy operations
• clipboard procurement - supporting paste operations
• sending drag-and-drop data
• receiving drag-and-drop data

2. Outstanding Issues
2.1 Bounding Box Discrepancies

It is possible that data may have different "real life" bounding boxes in
different data types - for example, a DrawFile sprite object may be
transformed and/or scaled, and thus have a different bounding box to the
underlying sprite. Thus if a transformed sprite object were dragged from
Draw to a sprite editor window, the bounding box would not represent the
final position of the sprite.

3. Technical Background
3.1 This Document

Some important pre-existing technical terms are rigorously defined in the
context of cut-and-paste / drag-and-drop in the Glossary in §13, along with
some new terms introduced in this document.

Where technical background information is relatively straightforward (no
more than one or two short paragraphs), it is included alongside the
appropriate part of §4 or §5, for ease of reference.

3.2 Previous Documents

Simple drag-and-drop operations, such as those employed by Save
dialogue boxes, do not employ any inter-task negotiation during the drag,
and use the plain DataSave/DataLoad protocol during the drop, as
described in the Programmer's Reference Manual [3].

The Style Guide [4] first indicates selection models, then describes an
overview of cut-and-paste and drag-and-drop behaviour, before referring
the reader to the relevant Support Group Application Notes [1] and [2].

3.3 Previous Applications

Old-style selection model / copy-and-move implementations are still in
existence, especially so in the case of text editors, (e.g. Zap, StrongEd,
SrcEdit) which have often followed Edit's example. Such schemes typically
involve only three actions to perform an operation (select region, position
caret, move/copy keypress) rather than the four (select region, cut/copy
keypress, position caret, paste keypress), but have the disadvantage that
they can present both a caret and a selection to the user at the same time,
which is potentially confusing. Old behaviour will remain deprecated, but
new cut-and-paste / drag-and-drop applications must be able to interact
with tasks that use it.

Other applications may support just cut-and-paste, or just drag-and-drop.
Drag-and-drop will be the favoured technique in future, due to the simpler
actions required (select region, drag region), but cut-and-paste must also
be supported as well, to cater for cases when drag-and-drop cannot be
used (e.g. when copying on to a menu tree).

Some aspects (e.g. pointer shape, window) of applications already written
to the application note guidelines (e.g. DataPower, EasiWriter/TechWriter)
are already inconsistent, due to the lack of detail in the application notes.
Applications will in future be encouraged to follow the more detailed
specification herein.

4.User Interface
4.1 Selection

4.1.1 Protocol

4.1.1.1 Rendering

Selection is rendered either by a recolouring an object (with its
photographic negative or otherwise) or by drawing a bounding box,
typically in red, and optionally with one or more "handles" for resizing
and/or rotating operations as appropriate:

It should be emphasised that a caret must never appear within the same
window as a selection at any time, not even during the selecting drag.
Placing a new caret or selection removes any caret or selection previously
active in the same window. (The definition of a window for these purposes
is a top-level window and its panes and all their child windows.)

However, if during (or immediately after) the selection process, the
selection would have to be drawn with zero width (i.e. for text selections,
when the two ends snap to the same character boundary), a caret must be
displayed instead. It is helpful to consider the caret as a zero-width
selection; only one selection may be present within one window at a time,
so the exclusivity of the caret and selection is an extension of this concept.

When either a caret or a selection is placed in a document, the window
must gain the input focus. This will happen automatically for a Wimp-
drawn user caret, but in the case of application-drawn carets and

selections, the application must position the Wimp caret in the window,
but marked as invisible, in order to achieve the same effect. Simply
changing the window border colour (as is possible in Wimps since RISC
OS 4) is not acceptable.

When a caret or selection is placed in a different drag-and-drop window,
the old selection must be redrawn as a shaded selection, not left as is or
removed entirely. The caret must be removed entirely (or optionally
redrawn as a shadow caret); if the application uses a Wimp-drawn user
caret, the caret will be removed for it automatically. The LoseCaret and
GainCaret events must not be used to determine when this is necessary, as
the Wimp may "borrow" the caret temporarily while a menu is open. A
Wimp message exists to indicate when removal or redraw of the caret and
selection is necessary, and must be used in preference to the events (see
§5.1.1).

Note that a selection may also be non-shaded but not have the input focus
if an application not adhering to the cut-and-paste / drag-and-drop
protocols had grabbed the Wimp caret (and therefore the input focus).
Similarly, non-Wimp-drawn carets may be deprived of the input focus
under similar circumstances while neither being removed, nor being
replaced with a shadow caret.

4.1.1.2 Mouse Events

Non-contiguous selections (just about everything except text and DTP
documents) will continue to be handled as described in the Style Guide
[4], with the proviso that clicking Select over an already-selected object
must not deselect anything, as a Select click event always precedes the
Select drag event which initiates a drag-and-drop operation. Appropriate
action must also be taken to un-shade shaded selections when necessary.

On the other hand, a more detailed behaviour for contiguous selections
must be adhered to in future. In summary:

• Select click outside the selection (or when there is no selection, or
at one end of a selection): position the caret at the pointer position,
and flag the next Select drag as creating a selection.

• Select click on a selection: if the selection was shaded, un-shade it.
Make sure the window has the input focus. Flag the next Select
drag as being a drag-and-drop drag.

• Select click in a "dead" region of a window (e.g. in a page border):
un-shade any selection or replace any shadow caret with the caret,
if either exists. Make sure the window has the input focus.
Optionally, flag the next Select drag as causing an window scroll
operation (as Impression, TechWriter etc. do as present), but
certainly not as starting a selection or drag-and-drop operation.

• Select drag-start event: remove the caret, and set the selection from

the old caret position to the current pointer position. Alternatively,
start the drag-and-drop operation (see §4.4.1). The exact meaning is
determined by the flag that was set at the Select click stage.

• During Select drag: if creating a selection, adjust the most recently
touched end of the selection to the pointer position at regular
intervals; autoscroll the window if necessary, using the SWI
Wimp_AutoScroll introduced in the RISC OS 4 Wimp. For what to do
during a drag-and-drop drag, see §4.4.1.

• Select double-click: select a word (as defined in the Style Guide),
irrespective of whether the click is on an existing selection or not.

• Select click-drag (button pressed, then released, then pressed again
within the double-click limits, then held or moved according to the
drag limits): equivalent to a normal selection-delimiting drag,
except that the selection limits are rounded to word boundaries
(excluding whitespace at either end).

• Adjust click when there is no caret or selection: position the caret at
the pointer position, unless there was a shadow caret, in which
case, position the caret where the shadow caret was. Set a flag to
indicate that there was no caret or selection before the Adjust click
(the shadow caret doesn't count); do not rely on the fact that there
is no selection displayed when the drag event is generated to flag
this, as a zero-width selection may have been displayed as a caret
instead.

• Adjust click when there is a caret: remove the caret, and set the
selection from the old caret position to the current pointer position.

• Adjust click when there is a selection: grow or shrink the selection
so that the nearest end of the selection moves to the pointer
position. (Remember to un-shade the selection and/or gain the input
focus if necessary.)

• Adjust click in a "dead" region of a window: the same as Select in
these circumstances.

• Adjust drag-start event: unless there was no caret or selection
before the preceding Adjust click, adjust the most recently touched
end of the selection to the pointer position.

• During Adjust drag: unless there was no caret or selection before
the preceding Adjust click, adjust the most recently touched end of
the selection to the pointer position at regular intervals; autoscroll
the window if necessary, using SWI Wimp_AutoScroll.

Other operations (including Adjust double-clicks, higher-multiple-clicks
and combinations with shifting keys) are left to the application to respond
to as it sees fit - they might select a line of text, or select something in
another layer, or whatever. Typically, higher-multiple clicks of Select will
select progressively larger blocks of text. For single-line items such as
writable icons, three clicks means select the entire line. Once the
maximum number of clicks is reached, the next click is interpreted as for a
single click, so for writable icons, a quadruple-click sets the position of the
caret.

In order to make selections over a larger area than can be displayed in a
window, during selecting drags of contiguous selections and select box
drags of non-contiguous selections, autoscrolling can be implemented.
However, since there is rarely a meaning to making a selection spanning
several windows, there is only one meaning to moving the pointer off the
window, and so there must be no need for a pause over the autoscrolling
zone to precede commencement of scrolling, as this would merely slow
down the user's actions.

4.1.1.3 Keypresses

There are some special keypresses relating to cut-and-paste that affect the
selection. Obviously, these only apply to selections that have the input
focus (and therefore never apply to a shaded selection). The keypresses
are:

• Ctrl-Z: clear the selection (i.e. undraw the highlights), and place the
caret (if appropriate) at the right-hand end of the old selection (or
the left-hand end in a right-to-left language).

• Ctrl-V or Insert: delete (not cut) the selected data, and place the
caret (if appropriate) at the end of the newly inserted text.

• Ctrl-X, Backspace or Delete: cut the selected data and place the
caret (if appropriate) where the selection was.

• Ctrl-K: delete (not cut) the selected data and place the caret (if
appropriate) where the selection was.

Then there are a number of special behaviours for textual regions:

• Left-arrow/up-arrow: clear the selection, and process the keypress
as though the caret had been at the left of the selection.

• Right-arrow/down-arrow: clear the selection, and process the
keypress as though the caret had been at the right of the selection.

• Any other repositioning keypresses (Home, Tab etc.) behave along
similar lines, as appropriate to the application.

• Any other keypresses that would normally insert one or more
characters: perform a cut operation, then position the caret where
the selection was, and process the keypress as normal.

Any other keypresses must not affect the selection.

During drags (both those that set a selection and those that copy or move
one), no keypresses that would normally affect the selection must be acted
upon.

4.1.1.4 Scope

When a caret or selection is placed in the same window where one already
exists, the old one is removed (not just re-rendered as a shaded selection).

In order for this to be consistent with the use of input focus colouring of
windows, all carets and selections must be unique within a group of
windows characterised thus: a top-level (non-nested) window, all its panes,
and all windows nested within the window or one of its panes. If a task
does its own selection handling but the window or one of its panes also
uses writable icons, the task will need to monitor caret/selection updates
to the writable icons in order to deselect its own selections.

Carets and selections must not be preserved when a window is closed,
deleted or iconized (check for Open_Window_Requests with handle-to-
open-behind of -3 to detect iconization). The Wimp takes care of
everything for Wimp-drawn carets, and automatically removes the input
focus in any case. If a selection can be made in a dialogue box opened
from a menu, then the task must act as though the window were being
closed when receiving Message_MenusDeleted, as tasks are not sent the
usual Close_Window_Request for such windows.

When the window is being closed or deleted, application-drawn carets and
selections must be marked as absent, but when it the window is being
iconized, carets and selections drawn by the application must be flagged
as a shadow caret (if supported) or a shaded selection, respectively, ready
for the next redraw request.

4.1.2 Clipboard Module

The Clipboard is not involved in the selection process.

4.1.3 Writable Icons

Up to one writable icon selection may exist in each window, and the
selection will only be un-shaded if the window has the input focus.

4.1.3.1 Rendering

Carets within writable icons will be Wimp colour 11 (red), irrespective of the
background colour of the icon. This will be achieved by using (Wimp colour 11
EOR background colour), calculated in GCOL space, as the colour to EOR on
to the icon.

Selections and shaded selections will be drawn by switching the foreground
and background colours, then fading them if appropriate. A gap of 4 OS units
will be left before the top and bottom borders (if any) of the icon. Therefore, a
typical writable icon will look like this in its three states:

Using this method is better than EORing a block of colour, especially in the
shaded selection case, where the anti-aliasing of the text is destroyed by an
EOR operation. It also means that non-standard writable icons are catered for
sensibly as well with no extra effort:

In the past, during writable icon redraws caused by scrolling of the icon
(caused, for example, by repositioning of the caret), there has been a certain
amount of flicker, both of the text, and of the caret itself, especially for large
writable icons. This will be exaggerated substantially if the same technique is
used to draw selections; to reduce flicker in both cases, a new algorithm will
be written to deal with icon updates following caret / selection / ghost caret
changes, utilising block copies wherever possible.

4.1.3.2 Scrolling

Icons where the text is less wide than the icon are relatively simple; the text
has a fixed position, irrespective of caret and selection position. But it is likely
that where the text is wider than the icon, occasions will arise where the user
needs access to areas of the text string that are normally hidden, in order to
set one or both ends of a selection. The matter is similar to the requirement
for icon scrolling to position the ghost caret during a drag-and-drop selection
(see §4.4).

So, while the user is delimiting a selection, or when a ghost caret is displayed
in the icon, an autoscrolling scheme will be followed, directly analogous to
that used for windows in Wimp_AutoScroll.

Note in particular:

• The speed of scrolling is proportional to the distance the pointer has
moved beyond the inside edge of the autoscrolling "pause" zone. This is
because this scheme allows fine user control of both acceleration and

deceleration.
• When delimiting a selection, autoscrolling will start as soon as the

pointer enters the "pause" zone - i.e. a pause time of zero is used.
Conversely, to start autoscrolling during a drag-and-drop operation, the
pointer must be held over the pause zone for the configured pause time.
This matches the equivalent behaviour for autoscrolling of windows.

• While document windows are generally of a comparable size, hence the
similar pause zone widths, the size of writable icons can vary
dramatically from icon to icon - compare, for example, a writable icon
that is part of a numeric field, with the URL at the top of a web browser
window. Scrolling speeds that would suit a small icon would be painfully
slow for a very large one, and usable speeds for a large icon would
scroll a small icon far too quickly. Therefore, the scrolling speed of a
writable icon when the pointer is at one end will be proportional to its
width. However, it is also desirable that the scrolling speed ramp up at
the same rate, irrespective of icon size; these two constraints imply that
a fixed proportion of the width of any icon needs to be allocated as the
autoscroll pause zone - we will use 1/4 of the width at each end, as
illustrated to scale below:

Below, the autoscrolling zone is cross-hatched; the autoscrolling pause zone is
the intersection of the autoscrolling zone with the icon bounding box:

4.1.3.3 Mouse Events

Mouse events in writable icons will follow the general behaviour, as specified
in §4.1.1.2, but with a couple of slight changes. The definition of a word will
match that used for Shift-arrow navigation, i.e. treating both spaces and the '.'
character as word delimiters.

On the second click of a double click with Adjust, the selection established by
the first Adjust click will be extended outwards at both ends to include
complete words.

Clicks with either Select or Adjust will not affect the text origin, unless they
are setting the caret position (which will still be centred as far as possible, for
consistency with old Wimps). Neither double-click operation will affect the
text origin either, unless a scroll was caused by the first click of the two.

During a drag, while the pointer is over the central zone between the
autoscrolling zones, no scrolling occurs. The autoscrolling zones act just like
those of windows. After each scroll step (not before), the selection end is
determined by the closest character boundary to the pointer.

When a drag starts, any movement of the text which was performed at the
time of the click event is undone. This is necessary because otherwise we have
introduced a relative movement between the text and the pointer which was
not intended by the user, and the alternative (moving the pointer) is less in the
style of the RISC OS user interface. Consider, for example, if the user clicks
Select at the right hand end of an icon where there is a lot of text further to
the right which is clipped out of view: if the user starts dragging to the left,
but as a result of the initial click, the text had jumped quickly to the left of the
pointer and so the user is now creating a selection to its right; worse still, if
the pointer is still over the autoscrolling zone, the initial character may start
scrolling off the left of the icon, leaving a large selection in the opposite
direction to that intended by the user!

4.1.3.4 Keypresses

These will in general be handled as in §4.1.1.3. Note in particular:

• Only keypresses as specified in the validation string would normally
insert characters, so any others (except Ctrl-X and its synonyms, of

course) will not cut any selected text.
• Whenever a keypress (including Ctrl-X and synonyms) causes the caret

to be repositioned, a traditional, centred caret will be used.
• When a paste is performed, and so an entirely new selection is set, the

selection will be centred within the icon (unless it is wider than the
icon, in which it will be right-aligned).

4.1.3.5 Wimp Selections and Menus

When the pointer moves over a writable menu item, or when a dialogue box
containing writable icons is opened from a menu, the Wimp automatically
places the caret in the menu item, or the first writable icon, respectively. The
Wimp remembers the position of the caret before it does this, and then
returns the caret to its old location afterwards.

This behaviour will be extended to check for Wimp selections that have the
input focus before the caret is placed. If the same selection still exists
afterwards (i.e. a selection has not been made within the menu structure in
the meantime), then the input focus will be returned to it.

Note that selections cannot be made in writable menu items, as any clicks are
considered as choices from the menu tree before being considered as requests
to set the caret position, let alone setting a selection. Also note that drags
cannot be made to an icon in a menu structure, as the click that starts the
drag will close the menu structure before the drag begins!

Cut and paste will work as specified for writable icons in dialogue boxes in
menu trees, and pasting (but obviously not cut or copy) will work for writable
menu items.

4.1.3.6 Password icons

Cutting, copying and dragging from a password icon, or pasting or dragging
into one, is not permitted for security reasons. To give the user some
feedback, the Wimp issues a system beep if the user attempts to do so.
Selecting text in a password icon is permitted, although the only action that
can be performed on it is deletion.

4.1.3.7 Application-altered Indirected Data

On occasions, the text of a writable icon is altered by code other than the
Wimp's writable icon handling code (and as a prerequisite, the text data has to
be indirected). A common example of this is the writable numeric range,
where adjuster arrows may be used to alter the value inside the
accompanying writable icon.

Altering the data does not, in itself, cause any screen updates to be done;
applications have to force a redraw of the icon for the new value to be

displayed. During the redraw, the caret is redrawn, but only using the last
work-area-origin-relative co-ordinates calculated the last time the caret was
positioned. If the new data requires a different text origin, the caret will then
appear incorrectly positioned. To cater for this, nearly if not all applications
set the position of the caret again, as well as forcing a redraw of the icon.

A similar situation could arise with selections (and even ghost carets) - but
since no existing applications know about selections, they will not be able to
cater for the "feature" in the API. For example, suppose the value 99 was
selected in a centred numeric range, then the up-arrow was pressed; the
result would be as below:

To work around this, separate checksums will be kept for the text of the icon
currently containing the selection and the ghost caret. Each time an icon is
redrawn, a new checksum is calculated, and if the checksum has changed, the
selection or ghost caret will be removed. This is because the change to the
text has probably invalidated the selected text anyway.

A variant on this approach will be used to fix the equivalent long-standing bug
in the case of carets. One potential fix which we have to reject is to simply
remove the caret when the text changes, because in many cases the
application already has its own workaround whereby it reapplies the caret, so
with each change of the text, the window's title bar would flicker due to losing
and re-gaining the input focus. Instead, the Wimp will recalculate the caret
position, assuming the same index into the string is required - unless the
icon's numeric flag (icon flag bit 20) is set, in which the caret will be kept at
the same index from the end of the string, to preserve the decimal place being
edited. This way, future applications need not include the workaround at all.

4.1.3.8 Scope

In addition to the rules in §4.1.1.4., any combination of caret, ghost caret and
selection must be removed when an icon is deleted. Also, when a menu is
closed, any selection in a dialogue box linked to the menu must be removed
(the caret already is removed in these cases).

It will not be possible for any caret, selection or ghost caret to be placed in a
writable icon that is shaded. If any caret, selection or ghost caret is present in
a writable icon when it becomes shaded, they will be removed.

The Wimp selection and both carets will be removed when the Wimp font is
changed, but this will be the responsibility of the task that is changing the
font - namely !Configure (or more precisely, a configure plug-in).

If an icon is resized using Wimp_ResizeIcon, any of the caret, ghost caret and
selection which are present in the icon will be marked absent (although no
redrawing will occur immediately, because Wimp_ResizeIcon expects to be
followed by a separate redraw operation anyway).

4.1.3.9 Draggable-Writable (Type 14) Icons

Type 14 (draggable) writable icons are much rarer than standard, type 15
writable icons, and in the past, have only differed in that drag events are
reported to the task. Some applications (such as Fresco) have taken
advantage of these icons to implement a simpler form of drag-and-drop; such
behaviour would be broken if the steps described above were employed for
type 14 icons. Type 14 icons could also be a useful special case, where sub-
units of the information in the icon have no meaning on their own, and where
only the entire text can logically be dragged-and-dropped.

Therefore, all of the rest of §4.x.3 and §5.x.3 (with the exception of
developments specific to carets, such as the bugfix in §4.1.3.7) will only apply
to type 15 writable icons.

4.2. Cut and Copy

4.2.1. Protocol

"Cut" and "Copy" menu options, if provided, must be placed as described
in the Style Guide; the options must be shaded if there is currently no
selection in the window.

A cut operation must be performed when the task receives a Ctrl-X,
Backspace or Delete keypress (i.e. Wimp key codes &008, &018 and
&07F) or when "Cut" is chosen from the menu. When a keypress suitable
for inserting data is received, or when data is dragged-and-dropped on to
the selection's window, or pasted when a selection is active, the selection
must also be cut prior to performing the raw operation.

A copy operation must be performed when "Copy" is chosen from the
menu, or when the task receives a Ctrl-C keypress (Wimp key code &003) -
but not when Wimp key code &18B is received, because although it
resulted from a press of the "Copy" key on the Archimedes, A30x0, A4000
and A5000, on all other machines it will be generated by the "End" key.

Both cut and copy will cause a copy of the selected data to be placed on
the clipboard overwriting any data already there. (See §13 for a definition
of clipboard in this context.) No attempt must be made to render the
clipboard; it is a hidden, abstract entity. The data on the clipboard is of
indeterminate data type; a data type to use for the transfer is negotiated
between the clipboard owner and the pasting task at paste-time, and may
involve either or both tasks performing data translation.

The only difference between cut and copy is that the selected data must be
removed from the main document in the case of a cut operation. The
selection remains unchanged in the case of a copy operation (i.e. it is not
deselected).

If the data cut or copied to the clipboard is of type text, the newlines (if
any) must be represented by ASCII &0A.

4.2.2. Clipboard Module

The use, or not, of the Clipboard module to handle cut and copy operations
will not affect the cut or copy user interfaces, even though this entails
some complication of the programming interface (see §5.2.2).

4.2.3. Writable Icons

Keypresses will be honoured as described in §4.2.1 - although individual
icons don't and shouldn't have menus, so the description of performing
cuts and copies via a menu is inappropriate. The data held in the writable
icon will always be plain text, and the exported data can only be the same,
so management of the clipboard can and will be delegated to the
Clipboard (and as a consequence of this, a Message_ClaimEntity 4 will be
issued by the Clipboard every time data is cut or copied to the clipboard
from a writable icon, including those in menu structures).

4.3. Paste

4.3.1. Protocol

A"Paste" menu option, if provided, must be placed as described in the
Style Guide; the option must be shaded if there is no data on the clipboard
suitable for pasting into the document, even though this may entail a
slight delay before opening of the submenu while the application
interrogates the current owner of the clipboard.

The keypresses Ctrl-V and Insert (Wimp key codes &016 and &1CD) are
both equivalent to choosing "Paste" from the menu.

If there is a selection present in the window before the paste operation, it
must be deleted before the paste takes place; swapping the clipboard
contents and the selection would prevent the same data being pasted
multiple times. The new data is inserted at the caret, or where the old
selection was positioned, and the pasted data is automatically selected, so
that the user can immediately cut it again, should it be so desired.

If the data pasted from the clipboard is of type text, any instances of ASCII
&0A, &0D, or both codes adjacently in either order must be treated
equally, as a single newline.

4.3.2. Clipboard Module

The use, or not, of the Clipboard module to handle paste operations will
not affect the paste user interface.

4.3.3. Writable Icons

Keypresses will be honoured as described in §4.3.1 - although individual
icons don't and shouldn't have menus, so the description of performing
pastes via a menu is inappropriate. Handling the protocol for obtaining the
pasted data will be delegated to the Clipboard.

Pasted data must be available in text (data type &FFF) form, or else the
keypress will be ignored. Only text up to the first instance of ASCII &00,
&0A or &0D, or the length of the spare space in the data buffer (plus the
length of any selection), will be considered; if this string contains other
control characters, or characters forbidden by the validation string, the
operation will be faulted with a beep. In this case, no characters are
inserted and any pre-existing selection is neither deselected nor deleted.

4.4. Drag

4.4.1. Protocol

4.4.1.1. General

When the user starts a drag-and-drop drag (which will always be with the
Select button, at least for text selections), the selection is not deselected.
When the drag ends, the new data is selected, which means that, unless
the drag was a move operation, or the destination is in the same window
as the source, the old selection will subsequently be redrawn as a shaded
selection.

If, during any drag operation, the Escape key is pressed, the drag must be
aborted. Any other keypresses during a drag must be ignored (except of
course for the status of the Shift key at the beginning of the drag, which is
responsible for exchanging the meanings of copy and move operations).

4.4.1.2. Pointers

During a drag, the pointer shape is changed to the new standard
alternative pointer shape ptr_drop; this must be used instead of the
alternatives employed by DataPower, TechWriter and others. The new
pointer shape will be added to the Wimp's RAM sprite pool by the
Clipboard module, so that it is always available for tasks to use.

The new pointer retains the styling of the default pointer, plus the handed-
ness of it, while implying a lifting operation consistent with the drop
shadows added by the DragASprite and DragAnObject modules, and yet is
not completely dissimilar to the existing third party pointers.

The ptr_drop pointer must remain in use throughout the drag operation,
with the sole exception of during an autoscroll, when the Wimp's
autoscroll pointers are used in preference - see §4.4.1.5.

4.4.1.3. Dragboxes

Linked to the pointer position, there will be at all times during the drag
either a representation of the (potential) drop position, or of the original
data, but not both. Which is used depends on both the sending and
(potentially-) receiving tasks, and on the type of data being dragged: if the
receiving task understands at least one of the the data types, it will draw
the drop position; if not, the sending task is responsible for the
representation of the original data.

The representation of the original data, when required, can take the form
of either a rotating-dash Wimp box of the same size as the original
selection, or of a DragASprite or DragAnObject rendering. As ever, if the
CMOS indicates as such, a dragbox must be used instead of a DragASprite
or DragAnObject drag. If a selection consisting of multiple, non-contiguous
objects is to be represented without using a dragbox, the Wimp sprite
"package" must be used, to match the Filer's behaviour.

Whether a dragbox is to be used or not, the representation is (of course)
updated automatically by the Wimp to follow the pointer. The box, sprite or
object must always keep the same position relative to the pointer's active
point as the original bounding box did at the click that started the drag -
except that in the special case of the "package" sprite, the sprite must
always be centred over the pointer's active point.

4.4.1.4. Ghost Carets

The representation of the drop position - known as the ghost caret - has
two typical forms. When the pointer is over a primarily textual region, and
the task understands at least one of the available data types, the ghost
caret can be displayed as a grey I-beam, "snapped" to the nearest
character boundary. When the pointer is over a layout-based region, a grey
bounding box, scaled according to the zoom setting of the window, can be
displayed, snapped to any grid, guidelines, frame boundaries etc. as
appropriate. The two are not necessarily mutually exclusive; a DTP
package might, for example, want to display an I-beam when underneath a
text drag, but a scaled bounding box when underneath a sprite drag. If
neither form is appropriate, and the application knows of no other
appropriate rendering either, the sending task must be informed (or be
allowed to continue) to display the dragbox, sprite or whatever.

While the task that technically owns the drag continues to be the sending
task, the receiving task is responsible for drawing any ghost caret.
Therefore the ghost caret position is only updated at each pass through
the underlying message protocol, approximately four times a second. In
order to prevent the sending task's dragbox or sprite from coexisting with
the ghost caret, and thus cluttering the target area to an unnecessary
extent, provision is made in the protocol for the receiving task to request
that the drag be replaced with a "drag point" (type 7) drag for as long as
the receiving task is displaying a ghost caret.

In textual documents, if during the drag, the pointer is positioned over the
original selection, the ghost caret must not be displayed - the dragbox
must be displayed instead. This is because dragging text inside itself has
no meaning.

4.4.1.5. Scrolling

During a drag, when the pointer is over a window that can scroll,
autoscrolling must be turned on using the SWI Wimp_AutoScroll. For more
details of the effect of this SWI, see [5], but note that unless the pointer is
held still near the edge of the window for a period, no scrolling will occur.
Since determination of the pause zone is dependent upon positioning of

panes etc., the activation and deactivation of Wimp_AutoScroll is the
responsibility of the receiving task.

4.4.2. Clipboard Module

The use, or not, of the Clipboard module to handle drag operations will not
affect the drag user interface.

4.4.3. Writable Icons

Drags from writable icons will use the ptr_drop pointer, and a rotating-
dash dragbox matched in size to the selection. If the pointer has not
moved since the click, the drag will initially look like this (with the dashes
rotating):

Drags to writable icons (including drags within the same icon) will use an
I-beam ghost caret. The ghost-caret drawing facility of the Wimp will also
be made available to applications, in order to ensure that all I-beam ghost
carets are drawn to the same colour and design. The colour used will be
the ColourTransed version of palette entry &80808000 (50.2% grey) in
order to attain maximum contrast when EORed over every possible colour.

If the pointer is dragged over the autoscrolling zone (as defined in
§4.1.3.2), the icon will be scrolled in order to let the ghost caret be
positioned in an out-of-sight part of the icon. This will happen even if the
selection fills the icon (meaning that the ghost caret cannot be positioned
anywhere in the icon) because there would be no visual clues as to why
the autoscrolling was not occurring in this case.

Window autoscrolling will not be initiated while the pointer is being
dragged over a writable icon. However, if autoscrolling of the icon's
window is already in progress and the pointer moves on to a writable icon,
the ghost caret will not be placed in the writable icon.

4.5. Drop

4.5.1. Protocol

4.5.1.1. Sending

When a drag-and-drop drag ends, the sending task attempts to transfer

data to the task under the pointer, or if a drag-and-drop dialogue was in
effect, to the receiving task (which can only be different from the task
under the pointer if the receiving task is autoscrolling one of its windows).
The data type actually transferred is negotiated between the sending and
receiving tasks at the time of the drop; it may entail either or both tasks
performing data translation.

The decision whether to delete the original data when the drag ends (i.e.
whether to copy or move the selection) is based upon the state of the Shift
key when the drag began, and upon whether the pointer position at the
end of the drag is in the same window as at the start, or not. Drags within
a window move the data unless Shift is held down; drags between
windows copy the data unless Shift is held down. Shift reverses the
meaning of the drag, so within a region, the selection is copied, and
between regions, the selection is moved.

The destination task can also insist that the operation be a move
irrespective of the above; this is to allow for trashcan applications. Drags
to non-drag-and-drop applications (including the Filer) are treated the
same as drags to a different window.

In some circumstances, such as dropping data onto a directory viewer, the
filename used in the data transfer protocols will become visible to the
user. For these to be meaningful to the user, these filenames should follow
the convention of concatenating the source of the data with the textual
filetype, for example "IconText" or "PaintSprite".

When generating data of type text that includes newline characters, you
must use ASCII &0A to terminate lines.

4.5.1.2. Receiving

To the destination task, a drop will appear the same as a non-drag-and-
drop DataSave (inter-application data transfer) operation, except that the
Wimp message is subtly marked (by virtue of having a non-zero your_ref
field) as having resulted from previous messaging (i.e. the drag-and-drop
dialogue). Assuming the task doesn't reject the data as being unsuitable,
this is sufficient for the task to know what to do with the data:

If a drag-and-drop drop,

• If a ghost caret was being displayed, the insertion point is set to the
last known ghost caret position.

• Otherwise, the insertion point is set to the position specified in the
message (i.e. the pointer position), snapped if necessary.

If a non-drag-and-drop drop,

• If a caret (shadow or not) or selection (shaded or not) is being

displayed, the insertion point is set there.
• Otherwise, the insertion point is set to the position specified in the

message, snapped if necessary.

If the insertion point thus determined lies on a selection (shaded or not),
the said selection must be cut to the clipboard. (This is the only
circumstance in which the clipboard is affected by a drag-and-drop
operation.) The new data is inserted, and is then selected itself.

If the insertion point lies on the source selection, no actions must be
taken. The selection remains selected.

Received text data must be correctly handled whether newlines (if any)
are indicated using ASCII &0A, &0D, or both characters in either order.

4.5.2. Clipboard Module

The use, or not, of the Clipboard module to handle drop operations will not
affect the drop user interface.

4.5.3. Writable Icons

The requirements for acceptance of dropped data are the same as for
pasted data (see §4.3.3).

Text dragged from a writable icon is not terminated in any way - the "file"
length determines the amount of text. The leafname used for icon-sourced
text will be "IconText"; because the data transfer message handling will be
delegated to the Clipboard, there will be no opportunity to change the
leafname so as not to overwrite an existing file of the same name.

5. Programming Interface and Data Interchange
These two sections have been combined because any programming
interfaces being specified are intimately connected to data interchange,
and it makes no sense to discuss the programming interfaces before the
data interchange they relate to.

5.1. Selection

5.1.1. Protocol

Handling mouse and key events relating to and rendering of selections is
the responsibility of the task. The task may use Wimp_SetCaretPosition to
delegate drawing of the caret, but non-I-beam carets and selections need
to be drawn during window update and redraw code. To give a window the

input focus without displaying the Wimp caret (for example, when setting
a selection), Wimp_SetCaretPosition must be called with R4 bit 25 set.

Whenever a cut-and-paste / drag-and-drop task gains either the caret or
the selection, it must broadcast the following event 17 Wimp message with
both flag bits 0 and 1 set:

Message_ClaimEntity
(&0000F)

This message is broadcast by a task claiming the cut-and-paste / drag-and-
drop caret, selection or clipboard

Message

Offset Contents
R1+12 your ref: 0
R1+20 Flags:

Bit(s) Meaning
0 Caret or selection being claimed
1 Caret or selection being claimed
2 Clipboard being claimed (see §5.2.1)

3-31 Reserved, must be zero

Source

Tasks

Destination

Tasks

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

A task must determine if it is gaining, or merely repositioning the caret/
selection by whether any other task has broadcast a Message_ClaimEntity
with bits 0 or 1 set, since the last time the task in question broadcast such
a message. Note in particular, this means that a task must not consider the
caret to have been lost when the Wimp caret is grabbed by a non- cut-and-
paste / drag-and-drop task.

When a task receives Message_ClaimEntity with either one or both of bits
0 and 1 set, it must act as though both the caret and selection have been
claimed - and therefore redraw any selection as a shaded selection, and
either redraw the caret as a shadow caret, or remove the caret entirely
(the latter will be done automatically if the task was using a Wimp-drawn
user caret).

Note that the Wimp does not issue this message when positioning either
the caret or a selection within a menu structure.

5.1.2. Clipboard Module

The Clipboard is not involved in the selection process. However, any programs
planning to rely entirely on the Clipboard to manage its cut-and-paste / drag-
and-drop data transfer must still claim the caret and selection as described in
§5.1.1.

5.1.3. Writable Icons

5.1.3.1. Wimp_SetCaretPosition API

Wimp_SetCaretPosition will be extended to allow the following entities to be
created:

• Carets in writable icons that are not necessarily centred when the text
is wider than the icon.

• "User" ghost carets - i.e. ghost carets not in an icon. *
• Ghost carets in writable icons (not necessarily centred). (See §5.4.3.)
• Selections in writable icons, centred when the text is wider than the

icon. *
• Selections in writable icons, not necessarily centred when the text is

wider than the icon.

Those entities above marked with an asterisk will also be made available to
tasks. Any calls using the API for the others will be ignored, unless called
using the internal Wimp routine. Below is the complete new
Wimp_SetCaretPosition API, including the existing functionality, in a more
digestible form than in the RISC OS 3 PRM. This includes the calls for internal
use only; although these are internally distinguished by flags bit 28 being set,
as far as the outside world is concerned, both bits 28 and 29 remain
"reserved, must be zero".

Wimp_SetCaretPosition
(SWI &400D2)

Set up the data for a new caret, ghost caret or selection position, and redraw
it there

On entry

R0-6=contents varies by operation

On exit

R0preserved
R1preserved
R2preserved
R3preserved
R4preserved
R5preserved
R6undefined

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

This is SWI and has many use cases. The table below shows the complete list
of operations.

Action Description
0 To remove the caret / ghost caret / selection

1 To set a user caret / user ghost caret:
2 To set an icon caret, centred if possible, by known index into the

string
3 To set an icon caret and override the default Y position, size or flags
4 To set an icon caret, centred if possible, by approximate current

position on screen
5 To set an icon caret / icon ghost caret, not necessarily centred
6 To set an icon selection, centred if possible
7 To set an icon selection, not necessarily centred

The versions of the indexes into the string held internally, after an icon caret
is positioned by index, will in future be restricted to the range { 0 <= index
<= length } rather than just { index >= 0 }. This is essentially a bugfix,
and will affect the values returned by Wimp_GetCaretPosition.

The Caret Flag

Flag bits 30/31 determine which entity the call refers to, and also affect the
other flag bit meanings:

Value Entity Meaning
0 Caret Bit(s) Meaning

0-15 height in OS units (0-65535)
16-23 colour (bits 20-23 ignored if a Wimp colour

number)
24 use a Wimp-drawn caret rather than the Font

Manager caret
25 do not draw the I-beam (caret is invisible)
26 use bits 16-23 for colour (else defaults to colour

11)
27 colour is a GCOL, otherwise a Wimp colour

number
28 use both R2 and R5 to position the caret in an

icon and override centring behaviour (internal
use only, must be zero for external callers)

29 Reserved, must be zero

1 Ghost
Caret Bit(s) Meaning

0-15 height in OS units (0-65535)

16-23 not used; must be zero (palette entry &80808000
always used)

24 use a Wimp-drawn caret rather than the Font
Manager caret

25-27 not used; must be zero (cannot be invisible,
colour is fixed)

28 use both R2 and R5 to position the ghost caret in
an icon and override centring behaviour (internal
use only, must be zero for external callers)

29 Reserved, must be zero

2 Selection Bit(s) Meaning
0-25 not used; must be zero (height and colour

determined by icon properties and bit 26)
26 use shaded selection colour scheme (also implies

that the window containing the selection should
not be awarded the input focus as the result of
this call)

27 the window containing the selection should not be
awarded the input focus, even if it is not shaded

28 use both R2 and R5/R6 to position the selection in
an icon and override centring behaviour (internal
use only, must be zero for external callers)

29 Reserved, must be zero

3 Reserved

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 0
(SWI &400D2)

To remove the caret / ghost caret / selection

On entry

R0=-1
R2="TASK"

R3=caret flags (bits other than 30 and 31 reserved, must be zero)
R4=use bits 30 and 31 of R4 to determine which entity to remove, otherwise

remove the caret

On exit

R0preserved
R2= 0
R3preserved
R3preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

To remove the caret / ghost caret / selection.

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 1
(SWI &400D2)

To set a user caret / user ghost caret:

On entry

R0=window handle
R1=x-offset of caret / ghost caret, relative to work area origin
R2=y-offset of caret / ghost caret, relative to work area origin
R3=caret flags (bits other than 30 and 31 reserved, must be zero)

R4=height of caret, and flags

On exit

R0preserved
R1preserved
R2preserved
R3preserved
R4preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

To remove the caret / ghost caret / selection.

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 2
(SWI &400D2)

To set an icon caret, centred if possible, by known index into the string

On entry

R0=window handle
R1=icon handle
R4=-1

R5=index of caret into string (must be >= 0)

On exit

R0preserved
R1preserved
R4preserved
R5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant.

To set an icon caret, centred if possible, by known index into the string

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 3
(SWI &400D2)

To set an icon caret and override the default Y position, size or flags

On entry

R0=window handle
R1=icon handle
R3=y-offset of caret, relative to work area origin
R4=height of caret, and flags (bits 28-31 all clear)

R5=index of caret into string (must be >= 0)

On exit

R0preserved
R1preserved
R3preserved
R4preserved
R5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant.

To set an icon caret and override the default Y position, size or flags

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 4
(SWI &400D2)

To set an icon caret, centred if possible, by approximate current position on
screen

On entry

R0=window handle
R1=icon handle
R2=current x-offset of desired position, relative to work area origin

R3=current y-offset of desired position, relative to work area origin
R5=-1

On exit

R0preserved
R1preserved
R2preserved
R3preserved
R5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

To set an icon caret, centred if possible, by approximate current position on
screen.

Note that if positioning the caret there causes the icon to scroll, the final caret
position may be very different to the specified position.

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 5
(SWI &400D2)

To set an icon caret / icon ghost caret, not necessarily centred

On entry

R0=window handle
R1=icon handle
R2=new value of caret scrollx
R3=0 (reserved for future expansion)
R4=height of caret, and flags (bit 28 set, bit 30 set for ghost caret or clear

for caret, bit 31 clear)
R5=index of caret into string (must be >= 0)

On exit

R0preserved
R1preserved
R2preserved
R3preserved
R3preserved
R5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

To set an icon caret / icon ghost caret, not necessarily centred. *

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 6
(SWI &400D2)

To set an icon selection, centred if possible

On entry

R0=window handle
R1=icon handle
R4=flags (bit 28 clear, bit 30 clear, bit 31 set)
R5=index of lower boundary into string
R6=index of upper boundary into string

On exit

R0preserved
R1preserved
R4preserved
R5preserved
R6undefined

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

To set an icon selection, centred if possible (or if the selection is wider than
the icon, right-aligned within the icon).

Note: no action is taken if R5 >= R6.

Related SWIs

Wimp_GetCaretPosition

Wimp_SetCaretPosition 7
(SWI &400D2)

To set an icon selection, not necessarily centred

On entry

R0=window handle
R1=icon handle
R2=new value of caret scrollx
R3=0 (reserved for future expansion)
R4=flags (bit 28 set, bit 30 clear, bit 31 set)
R5=index of lower boundary into string
R6=index of upper boundary into string

On exit

R0preserved
R1preserved
R2preserved
R3preserved
R4preserved
R5preserved
R6undefined

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

To set an icon selection, not necessarily centred.

Note: no action is taken if R5 >= R6.

Related SWIs

Wimp_GetCaretPosition

5.1.3.2. Wimp_GetCaretPosition API

The complimentary SWI will be extended to allow for Wimp_SetCaretPosition's
new functionality:

Wimp_GetCaretPosition
(SWI &400D3)

Returns details of the state of the caret, ghost caret or writable icon selection

On entry

R0=if R2 = "TASK", this is the entity to inspect (0 => caret, 1 => ghost
caret, 2 => selection)

R1=block to fill with entity state
R2="TASK" => fill block with state of entity specified by R0 and R3, else fill

block with caret state
R3=if R0 = 2 and R2 = "TASK", this is either the handle of the window to

inspect, or -1 to inspect the window which currently has the input focus
and therefore also the only un-shaded selection

On exit

R0corrupted
R1preserved
R2=0 if it was "TASK" on entry
R3preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

This call returns details of the state of the caret, ghost caret or writable icon
selection.

If the caret or ghost caret state is being returned, the block is filled as follows:

Offset Contents
R1+0 window handle (or -1 if there is no [ghost] caret)
R1+4 icon handle (or -1 if a user [ghost] caret)
R1+8 x-offset of [ghost] caret, relative to work area origin

R1+12 y-offset of [ghost] caret, relative to work area origin
R1+16 height of [ghost] caret and flags (bit 28 clear)
R1+20 index of [ghost] caret into string (undefined if a user [ghost] caret)

If the selection state is being returned, the block is filled as follows:

Offset Contents
R1+0 window handle (or -1 if there is no writable icon selection)
R1+4 icon handle (>= 0)
R1+8 x-offset of lower boundary of selection, relative to work area origin

R1+12 width of selection
R1+16 y-offset of selection, relative to work area origin
R1+20 height of selection and flags (bit 28 clear)
R1+24 index of lower boundary into string
R1+28 index of upper boundary into string

Related SWIs

Wimp_SetCaretPosition

5.2. Cut and Copy

5.2.1. Protocol

When a cut or copy operation is requested of an application, it must copy
the selected data to the clipboard. Under the raw protocol, each task is
responsible for allocating (and deallocating) the memory necessary to
store the clipboard. The clipboard must hold the data in a form from which
it can be translated to the maximum number of other data types, which
usually means it must be held in the application's internal format.

In order to ensure that only one clipboard is active globally at a time, it is
necessary that when a cut or copy operation is performed, the cutting/
copying task broadcasts a Message_ClaimEntity (see §5.1.1) with bit 2 set.
Accordingly, when a task receives such a message, it must deallocate the
memory used to store its own clipboard (unless of course, its own
clipboard was not in use). The message must not be sent if the same task
already owned the clipboard.

5.2.2. Clipboard Module

One of the Clipboard's functions is to allocate and manage memory to
store the clipboard data for any participating tasks, following a cut or copy
operation.

However, the Clipboard has no intrinsic knowledge of how to translate
data between different formats, so it is essential that no task uses the
Clipboard for this purpose if it is able to translate data on export. For
example, none of Edit, Paint or Draw can exclusively use the Clipboard for
clipboard storage - Edit could export Basic programs as a tokenised file, or
as text; Paint can export both sprites and palettes; and Draw can export
text, sprites, JPEGs and PostScript as well as DrawFiles.

Despite this, the raw protocol messaging involved at the pasting stage is
still not completely trivial, and so an alternative method will be provided,
whereby the task is still responsible for storing the clipboard and
translating the data when required, but the Clipboard handles all the
associated Wimp messaging. This also allows some code sharing with the
data-send end of the drop operation.

Clipboard_Put
(SWI &4E000)

Puts data on the clipboard, or initiates the data-send of a drop

On entry

R0=flags:
Bit(s) Meaning

0 Clear the clipboard (must be used when the application
exits, unless another task has since claimed the clipboard
using a Message_ClaimEntity 4)

1 Do not store the data, just the data length (and the task
handle) - when the data is required, the Clipboard will send
the clipboard-owning task a Message_PutRequest stating
the required data type, see §5.3.2

2 R1 is a pointer to a data type list, otherwise R1 is the data
type

3-30 Reserved, must be zero
31 Flag reply messages as for the attention of the Wimp

R1=depending on flags bit 2, either the data type (in bits 0-11), or a
pointer to non-null list of data types that the task can translate the
data to (in no particular order), terminated by -1

R2=pointer to data (if flags bit 1 is clear)
R3=data length
R4=pointer to proposed leafname of data, null-terminated
R5=my_ref of Message_PutRequest which this is a reply to, or 0 if this

isn't a reply

On exit

R0-5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

This SWI can be used for three main purposes:

• passing clipboard data to the Clipboard module to handle on the
application's behalf

• passing enough information about the clipboard to the Clipboard so
it can advertise on our behalf (or proxy) and get back to the
application if and when a paste operation happens

• passing selection data to the Clipboard

The first and second cases can be initiated by the application, often in
response to a Ctrl-C or Ctrl-X keypress. In this case, R5 will be 0. The first
and third cases should be called in response to a Message_PutRequest,
which is sent to the application by the Clipboard module if it called SWI
Clipboard_Put (second case) or SWI Clipboard_StartDrag respectively, and
a paste or drop operation (respectively) has been performed by the user.

Deleting the data in the main document following a cut operation remains
the task's responsibility. If a task is maintaining its own clipboard storage
area, it must release the memory when it receives a Message_ClaimEntity
4 broadcast. When a task exits, if it is maintaining the clipboard, or if
Clipboard is maintaining the clipboard for it, the task must call
Clipboard_Put with flags bit 0 set, for consistency with applications that do
everything themselves.

The Clipboard broadcasts a Message_ClaimEntity 4 (unless the Clipboard
owns the clipboard already), and takes a copy of the data, the leafname
and the data type list, as appropriate. An error is generated if any of the
pointers are invalid.

Related SWIs

Wimp_GetCaretPosition, Wimp_SetCaretPosition

5.2.3. Writable Icons

The Wimp itself is not a Wimp task. One of the consequences of this is that it
has no task handle, and is as such not well suited to handling Wimp messages.
Because of this, it will make heavy use of the Clipboard.

When the user types Ctrl-C or Ctrl-X in a writable icon, the Wimp will call
Clipboard_Put with all flags clear and a data type of &FFF. The data will not
be terminated; only the data length word will determine the extent of the
data.

5.3. Paste

5.3.1. Protocol

The application must first check to see if it owns the clipboard, and use
the data directly if so. If it does not own it, it must broadcast a
Message_DataRequest (message type 18):

Message_DataRequest
(&00010)

Broadcast by a task when it wishes to paste data from a clipboard
maintained by another task

Message

Offset Contents
R1+12 your_ref: 0
R1+20 destination window handle
R1+24 internal handle to indicate destination of data; may be icon

handle (see below)
R1+28 destination x co-ordinate
R1+32 destination y co-ordinate
R1+36 flags: All other bits are reserved and must be clear

Bit(s) Meaning
2 Send data from clipboard

R1+40 list of data types in receiver's order of preference, terminated by
-1 (may be null)

Source

Task

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

Flags bit 2 must be set when the message is sent. If the message is
received with flags bit 2 clear, the message must be ignored.

If an application receiving the message owns the clipboard, it must choose
the earliest data type in the list that it can provide, and if none are
possible (or the list is null) it must provide the data in its original (native)
format. It must reply using the normal Message_DataSave protocol. Bytes
20-35 of the DataSave block must be copied directly from the
corresponding bytes of the Message_DataRequest block (despite the
discrepancy between icon handle and internal handle), while the estimated
size, data type and leafname must be filled appropriately. The your_ref of
the Message_DataSave must be the my_ref of the Message_DataRequest.

Be aware that if the Wimp sees an incoming DataSave with a valid icon
handle at bytes 24-27 (i.e. less than the number of icons created in the
windows), it will assume that it is a request to paste into that icon.
Consequently, an application must be careful how it allocates its internal
handles for use in this message. For example, it could use pointers into
application space, which will be above &8000 and therefore very unlikely
to clash with an icon handle.

When the task that initiated the paste receives the Message_DataSave, it
must check the data type to ensure that it knows how to deal with it - it
may be the clipboard owner's native format. If it cannot, it may back out of
the transaction by ignoring the message. Otherwise, it must continue with
the conventional DataSave protocol, preferably using memory data
transfer.

If an application needs to find out whether there is data available to paste,
but does not actually want to receive the data (e.g. in order to determine
whether a "Paste" menu option should be shaded), it must broadcast a
Message_DataRequest as described above. If no task replies (i.e. the
message bounces) then there is no clipboard data available. If a
Message_DataSave is received, then the application must ignore it (i.e. fail
to reply), which will cause the operation to be silently aborted by the other
task. The data type field of the Message_DataSave can then be used to
determine whether the data being offered by the other task is in a suitable
format to be pasted.

Related SWIs

Clipboard_GetDataType, Clipboard_Put

Related messages

Message_Paste, Message_PutRequest

5.3.2. Clipboard Module

5.3.2.1. The Complete Paste Process

During the paste process, the Clipboard behaves to conventional drag-and-
drop tasks exactly like any other clipboard owner, and responds to
Message_DataRequests as described above.

It also provides an alternative interface to the pasting process, involving much
less messaging. It involves SWI Clipboard_Get and the messages
Message_PutRequest and Message_Paste. However, as before, if a task is
managing its own clipboard, it must use the data directly in preference
(although this will now only be in cases where the data can be translated on
export).

Clipboard_Get
(SWI &4E001)

Requests data from the clipboard, using the Clipboard as a proxy

On entry

R0=flags:
Bit(s) Meaning

0-30 Reserved, must be zero
31 Flag reply messages as for the attention of the Wimp (this bit

must only be set by the Wimp)
R1=destination window handle
R2=destination icon handle (-1 if none)
R3=destination x co-ordinate
R4=destination y co-ordinate
R5=pointer to list of data types that the task is interested in receiving, in

order of preference, terminated by -1 (may be a null list if the native
format is required)

On exit

R0-5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

The Clipboard takes an internal copy of the data type list. If it owns the
clipboard itself, it replies immediately with a Message_Paste. If a task has
registered itself with the Clipboard using a bit-1-set SWI Clipboard_Put, the
Clipboard sends a Message_PutRequest to the clipboard owner, and uses the
data copied from the details in the following SWI Clipboard_Put to construct a
Message_Paste. Alternatively, if a conventional drag-and-drop task owns the
clipboard, the Clipboard will send a Message_DataRequest and handle all the
Message_DataSave etc. messaging, before sending a Message_Paste to the
pasting task, thus creating a uniform interface.

Related SWIs

Clipboard_GetDataType, Clipboard_Put

Related messages

Message_DataRequest, Message_PutRequest

Message_PutRequest
(&4E000)

Requests that clipboard or selection data be sent to the Clipboard

Message

Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Flags bit 0 to use in Clipboard_Put
1 Flags bit 1 to use in Clipboard_Put
2 Flags bit 2 to use in Clipboard_Put (note this also

determines whether a single data type, or a data type list
pointer is required in R3)

3 Send the clipboard (otherwise send the selection)
4 Delete the selection after sending the data

5-30 Reserved, must be zero
31 Message is for the attention of the Wimp, other tasks must

ignore it

R1+24 destination window handle
R1+28 destination icon handle (-1 if none)
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 pointer to list of data types that the destination task is interested in

receiving, in order of preference, terminated by -1 (may be a null list
if the native format is required) - now held in the Clipboard's
workspace

Source

Clipboard

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

This message requests that clipboard or selection data be sent to the
Clipboard.

Message_PutRequest is sent exclusively by the Clipboard. Any task receiving
the message must reply before the next Wimp_Poll using SWI Clipboard_Put
with, preserving flags bit 0-2 and 31.

The message is used both for providing the data in a paste operation (when
data translation has to be delayed until paste-time) and in a drop operation, so
care must be taken to send the data from either the internal clipboard or the
selection, respectively. Bit 4 caters for move-drags (see §5.4.2).

The data type chosen must be the first one in the list that it can provide, or
the native data type if none (or if the list is null). The data must be translated
prior to calling Clipboard_Put (unless bit 2 is set), as it is at that stage that the
Clipboard takes an internal copy of the data. The leafname must be built as
described in §4.5.1.1.

Related SWIs

Clipboard_Get, Clipboard_Put

Related messages

Message_DataRequest, Message_DataTypeIs

Message_Paste
(&4E001)

Informs the task being pasted to or dropped upon that the data is ready to be
received

Message

Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Clipboard couldn't find any clipboard after a Clipboard_Get

call - take no further action
1-30 Reserved, must be zero

31 Message is for the attention of the Wimp, other tasks must
ignore it

R1+24 destination window handle
R1+28 destination icon handle (-1 if none) or internal handle if initiated by

a Message_DataRequest
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 data type
R1+44 pointer to data, or 0 if flag bit 0 set
R1+48 data length
R1+51 pointer to proposed leafname of data, null-terminated, or 0 if flag bit

0 set

Source

Clipboard

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

This message informs the task being pasted to or dropped upon that the data
is ready to be received.

This message is also sent exclusively by the Clipboard. The data type must
first be checked for suitability, then the data must be copied before the next
Wimp_Poll, as the Clipboard will free up the memory unless it was itself the
owner of the clipboard (the task must not attempt to determine whether this is
the case).

Note that the Clipboard stores data in its own application slot, and this is

where the pointer at R1+44 lies, so in order to copy the data, you must use
Wimp_TransferBlock. The Clipboard's task handle (required by
Wimp_TransferBlock) may be obtained from R1+4.

Related SWIs

Clipboard_Get, Clipboard_GetDataType, Clipboard_Put

Related messages

Message_DataTypeIs, Message_PutRequest

5.3.2.2. Interactions

The five possible interactions during a paste operation are outlined below. The
solid lines refer to the complete paste process, and the dotted lines refer to
clipboard data type determination, as described in §5.3.2.3. Lines are diagonal
where a task switch is performed (i.e. for the sending of messages rather than the
use of SWIs). Note that the "clipboard-owning task" is the task that most recently
performed a cut or copy operation - strictly speaking, if the task is cooperating
with the Clipboard, the Clipboard is the clipboard owner.

Interaction method 1

Interaction method 2

Interaction method 3

Interaction method 4

Interaction method 5

In the fifth case, it is necessary for the Clipboard to ack the
Message_DataRequest so that it doesn't bounce while the Message_PutRequest is
delivered to the clipboard-owning task.

5.3.2.3. Clipboard Data Type Determination

Since the Clipboard is responsible for performing the traditional data transfer
protocol, tasks that use the Clipboard need another way in which to determine
whether they can use the current clipboard data. This will be provided by the
Clipboard using the SWI Clipboard_GetDataType and the message
Message_DataTypeIs.

Clipboard_GetDataType
(SWI &4E002)

Requests data type of the clipboard, using the Clipboard as a proxy

On entry

R0=flags:
Bit(s) Meaning

0-30 Reserved, must be zero
31 Flag reply messages as for the attention of the Wimp (this bit

must only be set by the Wimp, even though there are currently
no plans for it to do so at present)

R1=destination window handle

R2=destination icon handle (-1 if none)
R3=destination x co-ordinate
R4=destination y co-ordinate
R5=pointer to list of data types that the task is interested in receiving, in

order of preference, terminated by -1 (may be a null list if the native
format is required)

On exit

R0-5preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

Requests data type of the clipboard, using the Clipboard as a proxy.

The Clipboard takes an internal copy of the data type list. If it owns the
clipboard itself, it replies immediately with a Message_DataTypeIs. If a task
has registered itself with the Clipboard using a bit-1-set SWI Clipboard_Put,
the Clipboard sends a Message_PutRequest to the clipboard owner, and uses
the (single) data type returned in the following SWI Clipboard_Put to
construct a Message_DataTypeIs. Alternatively, if a conventional drag-and-
drop task owns the clipboard, the Clipboard will send a
Message_DataRequest, but fail to reply to the subsequent Message_DataSave;
the data type from the Message_DataSave is used in the Message_DataTypeIs,
thus creating a uniform interface.

Related SWIs

Clipboard_Get

Related messages

Message_DataTypeIs

Message_DataTypeIs
(&4E002)

Informs a task of the data type of the clipboard

Message

Offset Contents
R1+12 your_ref: 0
R1+20 flags:

Bit(s) Meaning
0 Clipboard couldn't find any clipboard after a

Clipboard_GetDataType call
1-30 Reserved, must be zero

31 Message is for the attention of the Wimp, other tasks must
ignore it

R1+24 destination window handle
R1+28 destination icon handle (-1 if none)
R1+32 destination x co-ordinate
R1+36 destination y co-ordinate
R1+40 data type

Source

Clipboard

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

This message informs a task of the data type of the clipboard (subject to the
data type list passed to the preceding SWI Clipboard_GetDataType).

Related SWIs

Clipboard_GetDataType

5.3.3. Writable Icons

The Wimp will use the Clipboard to obtain data when it needs to be pasted. It
will (effectively) install a temporary post-poll filter on the task owning the
icon, in order to detect the flags-bit-31-set Message_Paste that follows a
Clipboard_Get SWI call. The message event will not be claimed, so that a task
can be kept informed about what is being done to its icons - but the task must
not change the contents of the icon, because the Wimp will already have done
so.

Since the Wimp will only export text from writable icons, and as such will have
used the bit-1-clear version of Clipboard_Put, it will not have to respond to
Message_PutRequests (except as a result of a drag-and-drop, see §5.4.2).

The Wimp will not call Clipboard_GetDataType, so need not respond to
Message_DataTypeIs.

5.4. Drag and Drop

5.4.1. Protocol

During a traditional drag operation, no messaging takes place until the
drop. However, during a drag-and-drop drag, a dialogue is set up between
the dragging (sending) task and the potentially-receiving (claiming) task -
which, in general, is the task owning the window under the pointer at any
given time.

5.4.1.1. Responsibilities

The sending task's responsibilities include:

• checking the status of the Shift key at the beginning of the drag
• setting the pointer shape to ptr_drop at the beginning of the drag,

resetting the pointer shape to ptr_drop when the claiming task has
finished with using an alternative pointer shape, and setting it back
to ptr_default at the end of the drag

• calling Wimp_DragBox, DragASprite_Start/Stop or
DragAnObject_Start/Stop, as appropriate, at the beginning and end
(abortion or completion) of the drag, and whenever the claiming
task starts or stops requiring that the dragged object be removed
from view (during such a period, a type 7 Wimp_DragBox
"dragpoint" must be used instead)

• contacting the claiming task every 0.25 seconds, stating the screen
position and "real life" bounding box of the data and the data types
in which it is available

• initiating the drop when the drag ends
• deleting the selected data after a successful drop if (drag was

within the same window AND Shift was not held down) OR (drag
was between windows or to a type-15 writable icon in any window
AND Shift was held down) OR the destination is a trashcan
application

• aborting the drag (and informing the claiming task as such) when
the user presses Escape (which means the sending task must retain
the input focus throughout the drag)

The claiming task's responsibilities include:

• updating the ghost caret according to the data passed from the
sending task, provided at least one available data type can be used
(and telling the sending task to remove the dragged object if a ghost
caret is being displayed)

• automatically scrolling the window if the pointer is paused near the
edge of a document window (and changing the pointer to reflect as
such at the beginning of the autoscroll - changing it back at the end
is the sending task's responsibility)

• letting the sending task know its preferred ordering of data types,
so that the sending task can work out which data type to send
during the drop

• letting the sending task know if it the claiming task is a trashcan
(i.e. that the source data must be deleted)

A task must only claim the drag if it can do something useful with the
handles and co-ordinates passed to it - typically a response would be made
when the pointer is over a text area or in the autoscrolling pause zone, but
not when over a "dead" area like a page border, and not when over a
writable icon (except that being over an autoscrolling pause zone takes
precedence over being over a dead zone or icon).

In practice, the claiming task can choose to continue to be involved in the
dialogue, even when the pointer is no longer over one of its windows. This
is to allow autoscrolling to continue, even when the pointer is dragged
outside the window being autoscrolled (although this must not occur if the
pointer has been moved smoothly over the window boundary without
pausing over the window's autoscrolling activation zone). In fact, the
default behaviour is for the dialogue to continue between the same two

tasks, until the claiming task bows out by letting the sending task's
message bounce. The claiming task, being the one handling the
autoscrolling, is of course the one that knows best when this is necessary.

5.4.1.2. Messaging

Message_Dragging
(&00011)

This message is sent by a sending task to a (prospective) claiming task at
intervals of 0.25 second, carrying context-sensitive information about the
drag

Message

Offset Contents
R1+12 your_ref: my_ref of last Message_DragClaim (or 0 if there was no

claimant last time, or if this is the first Message_Dragging)
R1+20 destination window handle (constructed from

Wimp_GetPointerInfo)
R1+24 destination icon handle (constructed from Wimp_GetPointerInfo)
R1+28 destination x co-ordinate (constructed from

Wimp_GetPointerInfo)
R1+32 destination y co-ordinate (constructed from

Wimp_GetPointerInfo)
R1+36 flags:

Bit(s) Meaning
1 Sending data from selection (for information only,

receiver must ignore)
2 Sending data from clipboard - i.e. from a clipboard-

displaying window (for information only, receiver must
ignore)

3 Source data will be deleted (for information only, and
unfortunately is incorrect when generated by
DataPower; receiver must ignore)

4 Drag is being aborted, do not respond to this message
All other bits are reserved and must be clear

31 All other bits are reserved and must be clear

R1+40 xmin, ymin, xmax, ymax (4 bytes each): bounding box of data,

relative to pointer, measured in millipoints (1/72000th of an
inch), not scaled according to the zoom factor(s) of the source
window; xmin > xmax means data has no bounding box, or
bounding box is unknown

R1+56 list of available data types in no particular order, terminated by
-1 (must not be null)

Source

Task

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

This message is sent by a sending task to a (prospective) claiming task at
intervals of 0.25 second, carrying context-sensitive information about the
drag.

The sending task sends a Message_Dragging, and the claiming task replies
with a Message_DragClaim, as follow

Related messages

Message_DragClaim

Message_DragClaim
(&00012)

This message is sent by a claiming task to the sending task in response to
a Message_Dragging, carrying context-sensitive information about the
drag

Message

Offset Contents
R1+12 your_ref: my_ref of last Message_Dragging
R1+20 flags:

Bit(s) Meaning
0 A pointer shape other than ptr_drop is in use
1 Claiming task requires the absence of the Wimp

dragbox / DragASprite sprite / DragAnObject object
3 Claiming task is a trashcan application, so the source

data must be deleted irrespective of
Message_Dragging's flags bit 3 (else deletion of the
source data is determined by sending task)
All other bits are reserved and must be clear

R1+24 list of available data types in receiver's order of preference,
terminated by -1 (may be null)

Source

Task

Destination

Task

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:confirm message definition attributes

This message is sent by a claiming task to the sending task in response to
a Message_Dragging, carrying context-sensitive information about the
drag. It must only be issued if the claiming task is interested in at least
one available data type.

Related messages

Message_Dragging

Tasks are free to use internal routines to keep track of drags within or
between windows that it owns, avoiding the performance overhead of all the
messaging, as long as the user interface is indistinguishable from that which
would result otherwise. Note in particular, that if the pointer is found to be
over a type-15 writable icon, messaging must be turned back on as though the
pointer was over a window owned by another task; this is so that the Wimp
can collaborate in the dragging dialogue. Fortunately, the only application
which currently uses this optimisation is Easi/TechWriter, where all the
writable icons are in transient (or pseudo-transient) dialogue boxes, so this
problem will never be visible, provided new implementations of drag-and-drop
in applications follow these revised guidelines.

5.4.1.3. Use

In event-driven terms, the sending and claiming tasks must follow the
behaviour outlined below in order to implement every aspect of the protocol.
Explanatory comments are italicised (and are all new in this specification).

"Message type 17/18" means "use message type 17 unless drag_finished is
'true', when you must use message type 18". This is an optimisation, because
we're not interested if Message_Dragging bounces from a non-drag-and-drop
task, until the end of the drag, when we will want to send the data by simple
data transfer.

Sending task:

• At drag start,
◦ enable null events every 0.25 seconds;
◦ call Wimp_DragBox (with a drag type of 5), DragASprite_Start or

DragAnObject_Start as appropriate (remember to use the
dragbox if CMOS states that dragged sprites/objects must not be
used);

◦ program pointer shape to ptr_drop;
◦ set shift_pressed to indicate current status of the Shift keys;
◦ set claimant to 'none' (-1 is a suitable invalid task handle for this

purpose);
◦ set drag_finished to 'false';
◦ set drag_aborted to 'false';
◦ set lastref to 'none' (0 is suitable for this purpose).

• At drag abort (when Escape pressed during a drag),
◦ disable null events;
◦ call Wimp_DragBox -1, DragASprite_Stop or DragAnObject_Stop

as appropriate (or Wimp_DragBox -1 if old_dragclaim_flags has
bit 1 set);

◦ program pointer shape to ptr_default;
◦ set drag_finished and drag_aborted to 'true';
◦ proceed as for a null event...

• At drag end (when User_Drag_Box event is received),

◦ disable null events;
◦ if necessary, call DragASprite_Stop or DragAnObject_Stop;
◦ program pointer shape to ptr_default;
◦ set drag_finished to 'true';
◦ proceed as for a null event...

• At null events,
◦ construct Message_Dragging using data from

Wimp_GetPointerInfo and the value of drag_aborted;
◦ if claimant is 'none', send message type 17/18 to window owner

with your_ref = 0;
◦ else, send message type 18 to claimant with your_ref = lastref.

• When Message_DragClaim is received,
◦ if drag_finished is 'true',

▪ drag has ended successfully while a claim is in force
▪ if drag_aborted is 'false' (this comparison is not strictly

necessary, since the claiming task is not supposed to reply
when the drag is being aborted),

▪ initiate enhanced drop operation (send
Message_DataSave to claimant, using first possible
data type in the list, or the native data type if none
are possible, and using your_ref = my_ref of the
Message_DragClaim, then delete the source data if
shift_pressed and the new window/icon handles (or
the trashcan flag bit in Message_DragClaim)
indicate as such.

◦ else,
▪ drag is continuing AND (a claim is in force, or a claim is

starting)
▪ if lastref != 'none',

▪ claim is continuing, not just starting
▪ if old_dragclaim_flags bit 0 is set, but the new

Message_DragClaim flags bit 0 is clear, program the
pointer shape to ptr_drop;

▪ if old_dragclaim_flags bit 1 is set, but the new
Message_DragClaim flags bit 1 is clear, call
Wimp_DragBox (with a drag type of 5),
DragASprite_Start or DragAnObject_Start as
appropriate.

▪ if old_dragclaim_flags bit 1 is clear, but the new
Message_DragClaim flags bit 1 is set, call
DragASprite_Stop or DragAnObject_Stop if
necessary, then call Wimp_DragBox with a drag type
of 7.

▪ else,
▪ claim is just starting
▪ if Message_DragClaim flags bit 1 is set, call

DragASprite_Stop or DragAnObject_Stop if
necessary, then call Wimp_DragBox with a drag type

of 7.
▪ set claimant to task handle in Message_DragClaim;
▪ set lastref to my_ref of Message_DragClaim;
▪ set old_dragclaim_flags to flags word from

Message_DragClaim.
• When Message_Dragging bounces,

◦ if claimant is not 'none',
▪ claimant is releasing claim (including when claimant

doesn't reply because the drag is aborting)
▪ if drag_finished is 'false',

▪ if old_dragclaim_flags bit 0 is set, program the
pointer shape to ptr_drop;

▪ if old_dragclaim_flags bit 1 is set, call
Wimp_DragBox (with a drag type of 5),
DragASprite_Start or DragAnObject_Start as
appropriate.

▪ set claimant to 'none';
▪ set lastref to 'none';
▪ resend Message_Dragging as message type 17/18 to the

window owner (preserving the flags, and with your_ref =
0).

◦ else,
▪ (no claimant is in effect AND drag has finished) OR the

drag is aborting
▪ if drag_finished is 'true' (this comparison is not strictly

necessary, since drag_aborted also implies drag_finished),
▪ if drag_aborted is 'false',

▪ initiate simple drop operation (send
Message_DataSave to window owner, using
native data type and your_ref = 0).

Claiming task:

• At initialisation,
◦ set claiming to 'false'.

• When Message_Dragging is received,
◦ if claiming is 'false',

▪ if flags bit 4 is clear,
▪ start claim
▪ set claiming to 'true' and autoscrolling to 'false';
▪ if pointer is in the autoscroll pause zone,

▪ set pausing to 'true';
▪ set old_pointer_x, old_pointer_y and

old_pointer_time to the x and y from
Message_Dragging and the current
monotonic time;

▪ program pointer to autoscroll-pause shape,
and set pointer_altered to 'true';

▪ else,

▪ set pausing to 'false' and pointer_altered to
'false';

▪ if the data type is suitable, draw the ghost caret (I-
beam or bounding box) and set ghost_caret to 'true',
else set ghost_caret to 'false';

▪ reply with Message_DragClaim (message type 17),
using pointer_altered and ghost_caret to determine
the flags.

◦ else,
▪ if flags bit 4 is clear AND (claiming task owns the window/

icon handle in Message_Dragging OR autoscrolling is
'true'),

▪ update claim
▪ if pausing is 'true',

▪ if current pointer x or y differs from
old_pointer_x or old_pointer_y, set
old_pointer_x, old_pointer_y and
old_pointer_time to the current pointer x and
y and monotonic time;

▪ if pointer has left autoscroll pausing zone,
▪ set pausing and pointer_altered to

'false';
▪ else,

▪ if (current monotonic time -
old_pointer_time) >= pause_time
(typically 0.5 seconds), set
autoscrolling to 'true' and pausing to
'false', and program the pointer to its
autoscroll-active shape;

▪ else if autoscrolling is 'false',
▪ if pointer is in the autoscroll pause zone,

▪ set pausing to 'true';
▪ set old_pointer_x, old_pointer_y and

old_pointer_time to the x and y from
Message_Dragging and the current
monotonic time;

▪ program pointer to autoscroll-pause
shape, and set pointer_altered to 'true';

▪ else,
▪ set pausing to 'false' and

pointer_altered to 'false';
▪ else (i.e. autoscrolling is 'true'),

▪ if pointer is over the window, but not in the
autoscroll pause zone,

▪ set autoscrolling and pointer_altered to
'false';

▪ else,
▪ scroll the window by an amount

proportional to the distance from the
pointer to the inside edge of the
autoscroll pause zone;

▪ if the window cannot be scrolled any
further in this direction (or can be
scrolled in neither direction if a 2D
scroll), set autoscrolling to 'false', set
pausing to 'true' and program the
pointer to its autoscroll-pausing shape;

▪ if ghost_caret is 'true', update ghost caret - unless
the work-area-relative position is unchanged,
undraw the old ghost caret and draw the new ghost
caret;

▪ reply with Message_DragClaim (message type 17),
using pointer_altered and ghost_caret to determine
the flags.

▪ else,
▪ release claim
▪ set claiming to 'false';
▪ if ghost_caret is 'true', undraw the old ghost caret;
▪ let Message_Dragging bounce (i.e. don't reply to it).

• When Message_DataSave is received,
◦ if you_ref != 0,

▪ if claiming is 'true',
▪ this was an enhanced (full drag-and-drop) drop - the

claim was never released set claiming to 'false';
▪ if ghost_caret is 'true', undraw the old ghost caret;
▪ import data to the last ghost caret position using

conventional data transfer protocol (preferably
using memory data transfer).

▪ else,
▪ this is part of the paste protocol
▪ continue as for simple drop...

◦ else,
▪ this was a simple drop
▪ import data to position from Message_DataSave using

conventional data transfer protocol (preferably using
memory data transfer).

5.4.2. Clipboard Module

5.4.2.1. Use

The Clipboard module, in conjunction with the SWI Wimp_AutoScroll, will
reduce the coding required to implement drag-and-drop to the following, a
great improvement on §5.4.1.3. Note that, unlike the clipboard maintenance
and paste protocols, the drag and drop protocols use one-to-one messages
rather than broadcast messages, so the Clipboard needs to make use of filters

in order to translate between the protocols. (An assumption has been made
that the receiving task wishes to use an I-beam ghost caret - this does not
have to be the case, but Wimp_SetCaretPosition's new facility for drawing
ghost carets requires simpler but different code from that in §5.4.1.3.)

Sending task:

• At drag start,
◦ ensure sending window has the input focus;
◦ call SWI Clipboard_StartDrag.

• When Message_PutRequest is received,
◦ if flags bits 3 and 31 are clear,

▪ this is a PutRequest for the selection, rather than the task-
managed clipboard

▪ translate selected data to the first possible data type in the
list, or leave as the native data type if none are possible;

▪ call Clipboard_Put to send the data;
▪ if flags bit 4 of the Message_PutRequest was set, delete

the selection.

Claiming task:

• At initialisation,
◦ set claiming to 'false'.

• When Message_Dragging is received,
◦ if claiming is 'false',

▪ if flags bit 4 is clear,
▪ start claim
▪ set claiming to 'true';
▪ call Wimp_AutoScroll;
▪ call Wimp_SetCaretPosition to position the ghost

caret if at least one available data type is suitable;
▪ reply with Message_DragClaim (message type 17),

with flags bit 0 clear, and flags bit 1 set if a ghost
caret is being displayed.

◦ else,
▪ if flags bit 4 is clear AND (claiming task owns the window

handle in Message_Dragging OR Wimp_AutoScroll
indicates scrolling is in progress),

▪ update claim
▪ call Wimp_SetCaretPosition to reposition the ghost

caret if at least one available data type is suitable;
▪ reply with Message_DragClaim (message type 17),

with flags bit 0 clear, and flags bit 1 set if a ghost
caret is being displayed.

▪ else,
▪ release claim
▪ set claiming to 'false';
▪ call Wimp_AutoScroll to deactivate autoscrolling;

▪ call Wimp_SetCaretPosition -1 to remove the ghost
caret;

▪ let Message_Dragging bounce (i.e. don't reply to it).
• When Message_DataSave is received,

◦ if claiming is 'true',
▪ this was an enhanced (full drag-and-drop) drop - the claim

was never released
▪ set claiming to 'false';
▪ call Wimp_AutoScroll to deactivate autoscrolling;
▪ call Wimp_SetCaretPosition -1 to remove the ghost caret;
▪ copy window handle, icon handle, x and y offsets from last

Message_Dragging over the Message_DataSave block
equivalents, and call Clipboard_CatchDrop.

◦ else,
▪ this was a simple drop
▪ call Clipboard_CatchDrop.

5.4.2.2. Messaging

The details of the new SWIs introduced are:

Clipboard_StartDrag
(SWI &4E003)

Starts a drag-and-drop drag, using the Clipboard as a proxy

On entry

R0=flags:
Bit(s) Meaning

1 As Message_Dragging (= sending from selection)
2 As Message_Dragging (= sending from clipboard)

14-15 Proxy Drag Method:
Value Meaning

0 use rotating-dash fixed-size Wimp dragbox
1 use DragASprite
2 use DragAnObject
3 reserved

16 As DragAnObject_Start, if applicable (R1 is a pointer to a
routine rather than a SWI number)

17 As DragAnObject_Start, if applicable (if bit 16 is set and bit 18
clear, enter routine with R10 below R13 - note this was
previously misdocumented as the routine being entered in SVC
mode rather than USR mode)

18 As DragAnObject_Start, if applicable (if bit 16 is set and
DragAnObject is version 0.09 or later, enter routine in USR
mode rather than SVC mode)

31 Flag reply messages as for the attention of the Wimp (this bit
must only be set by the Wimp)
All others are reserved and must be clear

R1=sprite area or renderer (if DragASprite or DragAnObject, respectively)
R2=pointer to sprite name or register/parameter block (if DragASprite or

DragAnObject, respectively)
R3=source window handle (used in combination with the Shift key state to

determine when the source data needs deleting afterwards)
R4=pointer to word-aligned block containing three bounding boxes, each

made up of four 32-bit quantities held in the order xmin, ymin, xmax,
ymax, where the minima are inclusive and the maxima are exclusive:

• bounding box to apply to the pointer, in OS units from the screen
origin; if xmin > max then the pointer is constrained to the screen

• initial position of the dragbox/sprite/object being dragged, in OS
units from the screen origin

• "real" position and size of the data to use to render the ghost
caret, in millipoints (1/72000ths of an inch) relative to the pointer;
if xmin > xmax then the size is unknown or undefined

R5=data length, bytes
R6=pointer to non-null list of data types that the task can translate the data

to (in no particular order), terminated by -1
R7=pointer to proposed leafname of data, null-terminated

On exit

R0-7preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

Starts a drag-and-drop drag, using the Clipboard as a proxy.

The Clipboard takes a copy of the data pointed to, and performs the actions
described in §5.4.1.3 (sending) on behalf of the task. In order to achieve this,
it forces the required Wimp events to be unmasked using a pre-poll filter, then
performs its main actions using a post-poll filter; it also calls
Wimp_AddMessages, so it not necessary for the task to register interest in
Message_DragClaim etc. at initialisation. During the drag, the task will not
see any user_drag_box events, key_pressed events (except for Escape), or any
DragClaim, RAMFetch, DataSaveAck or DataLoadAck messages. If null events
were enabled in the poll mask before it was massaged by the pre-poll filter
(and, if it was a call to Wimp_PollIdle, the required time has passed) they will
also pass through to the task once the post-poll filter has done its work.

When the drag ends (successfully or not), the filters are removed. When the
drag ends successfully, the task's cooperation is required in order to translate
the data to the required data type; this is accomplished by the Clipboard
sending it a Message_PutRequest with flags bit 3 clear, as described in
§5.3.2.1.

Related SWIs

Clipboard_CatchDrop

Clipboard_CatchDrop
(SWI &4E004)

Request the Clipboard to act as a proxy for data transfer during a drop

On entry

R0=flags:
Bit(s) Meaning

31 Flag reply messages as for the attention of the Wimp (this bit
must only be set by the Wimp)
All others are reserved and must be clear

R1=pointer to DataSave message block (or DataLoad message block if
initiated by the Filer) that needs replying to

On exit

R0-1preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

FIXME:confirm irqs, fiqs, processor-mode, re-entrant

The Clipboard handles the data transfer for the task, trying memory data
transfer first if possible. When the transfer is complete, the Clipboard sends a
Message_Paste to the task that called this SWI, so as to appear identical to a
paste operation.

It will also detect if it sent the DataSave message itself - in other words, if the
sending task was using the Clipboard as a proxy too - if so, no further
messaging will occur, and the Clipboard will simply use the pointer to its copy
of the data made during Clipboard_Put in the Message_Paste.

Related SWIs

Clipboard_StartDrag

5.4.3. Writable Icons

The Wimp will handle drags to and from writable icons as in §5.4.2.

The Wimp will install an internal message filter in order to listen for Clipboard
messages (Message_PutRequest and Message_Paste) with flags bit 31 set;
these are handled by the Wimp and not passed on to the task. Similarly, it will
intercept and not pass on Message_Dragging throughout any period when it is
claiming the drag. However, some tasks (such as FrontEnd) do perform useful

functions when they receive a Message_DataSave, so Message_DataSave is
always passed through to the task, and the Wimp will only call
Clipboard_CatchDrop at the Wimp_Poll following the delivery of
Message_DataSave if the task didn't call Wimp_SendMessage,
Wimp_UpdateWindow or Wimp_ForceRedraw.

6. Data Formats
No new data formats are introduced.

7. Dependencies
The new Wimp provides facilities not available in earlier versions.
Although the source release means that it is possible for applications that
use them to require users of older Wimps to upgrade them, the authors
may choose to implement them manually in cases where an older Wimp is
detected. However, it is encouraged that the new Wimp facilities be
utilised when possible, to accommodate future GUI changes, to allow
system-wide configuration of autoscroll behaviour and so on.

The Wimp will require the Clipboard to enable functioning of drag-and-
drop to or from writable icons. Without it, selections will be able to be
made, but no operations (other than deletion) can be performed on them,
and no selections from other applications will be inserted when dropped
on a writable icon.

8. Acceptance Test
8.1. Clipboard Module

8.1.1. Compatibility

The most advanced features of RISC OS that the Clipboard will make use
of are Dynamic Areas and the DragAnObject module, both introduced at
RISC OS 3.50. Provision may be made for further development work to be
done to support versions back to RISC OS 3.10 (by using RMA rather than
Dynamic Areas, and defaulting to rotating-dash boxes when a
DragAnObject drag is requested), but for the purposes of the initial
release, a modern OS may be assumed.

8.1.2. Reliability/Robustness

The module must be able to handle at least a thousand consecutive

operations without crashing. Null-length data, extremely long data and
data close in length to a multiple of the page size must not cause
problems. Bad parameters (e.g. illegal sprite area pointers) must be
handled as well as possible - in the example, a rotating-dash box must be
used instead.

8.1.3. Performance

Performance will unfortunately continue to be slow in certain key
situations - for example, when transferring data to a conventional task by
memory data transfer, where the receiving task has specified too small a
buffer. Memory transfer will be slower during drops, since the data is
copied twice, once to the Clipboard's application slot, and once from it.
The incidences of scrapfile transfer will however be reduced, resulting in
speed gains.

8.1.4. Memory Usage

The module itself must not exceed 32kB in length. Stored global clipboard
data and transient data (during a drop operation) are stored in the
Clipboard's application slot so that the only size limits are those of the
application slot size (not a big issue with modern memory maps) and the
amount of physical RAM available. The application slot shall grow and
shrink so that it is no larger than the combined size of the data stored,
rounded up to the next page boundary. The RMA shall be used for general
heap storage (linked lists etc.).

8.2. Wimp Writable Icon Code

8.2.1. Compatibility

The writable icon code will function correctly for all tasks that follow the
revised guidelines in §5 and all tasks that do not support the drag-and-
drop protocol, but it may lack complete functionality (although not to the
extent of rendering it useless) for up to 10% of the writable icons in
existing applications written to the old application note guidelines.

8.2.2. Reliability/Robustness

The writable icon cut-and-paste / drag-and-drop code must be at least as
reliable as the Clipboard module.

8.2.3. Performance

Redraw of writable icons, especially when delimiting a selection with
autoscrolling active, must not cause flicker. Data transfer operations must
not be appreciably slower than the Clipboard routines that are actually

doing the work.

8.2.4. Memory Usage

Writable icon data is usually held in application workspace, and will not
increase in size by virtue of these enhancements. A negligible amount of
extra module workspace will be required to hold the details of the Wimp
selection and ghost caret, this should typically be no more than 32K.

9. Non Compliances
No attempt will be made to develop an selection-drawing algorithm that
can cope with overlapping icons. The appearance of such icons after
scrolling and redrawing is not defined.

10. Development Test Strategy
Test applications will be written to exercise the Clipboard SWIs.

Drags to and from the existing drag-and-drop applications (e.g.
DataPower, EasiWriter and TechWriter) work seamlessly. These
applications will therefore be important testing tools. Also for testing
purposes, a drag-and-drop trashcan application and simple clipboard-
display application will be written.

(Conventional data transfer (as for example, when dropping a selection on
to a Filer window) is not expected to cause significant problems, as the
protocol has been clearly defined for a long time, unlike the protocol in the
application notes.)

A test suite will be written to exercise the functions of the Clipboard
through exercise of writable icons' cut-and-paste / drag-and-drop facilities.
For example: setting of writable icon selections will be tested repeatedly,
involving operations that change one or both ends of a selection (or
neither) at the same time, both with and without the presence of a ghost
caret. This will be done by direct calling of Wimp_SetCaretPosition. And
text files of differing length, of differing line terminator and files that have
been accidentally mistyped as text will be saved on to writable icons of
differing validation strings, using conventional data transfer, pasting and
dropping.

11. Product Organisation
This document, and the code it describes, form part of the Shared Source
RISC OS release.

The APIs and messages should ideally be included in a new version of the
Programmer's Reference Manual. Use of the raw protocol rather than the
Clipboard module will be deprecated.

The Clipboard module can be softloaded, but must also be capable of
being built into ROM.

12. Future Enhancements
None planned.

13. Glossary

Term(s)
used in
Document Meaning
AND conj. Logical AND.
Caret n. The position in a document where typed characters or

pasted clipboard contents will be placed. Many pre-drag-
and-drop applications also use this position as the insertion
point for dropped data, but drag-and-drop applications
must use the ghost caret for this purpose instead. In
textual documents, the caret is often shown by a red I-
beam, but other representations of the caret may be more
appropriate for other kinds of data. Some editors, such as
!Draw, do not have a visible insertion point, but still "grab
the caret" and mark it as invisible, in order to gain the
input focus so that they may receive keystroke events."

Clear v. The operation by which a selection is undone."
Clipboard
n.

A hidden, temporary storage area that holds any type of
data while the user is copying or moving it using the cut-
and-paste protocol, whether internal to one application, or
between applications. Conceptually, there is only one
clipboard, but the actual storage area may actually be
managed by different applications or modules, depending
upon the circumstances.
The term may also be used to refer to the Clipboard

module, although in this eventuality, the initial letter will be
in upper case.

Copy v. The operation by which the current selection is replicated
in the clipboard, overwriting any existing data in the
clipboard.

Cut v. As copy, but the selection is subsequently deleted from its
original location.

Data type
n.

A value equivalent to a filetype, but not necessarily
referring to a file.

Drag v. The operation by which the user indicates where they wish
a selection to be copied or moved to by dragging a
representation of the data from the selection to the
destination.

Drop v. At the end of a drag, the actual data transfer process. This
combines the functionality of a paste operation with either
a cut or copy operation, as appropriate.

Ghost
caret n.

During a drag operation, the position in a document where
the data would be inserted, were the user to release the
mouse button. In textual documents, the ghost caret is
often shown similarly to a normal caret, but coloured grey,
and "snapped" to the nearest character boundary. Other
documents might better display the ghost caret as the
bounding box of the data, scaled according to the
destination window's zoom factor(s).

OR conj. Logical inclusive OR (i.e. not EOR) - used where the 'or'
would have an ambiguous meaning, for example in English
text.

Input focus
n.

The defining attribute of the window where keystroke
events will be delivered. The user may be able to see a
caret or a selection, or possibly neither, in the window that
has the input focus; the window border will be coloured in
an alternative colour (conventionally cream). Any parent
nested windows (recursively), and any non-pane window
behind a pane window, will also have their title bars
recoloured.

Paste v. The operation that the user performs to copy the clipboard
contents into a document, at the caret.

Selection
n.

The portion of a document which the user has chosen as
the target for subsequent operations. This may be a
contiguous selection (as in the case of selected text) or a
non-contiguous selection (as in the case of a number of
selected files in the Filer). The rendering of the selection is
media-dependent, but typically may be shown by inversion

of the colours of the selected region, or alternatively by the
drawing of a bounding box around the selection(s).
A shaded selection, which ought be rendered to match the
Wimp's rendering of shaded selections in writable icons,
indicates the location of a selection after another selection
has been made in another window - but not when a caret or
selection is made in a non-drag-and-drop application.

Shadow
caret n.

The equivalent of a shaded selection, but for carets. A
shadow caret must not be rendered in such a way that it
can be mistaken for a ghost caret. It is optional, because
applications are expected normally to use a Wimp-drawn
caret, and the Wimp does not support shadow carets.
However, shadow carets can be useful, especially if the
application draws its own caret anyway (as, for example, if
an I-beam is an unsuitable), because they fix an insertion
point for a drop, whenever one or both of the sending and
receiving tasks uses pre-drag-and-drop data transfer
protocol. The shadow caret is also the position to which the
caret will be returned if the user Adjust-clicks on the
window, or clicks in a "dead" region of the window, such as
a page border; this is particularly useful in cases where
repositioning the caret would be time-consuming or fiddly,
for example if the caret is in a deep "layer" of a document.

14. References
[1]: Support Group Application Note 240: The RISC OS Selection Model
and Clipboard

[2]: Support Group Application Note 241: The RISC OS Drag-and-Drop
System

[3]: RISC OS 3 PRM 3 §53: The Window Manager, pp 3-249 - 3-256

[4]: RISC OS Style Guide, issue 3, §11: Handling selection, pp 77-82

[5]: Document Ref 1309,413/FS: Ursula Window Manager Changes
Functional Specification

15. History

Document information
History: RevisionDate Author Changes

0.00 12 Sep 1997 BJGA Started
0.01 13 Oct 1997 BJGA First release for comment
0.02 14 Oct 1997 BJGA Released for review
D 19 May 1998BJGA Prepared for D.O
E 26 Feb 1999 BJGA Started reworking document

for Java 1.2 project, didn't get
far before cancelled again

E 16 Oct 2007 BJGA Finally finished integrating the
Ursula review comments and 8
years' worth of mental notes,
for initial release alongside
shared source code

F 22 Feb 2015 RPS Updated the page references in
the Style Guide

G draft 22 Feb 2015 Ben
Avison

Shared Source RISC OS release
(formerly Ursula and Java 1.2)
Ref: 1309,419/FS

0.08A 28 Aug 2021 Alan
Robertson

Initial version in PRMinXML
format

• Formatting of text removed
from document (italic,
underlined, bold)

• Added related links to swi
and message definitions

Related: (PDF format, 8K).

https://www.riscosopen.org/images/risc_os_open/specifications/clipboard/state_diagram.pdf

URI Handler Functional
Specification

Contents
• Overview
• Deliverable 'product'
• Programmer's interface

◦ URI SWIs
▪ SWI URI_Version
▪ SWI URI_Dispatch
▪ SWI URI_RequestURI
▪ SWI URI_InvalidateURI

◦ URI service calls
▪ URI
▪ URI 0 - Started
▪ URI 1 - Dying
▪ URI 2 - Process
▪ URI 3 - ReturnResult

◦ WIMP messages
▪ URI_MStarted (&4E380)
▪ URI_MDying (&4E381)
▪ URI_MProcess (&4E382)
▪ URI_MReturnResult (&4E383)
▪ URI_MProcessAck (&4E384)

◦ * Commands
▪ *Desktop_AcornURI
▪ *URIinfo
▪ *URIdispatch

◦ URI handler errors
▪ Defined errors
▪ Error generators

◦ Use of the URI filetype
◦ Use of URI environment variables

• Performance targets

Overview
This document addresses the recognised lack of existing RISC OS
specifications that describe a standard method for different applications to
communicate URIs (of which URLs are an example) between themselves;
for example, to provide for an address book requesting that a Web browser

display someone's home page.

The first part of this requirement addressed is the provision of a
mechanism for applications to pass URIs between themselves in a uniform
manner. To date, several third party developers have independently solved
this problem in a variety of different ways, as there was no centrally
published, universally available standard for developers to work to. This is
such a standard.

This 'central resource broker' will be extended in the future to provide
mechanisms to enable more efficient handling of URIs. For example, data
may be passed to an appropriate application based on the type of data as
opposed to simply the method specified for retrieval of the data, as is often
the case with URLs. This too will be via a service interface to the central
broker.

Deliverable 'product'
This document describes the API created to fulfil the above stated
requirement, and relates to existing software providing the underlying
functionality.

The software takes the form of a RISC OS relocatable module, entitled
'AcornURI'. This is a generic, OS-level software component that could as
equally sit beneath a text editor which was aware of the form of URIs as
sit beneath a Web browser or mail / news reader. Distributed alongside the
module are four sprite definitions for URI files.

The module is suitable for RISC OS 3.10 upwards, and should be stored in
!System.310.Modules.Network as 'URI'.

An archive containing the module, sprites, a text version of this
specification and a brief ReadMe describing the component versions can
be downloaded here (ZIP format).

Programmer's interface
The application programmer's interface to the services provided by the
Acorn URI handler is detailed in the following sections. This interface will
be enhanced in the future, as outlined in the overview, to provide a more
comprehensive set of services; so it's worth emphasising that only those
details and features of the interface specified in the following sections
should be considered to be supported. Any behaviour which is not
specified below should be considered to be an implementation feature of a
particular version of the software, and as such liable to change, alteration

or omission without notice.

The following have been allocated for the use of the Acorn URI handler:

Type Allocated
Module name AcornURI
SWI prefix URI
SWI chunk &4E380
WIMP message chunk &4E380
Error code chunk &810A00
Service Call &A7
FileType &F91

All environment variables containing the string _URI_ (i.e. matching
URI)

URI 'handles' are utilised to identify a specific URI request when
communicating with the URI handler; tasks may assume nothing about
these handle values, other than that they identify a particular URI to the
handler for the period of their validity.

URI SWIs

URI_Version
(SWI &4E380)

return the URI handler module's version number

On entry

R0=flags:
Bit(s) Meaning

0-31 Reserved, must be zero

On exit

R0=current version × 100

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

Not defined

Use

This SWI is used to inquire of the URI handler module's version number,
and should be used to check for a suitable version being present before
using the facilities provided.

The number returned is of the form (major version × 100) + minor
version.

Related APIs

None

URI_Dispatch
(SWI &4E381)

pass a URI string to the handler for dispatch, or checking for the presence of
a potential servicer

On entry

R0=flags:
Bit(s) Meaning

0 inform caller of result (=>R2 valid)
1 check only, don't process (R0:0 must be set)
2 don't attempt external process startup

3-31 Reserved, must be zero
R1=pointer to 0 terminated URI string
R2=0, or source task handle if bit R0:0 is set and the caller is a WIMP task

On exit

R0=flags:
Bit(s) Meaning

0 request rejected, URI won't be dispatched
1-31 Reserved, must be zero

R1preserved
R2=task handle of URI handler
R3=handle of this URI (request identifier)

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used by an application to pass a URI string to the handler for
dispatch, or checking for the presence of a potential servicer. Dispatch
provides for optional requesting of a success/failure indication (R0:0 set) via a
WIMP message (Message_URI_MReturnResult) or service call reason code
(Service_URI 3) FIXME:change this to use-reasonname, when available-
necessary since the dispatch of the URI occurs asynchronously.

If R0:0 is set, module clients must signal that a URI_MReturnResult message
is not necessary by setting R2 to 0. In this case, only the service call will be
sent out. Conversely, WIMP task clients must specify a valid task handle in R2
- in this case, only the WIMP message will be sent out.

When requesting a check only (R0:1 set), it is an error not to set R0:0 and fill
in R2 as described above.

The URI will be copied to the URI handler's workspace, optionally
transformed (future enhancement, such as canonicalisation), then relocatable
modules will be offered the chance to handle the URI via service call &A7 with
an appropriate reason code (Service_URI 2)FIXME:change this to use-
reasonname, when available; if the service call is unclaimed, then a

User_Message_Recorded WIMP message will be broadcasted
(Message_URI_MProcess), offering other tasks the chance of handling the
URI; if neither of these mechanisms elicits a response, then the request will
be deemed to have failed (in so far as active tasks are concerned).

If R0:2 is clear, then the 'fallback' position of checking a subset of the
environment variables will be used to attempt to start a suitable task to
handle the URI. The handle ceases to be valid at this point if notification has
not been requested, irrespective of whether or not the URI has processed.

If R0:0 is set, the originating task will be informed of the results of the
dispatch process (via a User_Message_Recorded WIMP message
URI_MReturnResult if R2 contains a valid task handle, or service call
Service_URI_ReturnResult if R2 is zero). If the message is not acknowledged
or service call claimed, the handle will cease to be valid; otherwise, the
originating task becomes responsible for indicating that it no longer needs the
URI by calling SWI URI_InvalidateURI.

Related SWIs

URI_InvalidateURI

Related services

Service_URI 2, Service_URI 3

Related messages

Message_URI_MProcess, Message_URI_MReturnResult

URI_RequestURI
(SWI &4E382)

return size of buffer required to hold specified URI, or to return the URI via
the buffer

On entry

R0=flags:
Bit(s) Meaning

0-31 Reserved, must be zero
R1=pointer to buffer to hold URI or 0 to read required size
R2=length of buffer or unused (if R1 = 0)
R3=URI handle

On exit

R0preserved
R1preserved
R2=offset into buffer of terminating null, or size of buffer required (if R1 = 0

on entry)
R3preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to inquire what size of buffer is required to hold the specified
URI (if R1 is zero on entry), or to pass details of a buffer into which your task
desires the URI to be copied.

If this is successful, then R2 should be equal to the size of the buffer: if the
buffer specified on entry is not large enough, then R2 will be returned
negative (indicating the number of unreturned characters), and the string
returned in the buffer will still be zero-terminated i.e. buffersize-1 characters
of the string are returned.

Related APIs

None

URI_InvalidateURI
(SWI &4E383)

mark the specified URI as being invalid

On entry

R0=flags:
Bit(s) Meaning

0-31 Reserved, must be zero
R3=URI handle

On exit

R0preserved
R3preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to mark the specified URI as being invalid.

Related APIs

None

URI service calls

Service call &A7 has been allocated for the use of the URI handler; the
following sub-reason codes are defined for the use of external applications.
All other service call reason codes are reserved: a module may assume
nothing about these, and should always ignore unrecognised reason codes
- never claim such service calls.

A deliberate degree of similarly exists between the WIMP messages and
the service calls, since both provide essentially the same functionality;
clearly, messages will be convenient in environments where service calls
are not and vice versa, hence the duplication of functionality between the

two.

Service_URI
(Service &A7)

events issued by URI handler

On entry

R0=reason code:
Value Meaning

0 URI handler started
1 URI handler dying
2 process or check URI
3 return result of a dispatch

All other values are reserved, and must not be used

R1=service call number
R2=flags

R3-4=dependant on reason code

On exit

R0-3=dependant on reason code

Use

Related APIs

None

Service_URI 0
(Service &A7)

URI handler started

On entry

R0=0 (reason code)
R1=&A7 (service call)

R2=flags:
Bit(s) Meaning

0-31 Reserved, must be zero

On exit

R0-2preserved

Use

This service call indicates that the URI handler has started. It is intended for
more specific use defined in future versions of this specification.

This service call must be passed on.

Related APIs

None

Service_URI 1
(Service &A7)

URI handler dying

On entry

R0=1 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0-31 Reserved, must be zero

On exit

R0-2preserved

Use

This service call indicates that the URI handler is dying. It is intended for
more specific use defined in future versions of this specification.

This service call must be passed on.

Related APIs

None

Service_URI 2
(Service &A7)

process or check URI

On entry

R0=2 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0 check URI only, do not process

1-31 Reserved, must be zero
R3=pointer to URI string (readonly access)
R4=handle of this URI

On exit

R0preserved
R1=preserved, or 0 to claim

R2-4preserved

Use

This service call indicates that the URI handler has been requested to
dispatch the given URI for either processing (R2:0 clear), or just checking
(R2:0 set). The URI string is held in the URI handler's workspace; this buffer
must not be written to - if it is, behaviour is undefined. It is intended that
modules should inspect the string at the given address, and if they decide they
can process the given URI, claim the service call. If R2:0 is set, this is all that
is required.

However, if R2:0 is clear, i.e. process URI, then a call to SWI URI_RequestURI
to obtain a local copy to work with must be made; this step may NOT be
omitted, since the internal buffer is not guaranteed to remain valid after
return from the service handler.

If a module cannot process the given URI, it must pass the call on with all
registers preserved to allow the remainder of the dispatch mechanism to
function.

Related SWIs

URI_RequestURI

Service_URI 3
(Service &A7)

return result of a dispatch

On entry

R0=3 (reason code)
R1=&A7 (service call)
R2=flags:

Bit(s) Meaning
0 Clear: URI was claimed for processing

Set: URI was not claimed for processing
1-31 Reserved, must be zero

R3undefined
R4=handle of this URI

On exit

None

Use

This service call is used by the URI handler to return result status information
to a requesting module. The module requests the service call when it calls the
URI_Dispatch SWI; it must set R0:0 and R2=0 on entry. Such modules must
remember the URI handle returned in R3 by this SWI or they cannot later
determine if the service call was meant for them or another client; any client
setting R0:0 on entry to URI_Dispatch must see if it recognises the URI handle
in R4, and if so, claim the service call. If it does not recognise the handle, it
must not claim the service call. Any clients which never set R0:0 on entry to
URI_Dispatch can ignore the service call.

Only success or failure is indicated, though this is likely to be enhanced in
future.

Related SWIs

URI_Dispatch

WIMP messages

Message_URI_MStarted
(&4E380)

URI handler started

Message

Offset Contents
R1+20 flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 undefined (reserved)

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is broadcast (User_Message) to indicate that the URI
handler has started up. It must not be acknowledged - information only.

Related APIs

None

Message_URI_MDying
(&4E381)

URI handler dying

Message

Offset Contents
R1+20 flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 undefined (reserved)

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is broadcast (User_Message) to indicate that the URI handler is
shutting down. It must not be acknowledged - information only.

Related APIs

None

Message_URI_MProcess
(&4E382)

process or check URI

Message

Offset Contents
R1+20 flags:

Bit(s) Meaning
0 check URI only, do not process

1-31 Reserved, must be zero

R1+24 pointer to URI string (URI internal buffer)
R1+28 URI handle
R1+32 undefined (reserved)

Delivery

Message must be broadcast (destination 0)
Message must be sent recorded delivery (reason code 18)

Use

This message is broadcast (User_Message_Recorded) to indicate that the URI
handler has been requested to dispatch the given URI for processing, or check
if any task can process the URI.

The URI string is held in the URI module's workspace; this buffer must not be
written to - if it is, behaviour is undefined.

It is intended that applications which can process URIs should inspect the
string at the given address to determine if they can process the URI. If R0 bit
0 is clear, you must then call SWI URI_RequestURI to obtain a copy to work
with - this step may not be omitted, since the buffer given is not guaranteed to
remain unaltered.

If an application is able to check or process the given URI, then it should
acknowledge the broadcast by sending a Message_URI_MProcessAck message
to the URI handler, thus preventing it being passed on to other applications,
otherwise it must not acknowledge the message.

Related SWIs

URI_RequestURI

Related messages

Message_URI_MProcessAck

Message_URI_MReturnResult
(&4E383)

return result of a dispatch

Message

Offset Contents
R1+20 flags:

Bit(s) Meaning

0 Clear: URI was claimed for processing
Set: URI was not claimed for processing

1-31 Reserved, must be zero

R1+24 URI handle
R1+28 undefined (reserved)

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is used by the URI handler to return result status information to
a requesting task. Only success or failure is indicated, though this is likely to
be enhanced in future.

Related APIs

None

Message_URI_MProcessAck
(&4E384)

acknowledge URI_MProcess

Message

Offset Contents
R1+20 flags:

Bit(s) Meaning
0 Check URI only, do not process

1-31 Reserved, must be zero

R1+24 pointer to URI string (URI internal buffer)
R1+28 URI handle
R1+32 undefined (reserved)

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is used by clients of the URI handler to indicate to the URI
handler that they can claim or process a given URI, thus preventing it being
passed on to other applications. Claimants just change the message type to
&4E384 (URI_MProcessAck) and copy the supplied my_ref field into your_ref,
then send the message back to its originator (ie. the URI handler).

Related APIs

None

* Commands

*Desktop_AcornURI
starts the URI handler

Syntax

*Desktop_AcornURI

Parameters

None

Use

Desktop_AcornURI starts the Acorn URI handler. Do not use
*Desktop_AcornURI, use *Desktop instead.

Help Text:*Do not use *Desktop_AcornURI, use *Desktop instead.
Syntax: *Desktop_AcornURI

Example

*Desktop_AcornURI Use *Desktop to start AcornURI

Related APIs

None

*URIinfo
display information about the URI handler

Syntax

*URIinfo

Parameters

None

Use

*URIinfo produces status information from the Acorn URI handler.

HelpText:

URIinfo produces status information from the Acorn URI handler.
Syntax: *URIinfo

Example

*URIinfo

URI_taskhandle: 4b4016d8
URI chain start: 021cc844
URI handle: 022b60d4 (action:00020000) 'http://www.acorn.com/'

Related APIs

None

*URIdispatch
try to launch a URI

Syntax

*URIdispatch <uri>

Parameters

<uri> - the uri to be launched

Use

*URIdispatch tries to lauch a given URI. No indication is given of whether or
not the launch succeeded.

Help Text:

URIdispatch tries to launch a URI.
Syntax: *URIdispatch <uri>

Example

*URIdispatch http://www.acorn.com/

Related SWIs

URI_Dispatch

URI handler errors

Defined errors

The URI handler has a error chunk base of &810A00. Currently defined
errors are:

Error generators

Generators of the errors are as follows:

Finally, the WIMP task may generate (through a standard WIMP error box)
Error_URI_NoMemory and Error_URI_BadFile.

Use of the URI filetype

URI files have the filetype &F91, with the text equivalent 'URI'. The URI
handler will deal with such files appropriately when the file is double-
clicked upon (currenly, it dispatches the URI inside the file - see the file
format description below). Applications must not set an Alias$@RunType
variable for the URI filetype, nor must they deal with DataOpen messages
for this filetype. Applications may respond to DataLoad messages for the
filetype as they see fit.

Suitable sprites exist (four; medium and high resolution file sprites, small
and large variants). These are the only sprite definitions acceptable for
use in this context. The sprites should always be distributed alongside the
module.

URI files consist of a series of lines of characters. Lines are ended by any
number of control code characters (ASCII code less than 32) or the end of
the file. All lines in a file do not have to end in the same way provided each
individual line ends in a valid manner. Other white space is not ignored,
hence a single space character (ASCII code 32) followed by ASCII code 9
does count as a line containing a single space followed by a line end
marker.

URI files support comments. Comment lines start with a '#' (ASCII 35) and
end in the same way as all other lines. Comment lines are not counted; any
file reader that happened to keep track of the line number it was on should
not increment the counter for a comment line. A URI file may contain any
number of comment lines, but automatic file generators are encouraged to
keep comments to a bare minimum to keep file sizes down. Generator code
must never create special comment lines which mean something to
accompanying reader code - comment lines are always skipped by the
reader code and never parsed, beyond identifying them as comments.

The line ending type of a URI file is not fixed as a specific control code or
sequence of control codes (e.g. CR+LF) to allow simple generation from a

variety of sources, including manual authoring. Given this latter
possibility, it is important to stress that unlike, say, HTML, the URI file
format is rigorously defined and must be adhered to. Incorrectly formed
files are not guaranteed to work correctly with either the Acorn URI
handler or applications which support it.

That said, the use of ASCII code 13 followed by ASCII code 10 (CR+LF) to
end lines is strongly encouraged as this is a common line ending type
supported by many different editors on many platforms. ASCII code 9 (tab)
could also be used to give the file a better visual appearence in the editor -
it is still an end of line as far as the file reader is concerned. This
convention provides the potential for greater convenience for the end-user,
but must NOT be assumed in file reading code!

Currently defined formats:

Line
number Contents

1 'URI' - this must be present before any comments or other
information

2 Text equivalent of the earliest module version number (as
returned by URI_Version) that would fully understand the file
contents; e.g. '5' for v0.05 (any number of preceeding '0's are
also valid). So if lines were added to this file format to produce
a version 6 file, this implies that URI v0.06 is required to
understand those extra lines, even though v0.05 would still
understand lines 1 to 4
The first general release version of the URI handler will adopt
a version number of 1.00, so the first URI files will start with
'100' in this line

3 A fully specified URI; v0.05 of the URI handler does not
attempt to canonicalise URIs, though future versions may. If
this line contains only one character with ASCII code 42 ('*'),
the file does not contain a URI and should be ignored (this is to
allow future file formats to hold non-fully specified URIs on
later lines that could be canonicalised by the URI module,
without breaking legacy file reading code)
Lines 1 to 3 are required in a minimal URI file. Any other lines
may or may not appear

4 A title string to associate with the URI. Again, if this line
contains only one character with ASCII code 42 ('*'), the file
does not contain a title string. Processors wishing to display
title information alongside a URI may well use the URI itself
instead, in this case

You can find some examples of URI files in a SparkFS format archive here.

Future file formats will be backwards compatible with this one, so clients
should only check the version number of the file to know what sort of
contents to expect. So for example, if a version 100 aware application
encounters a later version file, it can assume that the first 4 lines of the
file are as described for the version 100 file; though there may be other
lines which clearly it cannot understand, and must ignore.

For example, the file format rationale may be easier to understand given
the possibility of a future format - version 101, say - which allowed non-
fully specified URIs in line 5 which can be canonicalised, and a preferred
external process to start in line 6. The file could look like this:

-Start of file-
URI
6

*
Acorn Group PLC
www.acorn.com

<Browse$Dir>.!Run
-End of file-

Use of URI environment variables

Currently defined variables are of the form:

Alias$Open_URI_<scheme> <file_to_run>

for example,

Alias$Open_URI_http <Browse$Dir>.!Run
Alias$Open_URI_ftp <FTPClient$Dir>.!Run

If a variable such as the above is defined, then the task it names will be
run. If this is successful, the URI will be redispatched in the normal way,
so the task has the opportunity of dealing with it.

A comma separated list of handlers may be specified, so applications must
always add to the contents of the variables. At present, only the first item
in the list is used, though this may change in future versions.

For compatability with existing applications, the URI handler will support
a similar scheme of system variables defined by ANT Ltd. Details of these
are at the time of writing freely available on the ANT Support web site.

Performance targets
Final code size of version 1.00 should be about 26K. Quiescent memory
usage should be no more than 512 bytes. When active, the main storage
requirement for each URI being processed is storage of the URI itself. This
is, then, indeterminate, but unlikely to be more than 2K (not that the URI
handler will have any such hard coded limits). An additional overhead of
no more than 128 bytes per URI is also required.

Document information
History: Revision Date Author Changes

1307,260/
FS_1

13 Dec 1996 Carl Elkins,
Stewart
Brodie,
Kevin
Bracey,
Simon
Middleton,
Ben
Laughton,
Andrew
Hodgkinson

(Developers only) Original
Version

1307,260/
FS_2

21 Dec 1996 • Added 'handles' concept
after discussions with
S.Brodie

1307,260/
FS_3

22 Feb 1997 • Corrected omission of
URI handle from
Message_ReturnResult,
clarified responsibility
for invalidation of URIs

1307,260/
FS_4

21 Apr 1997 • Added
URI_MProcessAck
message and *command
documentation and
updated URI filetype
section

1307,260/
FS_5

13 Jun 1997 • Service calls given
flags, so 'Check' service
call removed

• R0 return of
URI_Dispatch now a
bitfield, not a return
value

• Added

Service_MReturnResult.
Desktop_URI renamed
to Desktop_AcornURIto
match the actual
module task name

• URI file contents
specified; includes a
version number linked
to the module version,
so this specifies a
version 5 file

1307,260/
FS_6

20 Jun 2997 • Following review of
draft 5, some minor
wording changes here
and there; performance
targets and
development test
strategy sections added

1307,260/
FS_7

21 Jun 1997 • Reworded away from
future tense to form an
externally releasable
specification

1307,260/
FS_8

10 Dec 1997 • A couple of implied
future tense references
missed in Draft 7,
Following review of
draft 5

• some minor wording
changes here and there

• performance targets
and development test
strategy sections
addednow corrected

• some minor rewording
associated with this

- 11 Dec 1997 (General release of
1307,260/FS)

• No longer draft
• settled on WIMP rather

than Wimp; couple of
minor typos corrected

- 05 Jan 1998 • Few more typos fixed
('21', '23',
'URI_ProcessAck' and
'URIProcessAck'
instead of 'R2', '32',
'URI_MProcessAck' and

again
'URI_MProcessAck'
respectively)

- 05 Feb 1998 • Minor tweaks to fit in
with the rest of the
Acorn Internet site
(now uses a small style
sheet like everything
else, site map link
added, and so-on). No
changes to the content
of the specification

- 19 Feb 1998 • A few HTML style
changes to make some
of the section headings
a bit clearer; no content
change

- 23 Feb 1998 • Colours changed to
blue; now back to green
again

1215,215/
FS_1

02 Mar 1998 (General release of
1215,215/FS)

• Document number now
1215,215/FS

• Updated history, and
navigation links in the
page footer now include
the specifications
section; no other
content changes

1215,215/
FS_2

01 Sep 1998 • Corrected table listing
allocated items in the
Programmer's Interface
section - module name
is 'AcornURI', not 'URI'

• Issue numbers for
1215,215/FS in this
table are now in
 to match the
1307,260/FS numbers.
ECO 4102 allocated for
these changes

1215,215/
FS_3

08 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format

• No major changes to
text. Removed the
'Document Status'

section as information
captured in 'Document
Information' section

• Added related links to
definitions and various
parts throughout
document

• Prefixed the Acorn
Functional Specification
Document Number to
each Issue revision in
original

• Removed links to zip
files

Disclaimer:
This document first appeared as 1307,260/FS and went through
issues 1 to 8, with 8 being published outside of Acorn. The
document number was later changed to 1215,215/FS.

Acorn URL Fetcher API Specification

Contents
• Overview
• Outstanding issues
• Client to URL module interface

◦ SWI URL_Register
◦ SWI URL_GetURL
◦ SWI URL_Status
◦ SWI URL_ReadData
◦ SWI URL_SetProxy
◦ SWI URL_Stop
◦ SWI URL_Deregister
◦ SWI URL_ParseURL
◦ SWI URL_ParseURL 0 - ReturnLengths
◦ SWI URL_ParseURL 1 - ReturnData
◦ SWI URL_ParseURL 2 - ComposeFromComponents
◦ SWI URL_ParseURL 3 - QuickResolve
◦ SWI URL_EnumerateSchemes
◦ SWI URL_EnumerateProxies

• Protocol module to URL module interface
◦ SWI URL_ProtocolRegister
◦ SWI URL_ProtocolDeregister

• URL module to protocol module interface
◦ SWI Protocol_GetData
◦ SWI Protocol_Status
◦ SWI Protocol_ReadData
◦ SWI Protocol_Stop

• URL module service calls
◦ URLProtocolModule
◦ URLProtocolModule 0 - UrlModuleStarted
◦ URLProtocolModule 1 - UrlModuleDying
◦ URLProtocolModule_ProtocolModule

• URL module *-commands
◦ *URLProtoShow

• URL errors
• Performance targets
• Glossary
• References

Overview
The URL (Universal Resource Locator) module is a general purpose
module for fetching data from various Internet services. This specification
reflects the behaviour of version 0.42 or later of the URL_Fetcher module.
The purpose of the module is to provide a uniform entry point into a set of
"fetcher" protocols (e.g. FTP, HTTP, Gopher, NNTP, etc.), without the need
for a client application to understand how that protocol works. This is
done using a number of generalised URL SWIs. The fetcher protocols
modules (hereafter just "protocol modules") with which the URL module
communicates, are called only by the URL module itself. The entry points
into the protocol modules have similar names to the entry points into the
URL module, but these are NOT the same, despite similarities. The system
structure is shown in figure 1 below.

Figure 1: URL Fetching system structure

Each client fetch occurs with in the context of a 'session'. Each session is
identified by a different session identifier. Client session identifiers are
issued by the URL module upon request and remain valid until the client
informs the URL module to discard the session. Subsequently, session
identifiers may be re-issued by the URL module for new sessions. Only a
single object fetch can be performed in any one given session. Sessions
cannot be re-used by clients, even if a prior object fetch in that session has
completed.

The typical client usage of the system is:

• Obtain a session identifier (SWI URL_Register)
• Start fetching an object (SWI URL_GetURL)
• Repeatedly, whilst multi-tasking if in the desktop environment:

1. Read blocks of data (SWI URL_ReadData)
2. Process that data

• Discard session (SWI URL_Deregister)

If an application decides it requires a premature termination (eg. the user
asked the application to quit whilst an object was being downloaded), then
the application calls SWI URL_Stop immediately and then discards the
session with SWI URL_Deregister. Typical clients, such as web browsers,
will, most likely, have several sessions active concurrently.

The URL module uses its own session identifiers that are passed in many
of the SWI interfaces to the protocol modules which are not those known
to the client application - the URL module maintains its own private
sessions into the protocol modules. Service calls are also provided to ease
interaction between the URL module and the fetchers, mainly to inform
other modules of the arrival or departure of a particular module.

Each protocol module accepts data and returns results as per the HTTP
protocol. Thus any extra client data associated with a request (passed in
R4 to SWI URL_GetURL) will take the format of a (possibly empty) set of
HTTP headers,an empty line and then the data; and each response will
start with an HTTP/1.0 or HTTP/1.1 Response-Line of the format: "HTTP/
1.0 200 OK" followed by various headers identifying the content-type of
the retrieved data, followed by an empty line, followed by the data itself.

Outstanding issues
There are no outstanding issues.

Client to URL module interface
A typical client would be an application, such as a Web Browser. The
following SWI calls provide the interface for an application to control and
transfer data via the URL module.

URL_Register
(SWI &83E00)

Initialise a client session with the URL module

On entry

R0=Flags: All bits are currently reserved (must be zero)

On exit

R0=Reserved - currently zero
R1=Session identifier

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI initialises a client session with the URL module and provides the
client with a session identifier that can be used to monitor the status of the
URL module within that client's context. The session identifier is unique
for each client session that is registered with URL and is also used as an
identifier in subsequent interactions with the URL module.

Multiple registration by the same client application is permitted. This will
provide the client with multiple identifiers to the URL module. Calling this
SWI does not result in the calling of any protocol module SWIs.

The URL module imposes no limit on the number of concurrently
registered sessions, other than having the required memory available in
which to store details of the session.

Related SWIs

URL_Deregister

URL_GetURL
(SWI &83E01)

Instigate data transfer from / to a resource server

On entry

R0=Flags:
Bit(s) Meaning

0 If set, R6 is valid
1 If set, R5 holds length of data in R4 specified buffer,

otherwise a single NULL terminated string in buffer
2-31 Reserved, must be zero

R1=Session identifier
R2=Bitfield:

Bit(s) Meaning
0-7 Method (8-bit value, held in bits 0-7). This is protocol

dependent
8-15 Method dependent

16-31 Reserved, must be zero
R3=URL - the document we are after, including the protocol. For example

"http://www.acorn.co.uk/"
R4=Data block - data to send in addition to the URL. Validity is protocol

and method dependent
R5=If R0:1 is set, length of data in R4 data block

If R0:1 is clear, must be 2
R6=User Agent - Pointer to string to use as 'User Agent' identifier in

request header if R0:0 is set. (NULL pointer or NULL string implies
use default identifier - see below)FIXME:original links to middle of
third paragraph below!

On exit

R0=Protocol status (see SWI URL_Status, below)

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to instigate a transfer of data to or from (mainly from) a
resource server. When this SWI has been called, the URL module checks
the per-session and global proxy settings, looking for a match (see SWI
URL_SetProxy for details on setting proxies and proxy conflict resolution).
If no proxy is to be used, then URL looks for a protocol module which is
capable of handling the URL specified by R3. If a proxy setting was found,
then a pointer to the proxy URL is placed in R7, R0:31 is forced to value 1,
and URL looks for a protocol module which is capable of handling the
specified proxy URL. In both cases, if a suitable module cannot be located,
the URL module generates an error. If a protocol module capable of
handling the URL was found, then all client registers are passed onto the
protocol module via the Protocol_GetData SWI call with the exceptions
stated above for proxy handling. On exit, R0 will hold the status code
returned by the protocol module.

The extra data pointed to by R4 on entry is method and protocol specific.
For example, in HTTP, the data comprises HTTP headers and, if
appropriate, an entity body. Protocol modules should use this style
wherever possible. Note that these headers do not include lines such as an
HTTP Request-Line (ie. the "GET / HTTP/1.0" part. For example, when
posting data to an HTTP URL as the result of a form submission on a web
page, the web browser would supply a Content-Type header, Content-
Length header, potentially some kind of encoding header, a blank line and
then the entity body.

The User Agent string pointed to by R6 if R0:0 is set, is in indication to the
underlying protocol module of how the module should identify itself to
remote systems. This controls the User-Agent header for the HTTP
protocol module, for example. The protocol module is free to define its
default identifier as it pleases, however, following the format of the HTTP
User-Agent is recommended where possible and appropriate to the
protocol. Modules may choose to ignore or amend any User-Agent string.
For example, the AcornHTTP module will suffix the client's User-Agent
with its own version number, resulting in complete identifiers such as:
User-Agent: Acorn Browse/2.06 AcornHTTP/0.82

where the client only specified "Acorn Browse/2.06".

Table of method numbers

Applications for new method codes should be made to Developer Support. The
range 128-254 is reserved for private non-distributed modules. Method
numbers 0 and 255 are reserved and must not be used.

The list of methods specific to FTP quoted above are fully implemented in
version 0.28 of the FTP Fetcher module. The list of methods specific to HTTP
quoted above are fully implemented in version 0.82 of the AcornHTTP module.

Related SWIs

URL_Register, URL_SetProxy, URL_Stop, URL_Deregister, Protocol_GetData

URL_Status
(SWI &83E02)

Obtain information on a session

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit

R0=Status word:
Bit(s) Meaning

0 Connected to server
1 Sent request
2 Sent data
3 Initial response received
4 Transfer in progress
5 All data received
6 All data received

7-31 Reserved, must be zero
R1preserved
R2=Server response, as an "HTTP" response code (200, 401 etc.)
R3=Bytes read so far (total body data count)
R4=Total bytes to be transferred in whole transaction if known

(approximate value only), or -1 if unknown

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to monitor the transfer of data from a remote service. It
is protocol independent - the exit status bits are common to all services.
Clients must test this field bit-wise, since the value is cumulative.

Clients may not assume that the states returned in R0 will progress in any
particular combination or order. However, the likely progression during a
fetch for a resource being retrieved over a network (when the bits are
combined into a single decimal value) is: 0,1,3,7,15,31 and then R0:5 set
upon completion, and R0:6 set at any stage when an error has occurred.

Since each protocol module is returning its results according to the HTTP
protocol, R2 can be treated as an HTTP response code whatever the URL
being fetched. For example, the FileFetcher module will indicate file not
found errors by setting the response code to 404 (HTTP's Not Found error
code).

Note that in the case of, for example, an HTTP 400 (Forbidden) return,
some explanatory data may be received, too. If the amount of data to be
received is unknown, R4 will contain -1, however R3 will contain the
number of bytes received so far. The R4 value should be treated as
approximate, since the exact interpretation varies between protocols.

When this SWI is called, the URL module invokes SWI Protocol_Status for
the protocol module concerned with the request.

Related SWIs

URL_Register, URL_Deregister, Protocol_Status

URL_ReadData
(SWI &83E03)

Read data pending from a request

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Client buffer for receiving data
R3=Size of buffer pointed to by R2

On exit

R0=Status word (see SWI URL_Status)
R1preserved
R2=Preserved. Contents of buffer modified
R3preserved
R4=Number of bytes transferred to R2 buffer
R5=Number of bytes still to be read to complete object (if known) or -1 if

unknown

Interrupts

Interrupts are undefined

Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to read the data pending from a request, find out how
much data has been read on this call and how much more there is
remaining to be read for the request. R2 is a pointer to a buffer on entry
(and R3 is the size of the buffer), on exit the buffer contains the new data,
R4 contains the amount of data written to the buffer and R5 contains the
amount of data left to be read. If the amount of data left is unknown R5
will contain -1. R1 always returns the protocol status code. In the event of
all the data being read (R5 = 0 on exit), a call to URL_Stop is not required
as this is performed automatically when URL_Deregister is called for the
client session. Once all data has been read a call to URL_Status can return
no meaningful information, simply indicating that the transfer has
completed.

The data returned will take the form of a complete HTTP compatible
response. Responses should use HTTP/1.0 if possible and avoid HTTP/1.1.
For example, AcornHTTP will downgrade any higher version responses to
HTTP/1.0, having taken care to remove any features applicable only to the
higher version, such as chunked transfer encodings.

When this SWI is called, the URL module invokes the Protocol_ReadData
SWI for the protocol module concerned with the request.

Related SWIs

URL_Register, URL_GetURL, URL_SetProxy, URL_Status, URL_Deregister,
Protocol_GetData, Protocol_ReadData

URL_SetProxy
(SWI &83E04)

Set up a proxy server for a session with the URL module

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Address of buffer containing a URL base
R3=URL 'method' to proxy (address of URL fetch identifier to be proxied)
R4= Value Meaning

0 Proxy request
1 Don't proxy request

All other values are reserved

On exit

R0=Status word (see SWI URL_Status)

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call is used to set up a proxy server to use for a session with the URL
module. If R1 is zero then the proxy is considered global and is used for all
sessions. If R1 is a valid session identifier then the proxy server for that
session only is set. R2 is a pointer to a string containing the base URL to
pass the request on to when a proxy request is made. This is of the form
"http://www-cache.demon.co.uk:8080/" (note the trailing '/'). A common
error is to omit the port number. If the port number is not specified, then
the default port number is used. See discussion under
URL_ProtocolRegister regarding how the default port number is derived.

R3 is a pointer to a buffer containing the initial part of the URL to proxy -
the URL scheme (eg "http:", "ftp:"). This system has the advantage that
requests to certain hosts can be proxied and not others (eg by giving
"http://www.acorn.co.uk/" as the scheme). However, if R4 is 1, this

indicates that no matter how the proxy settings have been defined,
requests to the base URL should not be proxied in this case (R3 is
undefined). When a URL_GetURL request is received, the proxy settings
are evaluated in the following order:

Order Description
1 Client no-proxy
2 Client proxy
3 Global no-proxy
4 Global proxy

This is to ensure all client settings override global settings and thus
remain safe for the given client - ie. a client which sets up a proxy server
and then defaults all other URLs to no-proxy, can, no matter how the
global settings are changed, be sure of where requests will end up. If
R2=0 on entry, then all proxy settings for the specified session are
cleared.

Calling this SWI does not result in any calls being made to protocol
modules.

Related SWIs

URL_Register, URL_GetURL, URL_Deregister

URL_Stop
(SWI &83E05)

Abort a request placed with the URL module

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit

R0=Status word (see SWI URL_Status)
R1preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call aborts a current request if there is one associated with the
session identifier. In the event of no request being associated with the
identifier, an error is generated. The purpose of this SWI call is to provide
the client with a way of enforcing the termination of a request. It is not
called by the client just because all the data associated with the request
has finished being transferred, although it may do that if it so chooses. The
URL_Stop call will be made automatically by the URL module when the
session is deregistered by the client using SWI URL_Deregister.

When this SWI is called, the URL module invokes the Protocol_Stop SWI
for the protocol module concerned with the request.

Related SWIs

URL_Register, URL_Deregister, Protocol_Stop

URL_Deregister
(SWI &83E06)

Deregister a client session with the URL module

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit

R0=Status word (see SWI URL_Status)

R1preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call deregisters the client session from the URL module, freeing up
any information the URL module may have kept about the client session
(eg proxy information). The session identifier ceases to be valid and
becomes available for re-issue on a subsequent call to SWI URL_Register.

When this SWI is called, the URL module invokes the Protocol_Stop SWI
for the protocol module concerned, if it has not already done so (e.g.
during the processing of URL_Stop).

Related SWIs

URL_Register, URL_Stop, Protocol_Stop

URL_ParseURL
(SWI &83E07)

Parse URLs to / from their constituent parts

On entry

R0=Flags:
Bit(s) Meaning

0 If set, R5 contains number of words in data block, else a
default of 10 words is assumed.

1 If set, character codes 0 to 31 and 127 in the URL will be
escaped (hex encoded, e.g. space becomes '%20') - only

available in URL 0.42 or later. URL 0.38 through to 0.41
inclusive always escape these characters. Versions prior to
0.38 never do this.

2-31 Reserved, must be zero
R1=Reason code:

Value Meaning
0 Return component buffer requirements
1 Return component data in specified buffers
2 Construct full URL from component buffers
3 'Quick parse'

R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block of R5 words (unless R1 = 3, see below, or R0:0

is unset, in which case R4 points to a buffer of at least 10 words in
length)

R5=If R0:0 set, size of R4 block in words

On exit

R0=Flags: All bits currently reserved (must be zero)
R1preserved
R2preserved
R3preserved
R4=preserved. Data block at R4 is updated in line with entry reason code
R5preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to parse URLs into their constituent parts, enabling

clients to extract the various fields from the URL in a reliable manner. The
call is also capable of resolving a relative URL to produce a fully-qualified
URL, and of reconstructing a full URL from a set of components.

The data block referred to above is either a block of integers which will be
updated to contain the size of the required buffer for each element, or a
block containing pointers to buffers for the actual data.

All strings are zero-terminated and all lengths include space for the zero
terminator.

The number of entries in the block is specified in R5 if R0:0 is set on entry.
If R0:0 is clear, then the default value of 10 is assumed. The format of the
data block is:

Offset Usage
+0 Fully canonicalised URL
+4 URL protocol (e.g. "http", "ftp") forced to lower-case
+8 Hostname (e.g. "www.acorn.com") forced to lower-case

+12 Port (e.g. "80")
+16 Username - used for FTP authentication and mailto
+20 Password - for FTP
+24 Account - for FTP
+28 Path (e.g. "pub/riscos/releases") (See note)
+32 Query - for HTTP, things after a query character
+36 Fragment - for HTTP, things after a hash character

It is anticipated that this SWI will be called twice: the first time to find the
lengths of the buffers, and the second to retrieve a copy of the data into
the buffers. The URLs pointed to by R2 and R3 (if used) need not be fully-
qualified, e.g. R2 may point to "www.acorn.com/browser/". The fully
canonicalised version of the URL at block+0 refers to a fully-qualified,
canonicalised version of it, which in this example would be
"http://www.acorn.com/browser/".

During canonicalisation, the port number will be elided if possible. See the
discussion under SWI URL_ProtocolRegister for details of how URL
discovers whether this is possible or not.

Note: The path will not start with a '/' unless the URL being parsed
explicitly specified one - this is in keeping with the URL specification, so
for example, given the URL "http://www.acorn.com/browser/", then the
path component is "browser/", and not "/browser/"; the slash between the
hostname and path is a separator only, not a part of either component.

If R3 is non-NULL on entry, it is assumed to point to a partial URL which
needs to be resolved with respect to the base URL pointed to by R2. If R3
is NULL, then R2 is assumed to point to a full URL.

The entry reason codes are described below.

Related SWIs

URL_ProtocolRegister

URL_ParseURL 0
(SWI &83E07)

Work out space required for URL components

On entry

FIXME:need someone to double-check entry and exits
R0=Flags:

Bit(s) Meaning
0 If set, R5 contains number of words in data block, else a

default of 10 words is assumed
1 If set, character codes 0 to 31 and 127 in the URL will be

escaped (hex encoded, e.g. space becomes '%20') - only
available in URL 0.42 or later. URL 0.38 through to 0.41
inclusive always escape these characters. Versions prior to
0.38 never do this

2-31 Reserved, must be zero
R1=0 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit

R4=Data block updated with sizes of each component

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

When R1 is 0 on entry to the SWI, the data block is treated as a block of
unsigned 32-bit integers. The contents of the block are ignored on entry,
but on exit are filled in with the lengths of the individual components of
the URL. A value of zero is stored for a field which does not exist; non-zero
values include space for a zero-byte terminator.

Related SWIs

URL_ParseURL, URL_ParseURL 1, URL_ParseURL 2

URL_ParseURL 1
(SWI &83E07)

Split a URL into its component parts

On entry

FIXME:need someone to double-check entry and exits
R0=Flags:

Bit(s) Meaning
0 If set, R5 contains number of words in data block, else a

default of 10 words is assumed
1 If set, character codes 0 to 31 and 127 in the URL will be

escaped (hex encoded, e.g. space becomes '%20') - only
available in URL 0.42 or later. URL 0.38 through to 0.41
inclusive always escape these characters. Versions prior to
0.38 never do this

2-31 Reserved, must be zero
R1=1 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit

R4=Data block updated with pointers to each component requested

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

When R1 is 1 on entry to the SWI, the data block is treated as a block of
pointers to buffers to receive the components of the URL. Each of the
pointers in the data block must be either zero, indicating that the caller is
not interested in that field, or point to a buffer which is sufficiently long to
receive the field. The client can ensure this by having previously used
reason code 0 to determine the length required.

Related SWIs

URL_ParseURL, URL_ParseURL 0, URL_ParseURL 2

URL_ParseURL 2
(SWI &83E07)

Combine the components of a URL

On entry

FIXME:need someone to double-check entry and exits
R0=Flags:

Bit(s) Meaning
0 If set, R5 contains number of words in data block, else a

default of 10 words is assumed.
1 If set, character codes 0 to 31 and 127 in the URL will be

escaped (hex encoded, e.g. space becomes '%20') - only
available in URL 0.42 or later. URL 0.38 through to 0.41
inclusive always escape these characters. Versions prior to
0.38 never do this.

2-31 Reserved, must be zero
R1=2 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to data block
R5=If R0:0 set, size of R4 block in words

On exit

R4=Data block updated with full URL

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

When R1 is 2 on entry to the SWI, the data block is treated as containing
the broken down fields of a URL. Each of the pointers in the data block
must be either zero or point to a buffer containing the value of the
component, with the exception of the full URL field, which is a pointer to a
buffer to receive the fully canonicalised URL. This buffer is filled in on exit.

Related SWIs

URL_ParseURL, URL_ParseURL 0, URL_ParseURL 1

URL_ParseURL 3
(SWI &83E07)

Quickly obtain a fully resolved URL

On entry

FIXME:need someone to double-check entry and exits
R0=Flags:

Bit(s) Meaning
0 Reserved, must be zero
1 If set, character codes 0 to 31 and 127 in the URL will be

escaped (hex encoded, e.g. space becomes '%20') - only
available in URL 0.42 or later. URL 0.38 through to 0.41
inclusive always escape these characters. Versions prior to
0.38 never do this.

2-31 Reserved, must be zero
R1=3 (reason code)
R2=Pointer to base URL
R3=Pointer to URL relative to base URL (or NULL if none)
R4=Pointer to buffer
R5=Size of buffer in R4

On exit

R4=Data block updated with fully resolved URL
R5=Size of buffer remaining (negative if it was too small)

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

When R1 is 3 on entry to the SWI, R4 points to a buffer for receiving the
fully resolved URL. R5 is the length of the buffer. On exit, the buffer is
filled in with the fully resolved URL obtained, and R5 is decreased by the
length of the URL (including terminating zero byte). Hence R5 will be
negative on exit if the buffer wasn't large enough. There is no fixed rule
for calculating the minimum buffer length required for the answer. To
guarantee that the buffer is large enough, it should be calculated as:

length(base URL) + length(relative URL) + 4

If R0:1 is set on entry, there is the potential for up to the entire URL to be
hex encoded. In this case, you would need to multiply the above by three.
URL 0.37 and earler never hex encodes URLs. Note that URL 0.38, 0.39,
0.40 and 0.41 will always do this; the control through R0:1 was introduced
in v0.42. Clients not knowing about this bit (therefore leaving R0:1 unset)
will find that 0.42 or later do not automatically escape URLs, this being
more sensible default behaviour on the whole.

Characters which are already hex encoded in URLs are left alone in all
versions of the URL module.

Clients are strongly recommended to use this reason code if they wish to
resolve a relative URL or canonicalise a URL and are only interested in the
fully resolved and canonicalised form of the URL, since it is significantly
faster than using reason code 0 and then reason code 1. To help reduce
the chances of wildly over-allocating buffer space, setting of R0:1 is not
recommended unless full hex escaping is definitely required.

Related SWIs

URL_ParseURL

URL_EnumerateSchemes
(SWI &83E08)

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Context (0 for first call)

On exit

R0=Status flags (currently unused)

R1=Context for next call (-1 if finished)
R2=Pointer to read-only URL fetch scheme (if R1 is not -1)
R3=Pointer to read-only help string (if R1 is not -1)
R4=Protocol module SWI base (if R1 is not -1)
R5=Protocol module version (×100, if R1 is not -1)

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call is used to discover which schemes are currently available to the
URL module. It may be used, for example, to determine whether or not a
client of the URL module may deal with a given URL (in combination with
SWI URL_ParseURL to extract the scheme) and if not, pass it to the Acorn
URI handler to see if anything else in the system can deal with it
[9].FIXME:Add link to Acorn URI Handler Functional Specification

URL will not cope gracefully if the protocol module list is updated between
calls to this SWI (you may get duplicate modules or miss some out).

Related APIs

None

URL_EnumerateProxies
(SWI &83E09)

Enumerate proxies or no-proxy URLs

On entry

R0=Flags:

Bit(s) Meaning
0 If set, enumerate the no-proxy list

1-31 Reserved, must be zero
R1=Session identifier, or zero for global proxies / no-proxies)
R2=Context (0 for first call)

On exit

R0=Status flags (currently unused)
R1preserved
R2=Context for next call (-1 if finished)
R3=If R0:0 clear: Pointer to read-only URL to proxy (if R2 is not -1)

If R0:0 set: Pointer to a read-only URL to not proxy (if R2 is not -1)
R4=If R0:0 clear: Pointer to read-only proxy URL information (if R2 ia not

-1)
If R0:0 set: Corrupted, contains no useful information

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call is used to discover which URLs proxies are set for on a per
session or global basis, or which URLs are not to be proxied. The
information pointed to by R3 and R4 where applicable is a copy of that
which was passed to SWI URL_SetProxy when the setting was made.

If R0:0 is set on entry, then R4 will be corrupted on exit and may not
contain a meaningful value.

URL will not cope gracefully if the proxy list is updated between calls to
this SWI (you may get duplicate entries or miss some out).

Related SWIs

URL_SetProxy

Protocol module to URL module interface
This section defines the calls provided by the URL module to enable a
fetcher protocol module to interact with it.

URL_ProtocolRegister
(SWI &83E20)

Register a protocol module with the URL module

On entry

R0=Flags:
Bit(s) Meaning

0 If set, R5 contains protocol flags word
1 If set, R6 contains the default port number

2-31 Reserved, must be zero
R1=Protocol module's SWI base
R2=URL fetch scheme supported e.g. "http:" etc
R3=Version number × 100 e.g. 116 => version 1.16
R4=Informational string. Up to 50 characters of descriptive text, e.g.

"Acorn HTTP fetcher"
R5=Protocol flags word, if R0:0 set. See belowFIXME:Add link
R6=Default port number, if R0:1 set. See belowFIXME:Add link

On exit

R0=Flags: All bits currently reserved (must be zero)
R1-6preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call is used by a protocol fetcher module to register its SWI base and
the type of URL that it accepts with the URL module. The SWIs that are
accessible from this SWI base are defined in the following section. If the
module cannot be registered (e.g. another module is already claiming that
URL base), then an error will be returned. R3 is an integer version number
and R4 is a pointer to a string containing more information which will be
displayed by the *URLProtoShow command(or 0 if no descriptive text is
provided).

Typically, it will be called during a protocol module's initialisation code or
on a callback set from the module's initialisation code. If the protocol
module is registered successfully, then URL will issue a service call
Service_URLProtocolModule_ProtocolModule to inform any interested
modules.

If R0:0 is set, then R5 contains a protocol flags word. This is used to
describe to URL how the resolver should treat URLs from this scheme. The
current bits defined are:

Bit(s) Meaning
0 Path is not UNIX-like
1 No parsing should be performed on this scheme
2 Scheme allows "user@" to precede the hostname component
3 Hash (ASCII 35) allowed in hostname (e.g. for file: URLs)
4 No hostname component (e.g. mailto: URLs)
5 Remove leading ".." components in pathname

Note that the meanings of set bits are such that zero is a reasonable value
to pass for unknown schemes. Note that if URL is requested to resolve
URLs using schemes unknown to it, it will assume a protocol flags word
value of zero. This may lead to inconsistent behaviour depending on
whether the protocol module is loaded or not.

If R0:1 is set, then R6 contains the default port number for this scheme.
This is used by the URL resolving code to determine if explicitly specified

port numbers can be elided from the URL. For example, when
constructing the canonicalised form of "http://www.acorn.com:80/", the
port bit is dropped as it serves no useful purpose, leaving
"http://www.acorn.com/".

The URL module is primed with knowledge of the following protocols:

1. mailto:
2. telnet:
3. finger:
4. file:
5. filer_opendir:
6. filer_run:
7. local:
8. gopher:
9. ftp:

10. http:
11. https:
12. whois:

It is not necessary for modules implementing those protocols to set either
flag bit and hence no need for them to set R5 or R6.

Related SWIs

URL_ProtocolDeregister

Related services

Service_URLProtocolModule_ProtocolModule

URL_ProtocolDeregister
(SWI &83E21)

Deregister a protocol module from the URL module.

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Protocol module's SWI base

On exit

R0=Flags: All bits currently reserved (must be zero)
R1=Number of client sessions that were using this module

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

SWI is not re-entrant

Use

This call should be used by the protocol module to tell the URL module
that it is no longer available. The URL module will raise the appropriate
disconnect messages with its clients, and tell the protocol module the
number of clients that were affected.

Typically, it will be called during a protocol module's finalisation code. If
the protocol module is deregistered successfully, then URL will issue a
service call Service_URLProtocolModule_ProtocolModule to inform any
interested modules.

Related SWIs

URL_ProtocolRegister

Related services

Service_URLProtocolModule_ProtocolModule

URL module to protocol module interface
The protocol module SWI interface is only called by the URL module. URL
module clients should never call the ReadData/Status/GetData/Stop SWIs
directly. The protocol modules are required to supply a SWI interface.
There are currently 4 SWIs that need to be supported which run from
SWI_base to SWI_base+3. New SWIs common to all protocol modules will
only be added at the low-end of the SWI range. Protocol modules must
generate standard SWI not known error (error number &1E6) if they
receive a call which they do not understand, so that the URL module can
determine that they do not support the SWI. Note that there is no general
requirement to use SWIs from offset 0 into a SWI chunk, although it makes
sense to do this. Protocol modules which support multiple protocols should

ensure that they do not place their internal "SWI bases" less than 16 SWIs
apart to allow space to future expansion. e.g. AcornHTTP registers http: as
&83F80 and https: as &83F90.

Protocol specific SWIs should be added at the top-end of the SWI chunk (ie
start at SWI_base+63 and work down) - the AcornHTTP module uses that
range to provide clients with access to its HTTP cookie management code,
for example.

Note: the Session identifiers used by the URL module to talk to the
protocol modules are not the same identifiers used by clients to talk to the
URL module. They are not interchangeable.

Protocol_GetData
(SWI URLFetcherProtocol+&00)

Start retrieving data

On entry

R0=Flags:
Bit(s) Meaning

0-30 As specified by client in URL_GetURL
31 R7 is valid

R1=Session identifier
R2=Method
R3=URL (including fetch scheme)
R4=Pointer to block of data in addition to URL
R5=Protocol dependent
R6=Protocol dependent
R7=If R0:31 is set, proxy URL information. See below

On exit

R0=Protocol status word (see SWI URL_Status for details)

Interrupts

Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode

Processor is in undefined mode

Re-entrancy

protocol module dependent

Use

This call is used to start retrieving data. The protocol module should raise
any events for the client via the session identifier provided in R1. The URL
module calls this SWI in response to one of its clients calling SWI
URL_GetURL.

The proxy URL information specified in R7 (if R0:31 is set) gives the
location of the proxy to be used in the format of a URL. For example,
"http://www-cache.demon.co.uk:8080/". This information is supplied by the
URL module and not the client. The protocol module must note that on a
proxied request, the target URL indicated by R3 may not have the same
fetch scheme. For example, it might be an ftp: URL being proxied through
an HTTP proxy service.

All other registers are protocol dependent.FIXME:This text was originally
in 'On Exit'

Related SWIs

URL_GetURL, URL_ProtocolRegister, URL_ProtocolDeregister,
Protocol_Stop

Protocol_Status
(SWI URLFetcherProtocol+&01)

Monitor data transfer

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit

R0=Protocol status word (see SWI URL_Status for details)
R1=preservedFIXME:I added this

R2=As URL_Status
R3=As URL_Status
R4=As URL_Status

Interrupts

Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode

Processor is in undefined mode

Re-entrancy

protocol module dependent

Use

This SWI is used to monitor the transfer of data from the remote service. It
is protocol independent, with the exit status bits of R0 being common to
all fetcher services. R2 should contain the remote server's most recent
response code where possible; note that even in the case of, for example,
an HTTP 400 (Forbidden) response, some explanatory data may be
received, and thus R3 may be non-zero. If the client is unknown to the
protocol module then an error should be returned. If the client's last
request has finished, but the client session has not yet been deregistered,
then the protocol module should return the status code as of the time that
the request finished (ie bit 6 or 5 will be set along with another
combination if relevant).

The URL module calls this SWI in response to one of its clients calling SWI
URL_Status.

Related SWIs

URL_Status, URL_ProtocolRegister, URL_ProtocolDeregister

Protocol_ReadData
(SWI URLFetcherProtocol+&02)

Read data pending from a request

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier
R2=Address of client's data buffer
R3=Size of client's data buffer

On exit

R0=Protocol status word (see SWI URL_Status for details)
R1=preservedFIXME:I added this
R2=As URL_ReadData
R3=As URL_ReadData
R4=As URL_ReadData
R5=As URL_ReadData

Interrupts

Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode

Processor is in undefined mode

Re-entrancy

protocol module dependent

Use

This SWI is used to read the data pending from a request, find out how
much data has been read on this call and how much more there is
remaining to be read for the request. The register usage and description is
the same as for SWI URL_ReadData. The URL module calls this SWI in
response to one of its clients calling SWI URL_ReadData.

Related SWIs

URL_ReadData, URL_ProtocolRegister, URL_ProtocolDeregister,
Protocol_GetData, Protocol_Stop

Protocol_Stop
(SWI URLFetcherProtocol+&03)

Abort a current request

On entry

R0=Flags: All bits currently reserved (must be zero)
R1=Session identifier

On exit

R0=Protocol status word (see SWI URL_Status for details)

Interrupts

Interrupts are protocol module dependent
Fast interrupts are protocol module dependent

Processor mode

Processor is in undefined mode

Re-entrancy

protocol module dependent

Use

This call aborts a current request if there is one associated with the
session identifier. The URL module calls this SWI in response to one of its
clients calling SWI URL_Deregister or SWI URL_Stop.

Related SWIs

URL_Stop, URL_Deregister, URL_ProtocolRegister,
URL_ProtocolDeregister

URL module service calls
The URL fetcher system has been allocated a block of 256 service calls
(&83E00-&83EFF). Two are currently defined. The other 254 are reserved
by Acorn for future use.

Service_URLProtocolModule
(Service &83E00)

Communicate important events to protocol modules

On entry

R0=Reason code indicating type of event:
Value Name of event

0 URLModuleStarted
1 URLModuleDying

All other reason codes are reserved to Acorn and must not
be used

R1=&83E00 (Service_URLProtocolModule)

On exit

All registers must be preserved, unless claiming the service call. In all the
currently defined cases, the service call must not be claimed. Protocol
modules must ignore reason codes which they do not understand.

Use

The various reason codes are described below.

Related APIs

None

Service_URLProtocolModule 0
(Service &83E00)

URL module has initialised

On entry

R0=0 (URLModuleStarted)
R1=&83E00 (Service_URLProtocolModule)
R2=Version number of URL module × 100

On exit

None

Use

Upon receiving this service call, protocol modules should re-register with
the new URL module by issuing SWI URL_ProtocolRegister as usual. It
must assume that any previous registration is no longer valid.

This service call must not be claimed.

Related APIs

None

Service_URLProtocolModule 1
(Service &83E00)

URL module is dying

On entry

R0=1 (URLModuleDying)
R1=&83E00 (Service_URLProtocolModule)
R2=Version number of URL module × 100

On exit

None

Use

Upon receiving this service call, protocol modules should note that the
URL module has gone away and not attempt to talk to it any more until a
future URLProtocolModule/URLModuleStarted service call arrives.

This service call must not be claimed.

Related APIs

None

Service_URLProtocolModule_ProtocolModule
(Service &83E01)

A protocol module has registered or deregistered

On entry

R0=Reason code:
Value Meaning

0 URLProtocolModuleStarted (A protocol module has just
registered)

1 URLProtocolModuleDying (A protocol module has just
deregistered)
All other reason codes are reserved

R1=&83E01 (Service_URLProtocolModule_ProtocolModule)
R2=URL fetch scheme (e.g. "http:", "ftp:")
R3=SWI base chunk of protocol module
R4=Description of module as shown by *URLProtoShow

On exit

All registers must be preserved, unless claiming the service call. In all the
currently defined cases, the service call must not be claimed. Protocol
modules must ignore reason codes which they do not understand.

Use

Upon receiving this service call, protocol modules should note that the
URL module has gone away and not attempt to talk to it any more until a
future URLProtocolModule/URLModuleStarted service call arrives.

This service call must not be claimed.

Related APIs

None

URL module *-commands
The URL module provides a single *-command.

*URLProtoShow
Shows all the current protocols known and their SWI bases

Syntax

*URLProtoShow

Parameters

None

Use

Display information on currently registered protocol modules.

Help Text: "*URLProtoShow shows all the current protocols known
and their SWI bases."

Example

*URLProtoShow

Base URL SwiBase Version Comment
===
--- 0x83e00 038 URL © Acorn 1997-8 (Built: 07 May 1998)

gopher: 0x508c0 010 Gopher Fetcher © Acorn 1997-8 (Built: 17 Feb 1998)
ftp: 0x4bd00 028 FTP Fetcher © Acorn 1997-8 (Built: 19 Mar 1998)
file: 0x83f40 038 File Fetcher © Acorn 1997-8 (Built: 04 Jun 1998)
http: 0x83f80 082 Acorn HTTP © Acorn 1997-8 (Built: 07 May 1998)

Related SWIs

URL_EnumerateSchemes

URL errors
The URL module is allocated two ranges of error numbers, each range
being 256 long. The first 32 errors are reserved to the URL module and
the rest are reserved to Acorn protocol modules.

Module Error range
URL &80DE00 - &80DE1F
HTTP &80DE20 - &80DE3F

MAILTO &80DE40 - &80DE5F
File &80DE60 - &80DE7F
FTP &80DE80 - &80DE9F
Gopher &80DEA0 - &80DEBF
WhoIs &80DEC0 - &80DEDF
Finger &80DEE0 - &80DEFF
WAIS &81EF00 - &81EF1F
HTTPS &81EF20 - &81EF3F
News &81EF40 - &81EF5F

Error numbers &81EF60-&81EFFF are reserved for Acorn use only. The
URL module errors are:

Error
no. Meaning

&80DE00 Session ID not found. A client passed an unknown session ID
in R1 to one of the URL module's SWIs

&80DE01 URL ran out of memory
&80DE02 No matching fetcher for the URL could be found
&80DE03 SWI not found (URL Module). URL attempted to call a

fetcher's SWI and received a SWI not known error
&80DE04 Session already has had an object fetch performed in it. You

cannot re-use this session
&80DE05 No fetch in progress for this session ID. You have called

URL_ReadData or URL_Status having already terminated the
fetch

&80DE06 SWI Method already exists. URL already knows of a module
which provides this method for fetching - another cannot
register

&80DE07 No fetch in progress for this session ID. You have not called
URL_GetURL before URL_Stop,URL_ReadData or URL_Status

&80DE08 Message not found in Messages file
&80DE09 (No longer used)
&80DE0A Unable to parse URL

Error numbers for protocol modules are not within the scope of this
specification.

Performance targets
Final code size of the version described by this document should be about
25K. When fetches are active, more memory will be claimed from the RMA
to record details of the session. The amount claimed depends on the URL
being fetched plus the small overhead for the session information.

Temporary workspace is claimed from the RMA as required for URL
resolution equivalent to three times the total combined length of the base
and relative URLs involved.

Workspace is claimed from the RMA to store details of registered proxies.

All session-specific memory, including proxy information, is freed when the
session is terminated.

Glossary

Term Description
FTP File Transfer Protocol - an application level protocol for the

transfer of files between a remote host computer and a local
client, as defined by RFC 959 [6]

HTTP HyperText Transfer Protocol - a protocol designed to transfer
resources ("documents") from a remote server machine to a
local client, as defined by RFC 1945 (version 1.0 [4]) and RFC
2068 (version 1.1 [5])

HTTPS Secure HyperText Transfer Protocol - HTTP protocol over a
communication channel encrypted using SSL

URL Uniform Resource Locator, as defined by RFC 1738 [2], [3] - a
subclass of URIs (Uniform Resource Identifiers, defined in RFC
1630 [1]) which map onto network access protocols. More
commonly, the addresses of objects on the World Wide Web

NNTP Network News Transfer Protocol, as defined by RFC 977 [7]
Gopher The Internet Gopher Protocol - a distributed document search

and retrieval protocol
SSL Secure Sockets Layer. A specification for encryption of

communications on networks
WAIS Wide Area Information Servers, as defined by RFC 1625 [8]

References
The following references may be of interest:

• RFC 1630 - Uniform Resource Identifiers
• RFC 1738 - Uniform Resource Locators
• RFC 1808 - Relative Uniform Resource Locators
• RFC 1945 - HyperText Transfer Protocol (HTTP) version 1.0
• RFC 2068 - HyperText Transfer Protocol (HTTP) version 1.1
• RFC 959 - File Transfer Protocol (FTP)
• RFC 977 - Network News Transfer Protocol (NNTP)
• RFC 1625 - Wide Area Information Servers (WAIS) over

Z39.50-1988
• 1215,215/FS Acorn URI Handler Functional

SpecificationFIXME:version I found on Internet

Document information
History: Revision Date Author Changes

1215,2201 (Developers only)
0.16 19 Oct 1997 RCE First formal version of

specification based on
uncontrolled textual
programmer's notes (RCE)

0.16a 20 Oct 1997 RCE Incorporated notes from ADH
and SB

0.19 17 Nov 1997SNB Incorporated details of service
calls

0.20 20 Nov 1997SNB Incporated details of URL
parsing SWI

0.21 11 Jun 1998 SNB All other updates incorporated
0.22 22 Jun 1998 SNB Comments after first review

incorporated. Added details of
proxy enumeration SWI

0.24 04 Aug 1998 SNB No longer live. ECO 4082.
0.25 12 Nov 1998ADH Multiple changes

• Four digit years on all
dates.

• Tidied up white space.
• Removed smart quotes and

n-dashes.
• Added author details to

history.
• Corrected references on R0

exit words from

http://www.faqs.org/rfcs/rfc1630
http://www.faqs.org/rfcs/rfc1738.html
http://www.faqs.org/rfcs/rfc1808.html
http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc2068.html
http://www.faqs.org/rfcs/rfc959.html
http://www.faqs.org/rfcs/rfc977.html
http://www.faqs.org/rfcs/rfc1625.html
http://www.faqs.org/rfcs/rfc1625.html
http://www.vigay.com/inet/acorn/uri.html
http://www.vigay.com/inet/acorn/uri.html

URL_ParseURL to
URL_Status.

• Added details of bit 1 of
flags word in R0 to
URL_ParseURL.

• Clarified a few sentences
here and there. ECO 4131.

0.25a 31 Aug 2021 Alan
Robertson

Initial version in PRMinXML
format

0.25b 01 Sep 2021 Gerph Tiny tweaks to formatting

Acorn Plug-In Protocol Functional
Specification

Contents
• Overview
• Outstanding issues
• Technical background
• User interface
• Programmer interface

◦ Invocation
◦ Shutdown
◦ Plug-in death
◦ Browser death
◦ Window events
◦ Data pointers
◦ Stream protocol

▪ Initial transfer
▪ Plug-in requests data be fetched or posted
▪ Plug-in write to browser

◦ System variables
◦ The OBJECT tag
◦ Helper applications
◦ Help protocol
◦ About plug-in

• Data interchange
◦ PlugIn_Open (&4D540)
◦ PlugIn_Opening (&4D541)
◦ PlugIn_Close (&4D542)
◦ PlugIn_Closed (&4D543)
◦ PlugIn_Reshape (&4D544)
◦ PlugIn_Reshape_Request (&4D545)
◦ PlugIn_Focus (&4D546)
◦ PlugIn_Unlock (&4D547)
◦ PlugIn_Stream_New (&4D548)
◦ PlugIn_Stream_Destroy (&4D549)
◦ PlugIn_Stream_Write (&4D54A)
◦ PlugIn_Stream_Written (&4D54B)
◦ PlugIn_Stream_As_File (&4D54C)
◦ PlugIn_URL_Access (&4D54D)
◦ PlugIn_Notify (&4D54E)
◦ PlugIn_Status (&4D54F)
◦ PlugIn_Busy (&4D550)

◦ PlugIn_Action (&4D551)
◦ PlugIn_Abort (&4D552)

• Data formats
◦ API Versions

• External dependencies
• Acceptance test
• Non-compliances
• Development test strategy
• Glossary
• References

◦ Director Player Software Functional Specification
◦ Java Software Functional Specification
◦ [NC] Browser Software Functional Specification
◦ Acorn Nested Window Manager Functional Specification
◦ Wimp message protocol
◦ Wimp Help protocol

Overview
The World Wide Web is gradually being extended to offer better support
for embedding multimedia data inside Web pages. A well-established
mechanism known as "helpers" allows a browser to delegate the display of
unsupported data types to other applications. However, the helper
application displays this data independently, usually in its own window.

The idea of a "plug-in" is to integrate the display of such data into the
WWW browser's own window. A number of proposed HTML extensions are
being promoted, such as <APPLET> (by Sun for Java), <EMBED> (by
Netscape) and <OBJECT> (by W3C).

Outstanding issues
There are no outstanding issues.

Technical background
Navigator™ for the Mac and Windows™ supports plug-ins in the form of
dynamically loaded code resources (DLLs). On finding data of a type it
cannot display itself, the browser seeks a DLL which is capable of handling
it. If it finds one, it calls standard entry points in the DLL to get it to
display the data in the browser's window.

This model does not fit well with RISC OS practices. It does not have a

https://www.netscape.com/
https://www.w3.org/

standard scheme for DLLs, and the alternative - using relocatable modules
- is not practical for very large playback engines for systems like Java and
Director. Therefore plug-ins are implemented as separate tasks, with a
special message protocol between the browser and the plug-in to permit
communication and control.

In order to display the data inside the browser's own window, the plug-in
needs to be made responsible for updating a certain portion of the
browser's work area. This could be done by the browser instructing the
plug-in to redraw parts of the window. However, this approach is rejected
because it introduces significant differences between a plug-in and a
normal application. Instead, we utilise a new facility FIXME:Original
document had link to Nested Window Manager added to the Window
Manager, whereby windows can be created "inside" a parent window. The
Window Manager takes care of event distribution to the plug-in, and also
ensures that the "child" window is in a fixed position relative to the work-
area of the parent - so the plug-in's display area will be scrolled within the
browser window if the user manipulates the browser window's scrollbars.

User interface
There is no user interface component to this specification.

Programmer interface
A plug-in accepts one or more types of data, specified using normal RISC
OS filetypes. It is the responsibility of the browser to map MIME types to
RISC OS filetypes.

Just as other RISC OS applications may be "single document" or "multiple
document", a plug-in implementor may choose whether to handle multiple
items at once or not. Ideally, plug-ins should be able to cope with multiple
pieces of data, potentially owned by multiple client applications. However,
for ease of implementation it may sometimes be preferred to restrict each
instance of a plug-in to displaying one piece of data. In this case, were two
such pieces of data to be displayed at once, it would be necessary to
invoke the plug-in twice.

Invocation

Having determined the best RISC OS filetype for the data, the browser
performs the following sequence of actions:

1. Broadcast Message_PlugIn_Open, passing the filename and filetype
of the data, and the parent window information. This message also

contains an opaque 32 bit value known as the "browser instance
handle". This is a word of significance to the browser, and might be
different for each instance of a plug-in. The plug-in must always
quote the correct browser instance handle to the browser in
subsequent messages.

2. If a Message_PlugIn_Opening is received in reply, an existing
invocation of a suitable plug-in has agreed to handle the data. The
Message_PlugIn_Opening contains an opaque word value, known as
the "plug-in instance handle", which together with the task handle
of the plug-in task uniquely identifies the piece of data. The browser
remembers both of these values for use in future messages.

3. If no task responds to Message_PlugIn_Opening, the browser
attempts to launch the appropriate plug-in. This is done by looking
for an environment variable called Alias$@PlugInType_<xxx>
where <xxx> is the hexadecimal type value. If this variable is not
found, no suitable plug-in is available, and the browser regards the
attempt to display the data as unsuccessful. If the variable is found,
then the browser launches it by calling Wimp_StartTask.

4. The result of Wimp_StartTask is the task handle of the new
invocation of the plug-in. As soon as Wimp_StartTask returns, the
browser re-broadcasts the Message_PlugIn_Open message.

5. Normally, the plug-in accepts this message and replies with
Message_PlugIn_Opening, containing a plug-in instance handle as
described above.

6. If no reply was forthcoming, the browser assumes that for some
reason the plug-in was unable to load the data, and it regards the
attempt to display this data as unsuccessful. This might be because
the data is malformed, erroneous or of an incompatible version to
that expected by the plug-in, or it might be because of some
unexpected eventuality (out of memory, etc). If a detailed failure
message is to be issued to the user, it is the responsibility of the
plug-in to do this.

If further data of the same type needs to be displayed, either
simultaneously or sequentially, then the browser should repeat the
whole process starting with the broadcast.

7. If the plug-in replies and so requests then the browser opens a data
stream for the initial object being embedded and sends this data to
the plug-in according to the plug-in stream protocol.

8. The plug-in examines the contents of the file that was named in the
Message_PlugIn_Open message. This file contains all of the
information from the OBJECT, EMBED or APPLET tag, and is used
by the plug-in to initialise itself. The plug-in may have to fetch the
contents of more URLs in order to do this; it may get the browser to
do this on its behalf by using Message_PlugIn_URL_Access.

9. If during startup the plug-in encounters an unrecoverable error it
tidies up after itself and sends a Message_PlugIn_Closed to the
browser, setting a flag in the message to indicate that this is due to

an error. The message may optionally include an error message for
the browser to display.

Shutdown

When the browser wishes the data to be forgotten, for example when the
user quits the browser or leaves the current page, the following actions
are taken. If multiple pieces of data have been farmed out (to the same or
multiple plug-ins) the sequence below is performed for each such piece of
data.

1. Browser sends Message_PlugIn_Close directly to the plug-in task,
passing the plug-in instance handle associated with the data.

2. Plug-in closes and deletes its window, cleans up state and data, etc.
3. Plug-in replies with Message_PlugIn_Closed.
4. Plug-in decrements its count of active objects. If the count is zero, it

is free to exit if it wishes. A flag in the Message_PlugIn_Close acts
as a hint to the plug-in as to whether the browser would like the
plug-in to remain running or not, but the plug-in does not have to
honour this if it does not want to.

Plug-in death

If the browser receives a Message_Task_CloseDown, it checks to see
whether the exiting task was a plug-in that was currently displaying data
on behalf of the browser. If so, all data being displayed by that plug-in is
marked as undisplayable. The Window Manager has already deleted the
child window(s) associated with the task. The browser might not issue any
error in this case (for example, the NCBrowser does not); other
possibilities are relaunching the plug-in or reporting the exit to the user.

Browser death

If the plug-in receives a Message_Task_CloseDown, it checks to see
whether it is displaying data on behalf of the exiting task. If so, it
deallocates any state or data associated with that task, and reduces its
reference count by the correct amount. If the reference count reaches zero
(i.e. the dead task was the only task using the plug-in), then the plug-in
may exit if it wants to.

Window events

The Window Manager's nested window mechanism handles all subwindow
positioning issues automatically. If a browser window is closed, then the
subwindow is removed from view, and is reinstated when the parent
window is reopened. If the browser window is scrolled, the Window
Manager ensures that the plug-in window stays at the same position

relative to the browser's work area, if necessary it repositions the
subwindow and clips it if it has scrolled partiallly or entirely out of view.
Repositioning is done by the Window Manager without sending
Open_Window_Request events to the plug-in.

If the plug-in receives a keypress or mouse button click that it does not
want to handle, it must pass it on to the browser by means of
Wimp_SendMessage. It must set the window handle field of the message
to the handle of its parent window. Note that this should be used instead
of Wimp_ProcessKey.

If the browser wishes to forcibly resize or reposition the subwindow, it
sends a Message_PlugIn_Reshape to the plug-in, quoting the plug-in
instance handle. The plug-in must honour this request by re-opening itself
at the new position. The coordinates in this request are work-area
coordinates of the parent window. The parent window handle in this
message may be different to the original one. The plug-in should be
prepared to check for this, and re-create its window as a child of the new
parent if necessary.

If the plug-in wishes to alter its size, it cannot simply resize its window.
Instead it must send a Message_PlugIn_Reshape_Request to the browser.
The browser responds by reformatting the page (if necessary) and then
replying with a suitable Message_PlugIn_Reshape. The plug-in must act on
this in the normal way.

Data pointers

Many of the strings passed around in this protocol are of unspecified size
and may, especially in the case of URLs, be larger than could fit within the
body of a Wimp message. Therefore they are defined in this spec as
string_values. These are defined as being either offsets from the start of
the message body (if less than 256) or as pointers to data held in shared
memory (i.e. the RMA or a dynamic area). It is always the responsibility of
the sender to free the memory used for any such pointers. The protocol is
defined in such a way that there should always be a reply received or the
message will be bounced by the Window Manager. In either case it is then
safe for the sender to free the memory allocated.

However to avoid memory leaks it is recommended that careful track is
kept of such pointers so that they can be freed when a plug-in instance is
closed.

All strings must be null terminated but need not start at a word-aligned
address.

Stream protocol

Some plug-ins may wish the browser to fetch data from the net for them
rather than having to implement their own fetching code. A flexible
interface is provided for this based, in part, on the API used in the de facto
standard plug-in API created by Netscape, in order to facilitate porting
plug-ins to RISC OS.

N.B. Take note of the non-compliances section.

There are several ways a stream can be instigated, as follows

• The browser wishes to transfer the initial data which launched the
plug-in

• The plug-in requests some data be fetched for it with
Message_PlugIn_URL_Access

• The plug-in requests some data be posted for it with
Message_PlugIn_URL_Access

• The plug-in wishes to write directly to a browser window

Initial transfer

1. Browser fills in flags, mime type, stream data and sends
Message_PlugIn_Stream_New.

2. The plug-in returns the same message
◦ quoting the reference
◦ filling in the plug-in stream instance handle
◦ updating the stream mode (if necessary)

4. If mode is applicable
1. Browser sends Message_PlugIn_Stream_Write
2. Plug-in replies with Message_PlugIn_Stream_Written giving

the number of bytes that is could process
This is repeated until all data is transferred or an error occurs

3. Browser sends Message_PlugIn_Stream_Destroy with appropriate
reason code

Plug-in requests data be fetched or posted

1. Plug-in sends the Message_PlugIn_URL_Access message
2. When data starts arriving we continue as initial transfer

Plug-in write to browser

1. Plug-in fills in MIME type, target, plug-in stream instance and sends
Message_PlugIn_Stream_New

2. The browser returns the same message
◦ quoting the reference
◦ filling in the stream fields

3. The plug-in writes data;
1. Plug-in sends Message_PlugIn_Stream_Write
2. Browser replies with Message_PlugIn_Stream_Written giving

the number of bytes that it could process
This is repeated until all data is transferred or an error occurs

3. Plug-in sends Message_PlugIn_Stream_Destroy with appropriate
reason code

System variables

For a plug-in <yyyy> whose file type is <xxx> the variables which the
plug-in must set are:
<yyyy>$Dir The application directory containing !Boot, !Run etc. files
PlugIn$Type_<xxx> Name of plug-in for browser menu
Alias$@PlugInType_<xxx> Command to run plug-in as a stand-alone
application, no arguments

The plug-in can optionally set these variables:
PlugIn$About_<xxx> The directory containing plug-in copyright details

If the plug-in is capable of being launched as a stand-alone application
without the browser involvement it must define these variables:
File$Type_<xxx> Up to 8 character name describing file format
Alias$@RunType_<xxx> Command to run plug-in as a standalone
application, takes filename as an argument

If the plug-in can also be used as a helper application then this variable
must also be set:
Alias$@HelperType_<xxx> Command to run plug-in as a helper
application

For example a sample !Boot file might contain the following:

Set Java$Dir <Obey$Dir>
Set File$Type_AE4 Java
Set PlugIn$Type_AE4 Java
Set PlugIn$About_AE4 <Java$Dir>.About

SetMacro Alias$@RunType_AE4 /<Java$Dir>.!RunImage -standalone %%*0
SetMacro Alias$@PlugInType_AE4 /<Java$Dir>.!RunImage -plug-in %%*0

If a file is embedded with APPLET, EMBED or OBJECT then the
Alias$@PlugInType_<xxx> variable is used to start the application.

If a file is pointed to with an anchor (eg <A HREF="applets/
myapplet.class">) then the file is downloaded and the
Alias$@Runtype_<xxx> variable is used.

The OBJECT tag

Note that plug-ins can be launched from an OBJECT tag as well as EMBED
or APPLET. When this happens there are some minor differences to the
values in the parameter file The following table also describes how the
attribute names in the HTML tag get mapped to the entries in the
parameters file:

Helper applications

This same interface is also used for helper applications. Helper
applications are very like plug-ins except that they open their windows
external to the parent rather than embedded in the parent's window. This
means that they are not constrained to close down when the parent
window is closed (e.g. when the browser follows a link to another page)
but can still benefit from the communication protocols with the parent.
There is a flag in Message_PlugIn_Opening to inform the parent whether a
window was embedded or not.

When trying to launch a helper application the process described in the
Invocation section is used except that if the initial
Message_PlugIn_Opening is not claimed the system variable
Alias$@HelperType_<xxx> is used to start the helper task.

Help protocol

A plug-in may support the Wimp Help protocol. If they do then help
mesages are displayed in the browser status bar (if configured). Messages
must be limited to at most 40 characters.

About plug-in

A plug-in may display a logo and some associated text (e.g. copyright
information) in a browser's window at the user's request. The suggested
URL for this is 'about:'. The system variable PlugIn$About_<xxx> points to
a directory containing text files with optional image (PNG, GIF or JPEG)
files.

Each file has a two digit reference number to allow a single plug-in to have
multiple logos and copyright entries (e.g. each Replay codec). The file
'About<yy>', where <yy> is the two digit reference number, contains the

text suitable for inclusion inside a table cell of an HTML document. For
each About file there is an optional image file, of the name
'<yy><wwww><hhhh>', where <wwww> and <hhhh> are each four
digits for the size that the image will be scaled to (usually the same as the
actual image size). It is strongly recommended that the width and height
are specified, but a filename of just '<yy>' is accepted.

If the plug-in has a single copyright message and logo, the filename
'About' can be used as a shortcut for 'About00'. The optional logo must still
be called '00<wwww><hhhh>' or '00'.

It is the browser's responsibility to enumerate all the PlugIn$About_<*>
system variables and compile an HTML document containing all available
plug-in details.

Data interchange
The following new Wimp messages are defined.

FIXME:All Messages delivery elements to be checked for errors.

Message_PlugIn_Open
(&4D540)

Sent by the browser to create a plug-in instance

Message

Offset Contents
R1+16 Message_PlugIn_Open
R1+20 Flags:

Bit(s) Meaning
0 Open the file as a helper (else open it as a plug-in)

1-31 Reserved, must be zero

R1+24 Reserved, must be zero
R1+28 Browser instance handle (provided by the browser)
R1+32 Parent window handle
R1+36 Bounding box in parent window's work area co-ordinates: Left
R1+40 Bounding box in parent window's work area co-ordinates:

Bottom
R1+44 Bounding box in parent window's work area co-ordinates: Right
R1+48 Bounding box in parent window's work area co-ordinates: Top
R1+52 File type
R1+56 Filename (string_value)

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

The file specified by "Filename" at R1+56 contains a series of parameters
in the form of name-value pairs. This data is the list of attributes and
parameters from the APPLET, OBJECT or EMBED tag - see their respective
definitions. This data is used by the plug-in to understand what is being
requested of it. There are more details in the Data formats section.

If bit 0 of the flags word at R1+20 is set then this is a request to open the
file as a helper application, i.e. external to the parent application. In this
case the bounding box (offset bytes 36 to 51) are invalid. The parent
window handle may be valid or 0 depending on how the file is launched.

Related messages

Message_PlugIn_Opening

Message_PlugIn_Opening
(&4D541)

Sent by the plug-in task to say an instance has been created

Message

Offset Contents
R1+12 my_ref field from Message_PlugIn_Open
R1+16 Message_PlugIn_Opening
R1+20 Flags:

Bit(s) Meaning
0 Plug-in can accept input focus (else it cannot use input

focus)
1 Plug-in wants the code resource fetched for it (else it

will fetch this itself)
2 Plug-in wants the data resource fetched for it (else it

will fetch this itself)
3 Plug-in will delete the parameters file itself (else the

browser should delete this file now)
4 Plug-in has more work to do, keep showing a busy

indicator in the browser (if appropriate)
5 Plug-in does understand the PlugIn_Action message

beyond only the STOP reason code
6 Plug-in task has actually opened a helper window (else

it embedded itself in the parent)
7-31 Reserved, must be zero

R1+24 Plug-in instance handle (invented by the plug-in)
R1+28 Browser instance handle (copied from the

Message_PlugIn_Open)

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This is sent by the plug-in in response to Message_PlugIn_Open. Note that
bit 6 of the flags word at R1+20 may indicate that the Plug-in opened a
helper window even if the browser requested that it be embedded as a
plug-in.

Related messages

Message_PlugIn_Open

Message_PlugIn_Close
(&4D542)

Tell a plug-in instance to close down

Message

Offset Contents
R1+16 Message_PlugIn_Close
R1+20 Flags:

Bit(s) Meaning
0 Browser would also like plug-in to exit

1-31 Reserved, must be zero

R1+24 Plug-in instance handle to close
R1+28 Browser instance handle

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is sent by the browser to a plug-in, if it wants an instance of
a plug-in to be closed down (e.g. because the browser window is being
closed, or is moving to a new page). Bit 0 of the flags word at R1+20 may
be set if the browser needs urgently to free up memory; it is a hint to the
plug-in to free up as much memory itself as it can. Not all plug-ins will
read this bit.

Related messages

Message_PlugIn_Closed

Message_PlugIn_Closed
(&4D543)

A plug-in [instance] has closed down

Message

Offset Contents
R1+12 my_ref field from Message_PlugIn_Close, unless bit 1 of the flags

word at R1+20 is set
R1+16 Message_PlugIn_Closed
R1+20 Flags:

Bit(s) Meaning
0 Plug-in itself will exit after this message
1 The message is not in reply to a Message_PlugIn_Close

(so R1+12 is irrelevant)
2 There is an error message at R1+32 as detailed below

3-31 Reserved, must be zero

R1+24 Plug-in instance handle of the closed instance
R1+28 Browser instance handle of the closed instance
R1+32 If R1+20 Bit 2 is set: Error number
R1+36 If R1+20 Bit 2 is set: Zero terminated message to be displayed

by the browser (N.B. this message is always embedded here as
the plug-in may be exitting itself)

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is usually sent as a reply to a Message_PlugIn_Close from
the browser, and confirms that the requested instance has been closed
down. It may also be sent if the plug-in should exit for its own reasons
without the browser asking. An error which the browser should display
will be embedded in the message at R1+32, if bit 2 of the flags word at
R1+20 is set.

Related messages

Message_PlugIn_Close

Message_PlugIn_Reshape
(&4D544)

Move or resize a plug-in instance

Message

Offset Contents
R1+12 my_ref field from Message_PlugIn_Reshape_Request (if

applicable)
R1+16 Message_PlugIn_Reshape
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle

R1+28 Browser instance handle
R1+32 Parent window handle
R1+36 Bounding box in parent window's work area co-ordinates: Left
R1+40 Bounding box in parent window's work area co-ordinates:

Bottom
R1+44 Bounding box in parent window's work area co-ordinates: Right
R1+48 Bounding box in parent window's work area co-ordinates: Top

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is sent by a browser to a plug-in. The plug-in should move
the specified instance to the specified position; this may involve resizing
the embedded window.

Some plug-in types may want to resize the windows themselves (for
example, some Java applets do this). In that case, they will send
Message_PlugIn_Reshape_Request to the browser and it should reply with
Message_PlugIn_Reshape once it has determined where the plug-in should
be moved to (since the resizing may affect page formatting and therefore
the coordinates of the embedded plug-in window). A plug-in should
therefore not expect an immediate reply to the message.

Related messages

Message_PlugIn_Reshape_Request

Message_PlugIn_Reshape_Request
(&4D545)

A plug-in instance wants to resize

Message

Offset Contents
R1+16 Message_PlugIn_Reshape_Request
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Width (in OS units)
R1+36 Height (in OS units)

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

A plug-in may sometimes want to resize its embedded window. It sends
this message to the browser when it does so. The browser should respond
with Message_PlugIn_Reshape, though it may not do so immediately.

On sending this message a plug-in may immediately resize its window, or it
may wait; this is undefined. The browser should not assume either. To be
sure that the plug-in embedded window ends up in a sensible position, the
browser must eventually reply to the message.

Related messages

Message_PlugIn_Reshape

Message_PlugIn_Focus
(&4D546)

Move the input focus between plug-in and parent

Message

Offset Contents
R1+16 Message_PlugIn_Focus
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle

Source

Browser or plug-in

Destination

Browser or plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is used to transfer the input focus between a plug-in and its
parent. It can be sent in either direction. If the recipient cannot or does
not wish to accept the focus then it just ignores the message. Otherwise it
should acknowledge the message with message type 19 to prevent it being
bounced back to the originator.

Related APIs

None

Message_PlugIn_Unlock
(&4D547)

This Message is for internal use only. You must not use it in your own code.

Message_PlugIn_Stream_New
(&4D548)

Create a new stream

Message

Offset Contents
R1+16 Message_PlugIn_Stream_New
R1+20 Flags:

Bit(s) Meaning
0-3 Stream type field:

Value Meaning
0 Normal
1 Seek only
2 As file
3 As file only

All other values are reserved, and must not be
used

4 Stream is seekable
5-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value)

R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 MIME type of URL (string_value)
R1+60 Window target (string_value)

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol as already described.

Related messages

Message_PlugIn_Stream_Destroy

Message_PlugIn_Stream_Destroy
(&4D549)

Destroy a stream

Message

Offset Contents
R1+16 Message_PlugIn_Stream_Destroy
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value)
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Reason code:

Value Meaning
0 Stream finished successfully
1 Stream finished due to an error
2 Stream finished due to user intervention

All other values are reserved, and must not be used

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol as already described.

Related messages

Message_PlugIn_Stream_New

Message_PlugIn_Stream_Write
(&4D54A)

Write data to a stream

Message

Offset Contents
R1+16 Message_PlugIn_Stream_Write
R1+20 Flags:

Bit(s) Meaning
0-3 Data type field:

Value Meaning
0 String_value
1 Anchor
2 File handle

All other values are reserved, and must not be
used

4-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value)
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Logical offset in stream of data
R1+60 Length of data
R1+64 Data pointer

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol as already described.

Related messages

Message_PlugIn_Stream_Written

Message_PlugIn_Stream_Written
(&4D54B)

Accept data that was written to a stream

Message

Offset Contents
R1+12 my_ref field from Message_PlugIn_Stream_Write
R1+16 Message_PlugIn_Stream_Written
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle
R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value)
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data

R1+56 Length of data consumed; less than zero if the plug-in
experienced an error

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is part of the Stream protocol as already described.

Related messages

Message_PlugIn_Stream_Write

Message_PlugIn_Stream_As_File
(&4D54C)

Send stream data as a file

Message

Offset Contents
R1+16 Message_PlugIn_Stream_Written
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Plug-in stream instance handle

R1+36 Browser stream instance handle
R1+40 URL of stream source / destination (string_value)
R1+44 End of stream in bytes, or 0 if unknown
R1+48 Last modified date of URL (in Unix time)
R1+52 Notify data
R1+56 Filename of stream data (string_value)

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:Confirm Source and Destinations for this Message.

This message is part of the Stream protocol as already described.

Related messages

Message_PlugIn_Stream_Write

Message_PlugIn_URL_Access
(&4D54D)

Ask the browser to deal with a URL

Message

Offset Contents
R1+16 Message_PlugIn_URL_Access
R1+20 Flags:

Bit(s) Meaning
0 Return a Message_PlugIn_Notify on completion
1 Fetch by POST, else fetch by GET
2 Should be 0 if bit 1 is unset

If bit 1 is set, bit 2 means POST a file if set, else POST a
block of memory

3-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 URL to access (string_value)
R1+36 Window target (string_value)
R1+40 Notify data to be returned (if bit 0 of the flags word at R1+20 is

set)
R1+44 Length of data to be posted
R1+48 If R1+20 bit 2 is set: Filename (string_value)

If R1+20 bit 2 is unset: Pointer to data (string_value)

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is sent by a plug-in to the browser, to ask it to deal with a
URL in various ways. The plug-in may ask the browser to send it a
notification message when it has completed whatever action is required on
the URL.

If the window target is non-zero then the URL is fetched to the given
window name. Otherwise, a stream is opened and the data is sent to the
plug-in.

Related messages

Message_PlugIn_Notify

Message_PlugIn_Notify
(&4D54E)

Signal completion of handling a URL to a plug-in

Message

Offset Contents
R1+16 Message_PlugIn_Notify
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 URL accessed (string_value)
R1+36 Reason for notify:

Value Meaning
0 Stream finished successfully
1 Stream finished due to an error
2 Stream finished due to user intervention

All other values are reserved, and must not be used

R1+40 Notify data

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task

Message may only be sent normally (reason code 17)

Use

This is sent by the browser to the plug-in, because the plug-in requested it
through a Message_PlugIn_URL_Access.

Related messages

Message_PlugIn_URL_Access

Message_PlugIn_Status
(&4D54F)

Send a status message to the browser

Message

Offset Contents
R1+16 Message_PlugIn_Status
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 Status message (string_value)

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

Requests that the parent display some information in its status bar, or
similar. The message should be reasonably short.

Related messages

Message_PlugIn_Busy

Message_PlugIn_Busy
(&4D550)

Signal a plug-in state change to the parent

Message

Offset Contents
R1+16 Message_PlugIn_Busy
R1+20 Flags:

Bit(s) Meaning
0 Plug-in is busy
1 Word at R1+32 has some meaning, else ignore it

2-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle
R1+32 If R1+20 bit 1 is set: Plug-in's new state:

Value Meaning
0 Stop
1 Play
2 Pause
3 Fast Forward
4 Rewind
5 Record

All other values are reserved, and must not be used

Source

Plug-in

Destination

Browser

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:Flag to be changed. bit 1 seems to be used as an identifier

Requests that the parent display some indication of business (e.g. spinning
logo, etc.). If the plug-in had set the busy bit in its Opening message then
it should send this message with bit 0 of the flags word at R1+20 clear
when it has finished its loading.

This is also used to notify the parent of any state change by the plug-in in
case it needs to update any user interface.

Related messages

Message_PlugIn_Status

Message_PlugIn_Action
(&4D551)

Send a command to a plug-in

Message

Offset Contents
R1+16 Message_PlugIn_Action
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle

R1+28 Browser instance handle
R1+32 If R1+20 bit 1 is set: State the plug-in should move to:

Value Meaning
0 Stop
1 Play
2 Pause
3 Fast Forward
4 Rewind
5 Record
6 Mute
7 Unmute

All other values are reserved, and must not be used

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

FIXME:Flag to be changed. bit 1 seems to be used as an identifier

This message is used for sending specific commands to a plug-in. Not all
plug-ins will understand the commands sent.

The new state sent is the state the plug-in should enter. If it is already in
that state then it should ignore the message.

After entering the state it should send back a Message_PlugIn_Busy
confirming the new state, except for the Mute and Unmute actions.

Related messages

Message_PlugIn_Busy

Message_PlugIn_Abort
(&4D552)

Stop activity for a plug-in instance

Message

Offset Contents
R1+16 Message_PlugIn_Abort
R1+20 Flags:

Bit(s) Meaning
0-31 Reserved, must be zero

R1+24 Plug-in instance handle
R1+28 Browser instance handle

Source

Browser

Destination

Plug-in

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is sent by the browser when the user clicks on the Stop icon
(or performs its equivalent). The plug-in should stop as much of its activity
as possible. Specifically, anything that updates the screen, anything that
uses significant CPU time and anything that accesses the network.

Note that this message is sent to each plug-in instance individually and
should be treated as such.

Related messages

Message_PlugIn_Status

Data formats
The Message_PlugIn_Open contains a filename that refers to a file of
parameters and attributes. The plug-in uses this information to locate the
correct data, classes, implementation etc.

The file contains the concatenation of one or more binary records of the
following form:

Integers are stored in little-endian order.

Flags (parameters with void value whose presence or absence only is
significant) are represented by a parameter of type DATA with zero length.

The parameters include:

• all the attributes of the OBJECT (or other) element that references
this plug-in

• all the PARAM elements enclosed within it
• special parameters created by the browser

These parameters are passed exactly as seen in the HTML without any
conversions. The data/url/ref distinction is as given in the DTD (for OBJECT
attributes) or in the VALUETYPE attribute of the PARAM element.

The plug-in may implement its own URL fetching code, or it may have the
browser fetch URLs on its behalf by issuing a
Message_PlugIn_URL_Access message to the browser.

Special parameters are created by the browser (rather than being part of
the object element). They are:

Parameter Meaning
BASEHREF (Mandatory)

The full URL of the document containing this object.
USERAGENT (Mandatory)

The name of the browser.
UAVERSION (Mandatory)

Version number of the browser (user agent) in format x.y.
If the plug-in needs a specific browser feature it may
refuse to initialise if this version is not high enough.

APIVERSION (Mandatory)
Version number of this API in format x.y. Changes in x
mean a major incompatible change in formats. If the
plug-in doesn't understand this version it should refuse to
initialise. Changes in y mean some new functionality
introduced in a backwards compatible way.

BGCOLOR (Optional)
The background colour of the page, which can be used by
the plug-in as the default background colour. The colour
is passed in as a string in the format 'BBGGRR00'.

API Versions

Released versions of this API about are listed below. A plug-in can use this
information to alter its behaviour if used with an application supporting an
older version of the protocol.

Version 1.00
Original plug-in specification (version 0.09). All messages up to and
including STATUS. Supported by NCBrowser 1.06, for example.

Version 1.10
This specification. Adds BUSY, ACTION, ABORT messages and support
flags. Adds Helper information. Supported by NCBrowser 1.07 and above,
or Browse 1.27 and above, for example.

External dependencies
This specification relies on the existence of a Window Manager with
nested window support.

Acceptance test
The protocol must be able to cater for the needs of Shockwave and Java
plug-ins.

Non-compliances
At the time of writing, neither the NCBrowser nor Browse support all of
the variations of the STREAM protocol. They do not support POSTing from
a plug-in or streaming data from a plug-in to a browser window.

Development test strategy
The protocol has been tested during the development testing of a browser
and during the creation of plug-ins. Each plug-in listed in the acceptance
criteria tested that its interactions with the browser through this protocol
performed as expected by this specification. This included deliberately
generating errors to check the error recovery of the plug-in and the
browser.

Glossary

Term Description
Aplet Application Programmer Interface.
API Small application, usually written in Java, embedded in a

web page
ARM Acorn RISC Machine OR Advanced RISC Machines Ltd
Cache Area of disk or memory used to store recently accessed

files
Caret Text cursor
Codec COder-DECoder
Director MacroMedia multi-media animation player

Player
DLL Dynamically linked library (loaded at runtime)
Frame An independently scrollable portion of an HTML page
GUI Graphical User Interface
HTML HyperText Markup Language
HTML 4 The current base-line HTML standard
Java Machine independent interpreted programming language
MIME Multipurpose Internet Mail Extensions
NC Network Computer
OS Operating System
Plug-in A program that extends the browser by handling a

particular type of file embedded in an HTML page
PRM Programmers Reference Manual
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RISC OS Acorn's operating system, the basis of RISC OS
ROM Read Only Memory
Shockwave MacroMedia multi-media browser plug-in player
Sprite An Acorn proprietary bitmap graphics file format
SWI Software Interrupt
UI User Interface
URL Uniform Resource Locator (HTML link)
Wimp Colloquialism for Window Manager

References
The following references may be of interest:

Director Player Software Functional Specification

Document reference 2107,711 (covers Shockwave as well as Director
Movies). Obtain through Developer Support.

Java Software Functional Specification

Document reference 2107,710. Obtain through Developer Support.

[NC] Browser Software Functional Specification

Obtain through Developer Support.

Acorn Nested Window Manager Functional Specification

Document reference 1215,401/FS.

Wimp message protocol

PRM Volume 3.

Wimp Help protocol

PRM Volume 3.

Document information
History: Revision Date Author Changes

2107,740
issue 1

(Developers only)

0.01 09 Jan 1997 SJM Created from 2103,740
and added BUSY
notification protocol

1.2 06 Feb 1997 SJM New format
1.3 07 Feb 1997 SJM Fixed errors in Message

numbers
1.4 14 Feb 1997 SJM Added PASSWORDS.

Changed API version.
Added Glossary

1.5 18 Feb 1997 SJM Changed PASSWORDS to
file. Added
Message_PlugIn_Action.
Added Helper app info

1.6 24 Feb 1997 SJM Added ABORT message to
replace some uses of
STOP

1.7 24 Feb 1997 SJM Fixed error in states.
Changed API info

1.9 26 Feb 1997 SJM Added mute
1.12 09 Apr 1997 SJM Added missing history

comments for 1.10 and
1.11, updated with
comments from SG. Added

glossary, references and
development test strategy.
Added Helper launching
system variable

1.13 11 Apr 1997 SJM Fixed typos after review
1.14 11 Apr 1997 SJM Fixed some links
2.1 11 Apr 1997 Signed off, AMR allocated
3.1 11 Aug 1997 Few small changes; then

signed off, ECO 3995
allocated

1116,010/
FS issue
1

(Developers only)

1.0 26 Jan 1998 PW Added 'About Plug-in'
1.1 06 Feb 1998 PW Added BGCOLOR special

parameter (PW); AMR
4903 allocated

1116,010/
FS Issue
2

(General release)

1.0 • HTML style changes
for publishing on the
Web; some
clarifications here and
there in the body
content.

• Various minor 'tweaks'
such as changing, for
example, "Netscape"
to read "Navigator™".

• There are a few more
in-document links to
make finding things
easier.

• Some typos corrected
(e.g. 'data' changed to
'date').

• A few history and
references bits
removed ready for
general public release
(that's why the
revision list given here
has gaps in it).

1.1 23 Feb 1998 Simon
Middleton
(SJM),

AMR allocation details
corrected in this history
section

Piers
Wombwell
(PW),
Andrew
Hodgkinson
(AH)

1.2 23 Feb 1998 SJM, PW,
AH

ECO 4049 allocated

1.3 26 Mar 1998SJM, PW,
AH

Created revision 1.3
purely to fix the erroneous
reference to the Nested
Wimp specification which
gave an incorrect drawing
number. No ECO allocated
for such a trivial change

1.4a 04 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format

• No major changes to
text. Removed the
'Document Status'
section as information
captured in 'Document
Information' section

• Added related links to
message definitions

Disclaimer:This document has a fairly long history; originally it was an
internal-only specification (2103,740); it later became available
to developers in a revised form (2107,740 and recently
1116,010/FS issue 1) and is now on general release (1116,010/
FS issue 2).

Acorn Nested Window Manager
Functional Specification

Contents
• Overview
• Technical Background
• User Interface

◦ Child and Nested Windows
▪ Child Windows Without a Work Area
▪ Furniture Windows

◦ Windows in General
▪ Invalid Rectangle Handling
▪ Standard Window Furniture
▪ Minimum Sizes
▪ Shift-Toggle-Sized Windows
▪ Error Report Dialogue Boxes

◦ Icons
◦ Menus
◦ Icon Bar
◦ Panic Redraws

• Programmer's interface
◦ SWI Wimp_Initialise
◦ SWI Wimp_CreateWindow
◦ SWI Wimp_CreateIcon
◦ SWI Wimp_OpenWindow
◦ SWI Wimp_GetWindowState
◦ SWI Wimp_GetWindowInfo
◦ SWI Wimp_ForceRedraw
◦ SWI Wimp_GetWindowOutline
◦ SWI Wimp_RegisterFilter
◦ SWI Wimp_Extend

• Filter Entry Points
◦ Rectangle Copy Filter
◦ Get Rectangle Filter
◦ Post-Rectangle Filter
◦ Post-Icon Filter

• References
◦ The Filter Manager
◦ The Window Manager: Wimp_RegisterFilter
◦ Acorn Filter Manager v0.18: Functional Specification

Overview
Version 3.97 and 3.98 of the Wimp are beta versions, incorporating
extensions required by numerous projects. The main features are:

• Nested windows
• Icon bar auto-fronting
• Icon bar scroll regulation and acceleration
• 24-bit icon colour specification
• Border-less windows
• New filter types
• Redraw optimisation
• Numerous bugfixes and other optimisations

Technical Background
This document documents changes to the Wimp over the version present
in RISC OS 3.71, as determined from the PRM volumes 3 and 5a and the
old Wimp itself.

The Wimp has been written so that any given version can be built to soft-
load on any OS version back to 3.10. Builds of version 3.97 and version
3.98 suitable for RISC OS 3.1x, 3.5x, 3.6x and 3.7x have been released
with beta status for external testing, because a nested Wimp is a
prerequisite of the browser and Java. The main differences from the RISC
OS 3.7x build in those for earlier operating systems are as follows:

In RISC OS 3.6x and earlier, the Wimp

• has no support for StrongARM
• handles task memory management (rather than delegating to

OS_AMBControl)

In RISC OS 3.5x and earlier, the Wimp

• always plots sprites using a translation table (ColourTrans module
isn't new enough to plot paletted sprites from the palette)

In RISC OS 3.1x, the Wimp

• handles memory management significantly differently (for example,
it doesn't use dynamic areas)

• doesn't assume FPEmulator 4.00 or later will be present
• doesn't support mode specifiers

User Interface
Child and Nested Windows

The single biggest enhancement to the Wimp is support for child windows:
windows that are linked to and are only displayed within their parent.
Each edge, and both scroll offsets of every child window are independently
linked to the work area or one edge of the parent window, in whatever way
suits the task. Thus, when a parent window is moved, scrolled or resized,
any related changes to child windows are dealt with automatically by the
Wimp.

Any window may have any number of children, and within each window
there is a stack of child windows, whose relative depth can change in the
same manner as the top-level window stack. Child windows may change
their parent at any time, jumping between stacks. Child windows may
themselves have nested children within them, which may in turn have
their own children, and so on. Child windows are considered to lie above
any icons in their parent window, and above the parent window's caret.

It should be noted that with all this added flexibility comes a potential for
badly designed, non-intuitive application front-ends, so care must be taken
when designing a user interface which uses the window nesting facilities.

Child Windows Without a Work Area

In the past, it has not been possible to display windows without a work
area, for example to implement a scroll bar in a non-standard place. This
was due not only to a hard-coded minimum size visible area (see Minimum
Sizes) but also due to the ever-present single-pixel border drawn by the
Wimp along any edge of a window that lacks window furniture. In fact, it
has previously been possible to remove the single-pixel border, but at the
expense of the removal of all the window furniture at the same time,
leaving an isolated work area. These restrictions have been lifted.

This behaviour is in fact also available with top-level windows, but its
usefulness is expected to be limited to child windows.

Furniture Windows

Normally, child windows are clipped according to the visible area of the
parent window. However, there are occasions where it is desirable for the
child windows to be clipped by the window outline - that is, allowing them
to overlap the window furniture. This might, for example, be used to
display status information within the scrollbars, or add window furniture
buttons. An additional window flag has been introduced, allowing a child
window to overlap the window furniture of its parent in this way.

Further, it is realised that to place such a furniture window at, for
example, the bottom left of a window, would obscure the parent's scroll
arrow icon. In order to compensate for this, scrollbars are allowed to move
to accommodate any child window found to be touching both the outside
edge of the scrollbar, and the end of the scrollbar. A window is deemed to
be touching the end of the scrollbar if its end outline coordinate is within 1
pixel of the end of the scrollbar, i.e. there must be no gap between the
child window outline and the final pixel of the scrollbar. The end of the
scrollbar is adjusted so that it just underlaps the other end of the child
window outline. The child window should normally be wide enough to
cover all the area where the scroll bar would have been, as only a blank
area of colour will be drawn there otherwise.

Notice that these constraints allow for four furniture windows within the
scrollbars of the parent. If, for example, the developer wanted two child
windows in the bottom left, one window would have to be made a child of
the other. Under current Wimp behaviour, if two sibling child windows are
placed side by side in this manner, the scrollbar will move to accommodate
both of them, but only if they are in a certain stacking order; this
behaviour is not guaranteed in future versions of the Wimp, and must not
be relied upon.

Again, the flexibility offered by these child windows must not be abused:
developers must, for example, take steps to ensure that the parent's
minimum visible area is large enough for the furniture window never to
overlap the parent's adjust size button.

Furniture windows which are independently moveable and/or resizable are
beyond the scope of the Nested Window Manager, and any attempt to give
them such abilities will result in unpredictable behaviour. Such designs
are thus strongly discouraged.

Windows in General

Invalid Rectangle Handling

The way in which the Wimp calculates the invalid and block-copy rectangle
lists is optimised over old Wimps, in order to increase the proportion of
block-copy operations, which are usually much faster than redraws. This is
done by compiling a list of changes between each call to Wimp_Poll, and
only then calculating which rectangles are genuinely invalid, and which
can be displayed using a quick block-copy operation. The block-copies
themselves are re-ordered so that wherever possible, one copy does not
invalidate screen area needed as source for another copy operation; in the
rare cases where this is not possible, the least damaging alternative is
chosen - that is, the one requiring the smallest invalid area to be redrawn.

The upshot of this is that wherever touching or overlapping windows move

together - external and internal panes, and of course, nested windows - the
shuffling effect present in earlier Window Managers, where an area is
alternately covered by the top window, and exposed and redrawn, is
eliminated. There is also some speed gain from combining block-copy
operations. In the unusual event that the window opening queue needs to
be flushed before the Wimp_Poll, an extension to Wimp_OpenWindow is
provided.

Standard Window Furniture

All window furniture buttons slab in, including close and toggle size.

The bug regarding slabbing-in of the other furniture buttons, which could
be unreliable following a Service_InvalidateCache, is fixed.

Single-pixel borders can be removed from windows without removing all
the other window furniture at the same time.

For large work area windows, when the scroll sliders start being dragged,
they jump less than in previous Wimps, and are displayed more accurately
when they reach the end of the document.

A plain-colour background is no longer drawn underneath the solid
toolsprites, thereby reducing flicker.

Minimum Sizes

All windows are optionally shrinkable to zero size visible area (subject to
the continued visibility of any back, close, toggle size and adjust size
buttons). In order to achieve this, scroll bars no longer have a minimum
length (except in special cases). After the scroll slider region has been
shrunk to zero length, the scroll arrows start to be plotted scaled down
until the entire bar shrinks to nothing.

Most conventional programs which rely upon the old behaviour continue
to function as before, due to the special-case exemptions in
Wimp_CreateWindow.

Shift-Toggle-Sized Windows

Windows which have been toggle-sized with Shift held down (i.e. made to
fill all the screen except the icon bar) are now internally marked as being
full size, and the toggle-size button indicates this by switching to the
"fulled" sprite. A further click on the toggle size button will then reduce
the window's size to its original size, as opposed to the previous, unhelpful
behaviour, which was to enlarge the window to full screen, including
covering the icon bar!

Error Report Dialogue Boxes

Since each error button in a Wimp error box can contain user-defined text,
it is possible for the text to be wider than the fixed width action buttons
used in previous Wimps' error boxes. The Wimp now enlarges each action
button if the width of its text (plus 36 OS units to allow for borders) is
greater than that of its standard action button.

Icons

A number of long-standing bugs relating to "3-D" icons are fixed: clicking
on an action button that uses an antialiased font doesn't reset the Wimp
font to the old bitmap system font; multiple selection of action buttons via
dragging off one button and Adjust-clicking on another is no longer
possible; menu clicks on action buttons no longer cause a flicker; and the
3-D plinths are drawn correctly in EX0 and/or EY0 screen modes and/or
when not pixel-aligned. Icon foregrounds and backgrounds can be drawn
using any 24-bit specified colour, not just one one of the Wimp colours.

Any 2-, 4-, 16- or 256-colour sprites with palettes within icons are now
plotted using the palette directly, rather than via a translation table. The
effect of this is better colour reproduction of such sprites in 32 thousand
colour and 16 million colour modes.

Line spacing for multi-line text icons, first specified for RISC OS 3.10, via
the parameters to the "L" command of an icon's validation string, has
finally been implemented.

Menus

Submenus and dialogue boxes opened from "reversed menus" are opened
at the correct horizontal position again. However, the automatically-
opened position still does not perfectly mirror normal menus for cases
where the pointer is held over the "tick" space opposite the arrow.

Icon Bar

The icon bar scrolls at a rate independent of processor speed or loading -
the position is determined according to the time elapsed since scrolling
started, irrespective of how many screen updates have been possible
since.

Also, the speed of scrolling increases linearly over time; it accelerates.
This eases navigation of very wide icon bars.

If the pointer is left over the bottom pixel row of the screen for 0.5
seconds, the icon bar now pops to the top of the window stack, much as it
would if you had used the Shift-F12 hotkey. The icon bar remains at the

top of the stack (and therefore accessible) while the pointer stays over the
icon bar and/or there is an icon bar menu open. When this condition is no
longer true, the icon bar returns to its original position in the window
stack (note that this differs from Shift-F12 behaviour, where the icon bar
always becomes a "back" object again).

Panic Redraws

When a panic redraw occurs due to there being too many invalid
rectangles for the Wimp to handle, the first thing drawn is a plain
background. In a feature dating back to Arthur, this was hard-coded to
Wimp colour 15 (now light blue) - hardly appropriate. This is changed to a
mid-grey colour.

Also, anticipating the increased number of invalid rectangles made likely
by the nested windows system, the number of invalid rectangles allowed
before a panic redraw is triggered is raised from 128 to 256.

Programmer's interface
The following SWIs detail the changes from the previous version of the
Window Manager. They are not full definitions for each SWI call.

Wimp_Initialise
(SWI &400C0)

On entry

-

On exit

-

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

Wimp_Initialise recognises a new version number, in addition to the
established 200, 300 and 310 versions. 380 will, at a sufficiently advanced
version of the Wimp, be necessary in order to activate most of the features
described in this specification. As of Wimp version 3.97, only the window
foreground colour byte of the window block is affected by the version
passed to Wimp_Initialise, but this must not be relied upon for future
releases of the Wimp; other Nested-Wimp features may in future become
reliant upon having passed 380.

Related APIs

None

Wimp_CreateWindow
(SWI &400C1)

On entry

R1=Window block
Offset Contents

+28 window flags:
Bit(s) Meaning

22
This bit is overwritten by the Wimp, and may be read
using Wimp_GetWindowState. When set, it indicates
that the window is, or will be, toggled to full size
without covering the icon bar. Note that this behaviour
is different to bit 18, which is set if the window is, or
has been, toggled to full size including the icon bar.

Toggling behaviour can only be properly resolved after
Wimp_Poll returns an Open_Window_Request reason

code and before the subsequent call to
Wimp_OpenWindow. Flags bit 19 is set, by definition;
applications may distinguish between different types of
toggle-size clicks using the following truth table:

These are the only values that can be returned in
combination with bit 19 being set.

23 If this is a child window, make it a furniture window.
(This has no meaning for top-level windows, so the bit
should always be cleared in such cases to allow for
future expansion).

+32 Title foreground and window frame colour:
Value Meaning

&FF Window has no 1-pixel border components, but
furniture can still be present (as controlled by the
usual flag bits). Title foreground colour defaults to
Style Guide standard colour (Wimp colour 7).

+68
Minium width of window (16 bits).

This used to be the minimum visible width in OS units, unless a
greater width was required by either of the following:

• The top edge furniture - any combination of the back,
close, title and (as a special case when the vertical
scrollbar is absent) the toggle-size icons. The width
required by the title icon was defined as 8 OS units,
except when 0 was used here, indicating that the full
width of the title text or sprite will apply;

• The bottom edge furniture - the minimum (unsquashed)
size horizontal scrollbar (if present), plus any adjust-size
button (in the special case when the vertical scrollbar is
absent).

The 0 special case retains exactly the same behaviour as before
(horizontal scroll bars, if present, cannot be squashed below a
certain minimum width). Any other values activate the new
behaviour: a horizontal scrollbar can be squashed down to zero
width, and the title bar can be squashed down to zero width as
long as the back and close buttons are both absent (otherwise, 8
OS units remains the minimum title icon width). A new special
case, 1, is introduced, activating the new behaviour, but with an
actual minimum window width of 0 rather than 1 (although it is
obviously still subject to any non-squashable furniture width
requirements as discussed).

+70
Minium height of window (16 bits).

This used to be the minimum visible height in OS units, unless a
greater height was required by a minimum (unsquashed) size
vertical scrollbar, plus any toggle-size and adjust-size buttons
(in the special cases where there is no title or horizontal
scrollbar, respectively). It was also subject to a restraint that
the minimum height could not be less than 2 pixels high when
the vertical scrollbar was absent.

The value 0 becomes a special case, and retains exactly the
same behaviour as before. That is, the vertical scroll bar, if
present, cannot be squashed down below a certain size. All
other values activate the new behaviour: any vertical scrollbar
may be squashed down to zero height, and the 2-pixel hard-
minimum no longer applies. A special case, 1, is introduced,
activating the new behaviour but with a minimum window
height of zero rather than of 1 (subject to constraints imposed
by window furniture as described).

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

The meanings of certain parts of the window block are altered and
extended as shown.

Related APIs

None

Wimp_CreateIcon
(SWI &400C2)

On entry

unchanged

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

The (C)olour validation string command is introduced to allow icon colours
to be set from a 24-bit palette. It is typically followed by two hexadecimal
numbers (BBGGRR) separated by a /, but either one may be omitted, and
the relevant colour from the icon flags (or the F command) will then be
used instead. It is suggested that the old-style colours should be specified
to something sensible, in case the program gets run on a Window Manager
that doesn't support the command.

Note also that the line spacing specified after the (L)ine spacing command
is now acted upon.

Bit 20 of the icon flags has not been part of the Exclusive Selection Group
(ESG) number since at least RISC OS 3.10, and should be considered
'reserved'.

Related APIs

None

Wimp_OpenWindow
(SWI &400C5)

On entry

R1=Pointer to block, or NULL (0 or -1) to flush all pending opens to the
screen.

R2=
"TASK" (&4B534154)

This is a 'magic word' to tell Wimp that the extended version of this
SWI call is being made.

In the extended call, R3 and R4 are as described below. Otherwise,
the previous parent and flags (if any) are reused. The parent defaults
to -1 and the flags default to 0, i.e. traditional Wimp behaviour is still
the default.

It is important to ensure that R2 does not accidentally get left
with this value from a previous call in code which mixes old
and new style calls. This is mostly an issue for C SWI veneers.

R3=Handle of window to make parent (or -1 to make a top-level window)
R4=flags

Bit(s) Meaning
0 Use extended OpenWindow block in R1 (R1 + 32 = window

flags).
16-17 left edge of child
18-19 bottom edge of child
20-21 right edge of child
22-23 top edge of child
24-25 x-scroll of child
26-27

y-scroll of child

These flag pairs have the following meanings (as high bit,
low bit):

Setting Action
00 linked to work area of parent
01 linked to left / bottom of visible area of parent
10 linked to right / top of visible area of parent
11 reserved

1-31 Reserved, must be zero

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

This call is the key to the nested window system. Changes are as shown.

If R3 is -1, bits 16-27 must all be clear. Otherwise, they specify how certain
aspects of the child are aligned with the parent window.

If R4 bit 0 is set, then R1 + 32 holds the new window flags to use. This can
be used, for example, to add or remove window furniture without having
to delete and re-create the window.

Not all window flags can be altered in this way. In particular, bits 16-22
can only be set or cleared by the Wimp, in order to reflect the window
status. The Wimp will also modify the bits relating to the window furniture
as follows: if bit 31 is unset (indicating the old-style bits are to be used)
then bits 24-30 are updated to reflect the status indicated by bits 0, 2, 3
and 7 (but note that bit 31 itself is left unchanged). If bit 31 is set,
however, bits 0, 2, 3 and 7 are cleared. All other bits are preserved (and
acted upon) by the Wimp.

Under previous Wimps, the window handle at R1+0 had to be owned by
the task calling Wimp_OpenWindow. Because a child window need not
belong to the same task as its parent, this restriction has now been lifted;
this is the case even for the non-extended form (R2 not equal to the magic
word "TASK").

Since RISC OS 2 (and possibly even earlier), Wimp_OpenWindow has had
undocumented return conditions: values at R1+4 - R1+24 are updated to
represent the actual parameters of the opened window after valid ranges
have been taken into account, and the window has been forced on-screen
(if applicable). Rather than continue to have programs waste time
following a Wimp_OpenWindow with a Wimp_GetWindowState (except in
cases where the new window flags are required), the exit conditions can
now be considered official.

Related APIs

None

Wimp_GetWindowState
(SWI &400CB)

On entry

changes detailed below

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

This call mirrors Wimp_OpenWindow. If R2 = "TASK" on entry, then on exit
R3 and R4 are as described above. Note however that
Wimp_GetWindowState has always returned the window flags in R1+32,
but despite this, R4 bit 0 will always be returned cleared.

Related APIs

None

Wimp_GetWindowInfo
(SWI &400CC)

On entry

unchanged

On exit

changes detailed below

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

The returned window block's extended meanings are as for
Wimp_CreateWindow.

Related APIs

None

Wimp_ForceRedraw
(SWI &400D1)

On entry

R0=Window handle (as before)
R1="TASK" (&4B534154)

This signals that the extended version of Wimp_ForceRedraw is
being used, and R2-R4 are as stated below.

R2= Value Meaning
+3 Redraw title bar

Other values are reserved
R3-4=Ignored

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

Wimp_ForceRedraw is changed so that it can be applied to windows
owned by other tasks, because a child window may belong to another task.

In the past, redrawing the title bar of a window has been accomplished
either by working out where the window's title bar is on the screen and
calling Wimp_ForceRedraw with R0=-1 to invalidate that area, or
alternatively by toggling the input focus in and out of the window to force
its borders to be redrawn.

Neither of these methods is particularly satisfactory: the first could cause
other windows on top of the one in question to be redrawn unnecessarily,
and the second redraws the rest of the borders as well, and in the case of
child windows, would also cause a redraw of the parent's title bar.

So Wimp_ForceRedraw is extended as shown above.

Note: Since the value &4B534154 ("TASK") is far too big to be an
minimum x coordinate, it is safe to use as described above.

Related APIs

None

Wimp_GetWindowOutline
(SWI &400E0)

On entry

unchanged

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

Previously, a window had to be open and visible on screen for this call to
work. It will now work on windows which are closed or not yet visible.

Related APIs

None

Wimp_RegisterFilter
(SWI &400F5)

On entry

R1=Reason code:
Value Meaning

4 Register / deregister post-rectangle filter
5 Register / deregister post-icon filter

On exit

unchanged

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

SWI is not re-entrant

Use

Each type of filter may only be registered once using this call, and so it
remains for the use of the Filter Manager only (which will normally be
responsible for delegating filter calls for specific tasks) unless you want to
replace the whole filter system. The SWI is thus, in effect, only really for
internal use but since it is documented in the PRMs the extended version
is included here for completion.

As far as the Filter Manager is concerned, note that certain filter types
require a newer Filter Manager than present in the RISC OS 3.60 / RISC
OS 3.71 ROMs.

There are two new reason codes that may be passed to
Wimp_RegisterFilter (4 & 5)

Notes:
There is an undocumented entry condition for any registered pre-filter: R3
points to the poll word if R0 bit 22 was set on entry to Wimp_Poll. On exit,
R1 and R3-R10 must be preserved. The PRMs have also forgotten to
mention that on entry to the post-filter, R12 holds the value given in R2
when the routine was registered. On exit, R1 and R3-R10 must be
preserved. Future documentation will include this information.

The Wimp now calls the post-filter, with a null reason code, whenever
Wimp_StartTask returns, even if the child task didn't call Wimp_Poll. In
either case, any attempt to claim the null event will now be ignored.

The entry and exit conditions for reason code 2 and 3 filters have not
previously been documented, and those for reason codes 4 and 5 are new
in Wimp version 3.86, so they are in numerical order by reason code in the
section entitled Filter Entry Points.

Related APIs

None

Wimp_Extend
(SWI &400FB)

On entry

R0=Reason code (see exit conditions for R1)
R1=Window handle, or for reason codes in R0 of 7 and 8, a value of -1 to

enquire about the top-level stack.

On exit

R1=The value of R1 depends on the reason code and R1 value supplied
on entry:
Value Meaning

0 - 5 Internal use only
6 Parent window
7 Frontmost child window
8 Backmost child window
9 Sibling immediately behind

10 Sibling immediately in front

Interrupts

Interrupts are unchanged
Fast interrupts are unchanged

Processor mode

Processor is in undefined mode

Re-entrancy

Not defined

Use

It is possible to enumerate window stacks using only

Wimp_GetWindowState, but it requires that you open a "special" window
of your own at the back of each stack to be enumerated, and you can only
enumerate the stack from back to front. It may also return rather more
information that you actually need, and so may be a little bit slower than it
might be.

Consequently, five new index values are added to Wimp_Extend. For each
of the following, R1 holds the window handle being queried, or a value of
-1 to enquire about the top-level stack (for index values 7 and 8 only).

Any of the above calls can return R1 = -1 for "no window", indicating that
the end of the stack was reached, or the window had no parent or child, or
R1 was -1 on entry and R0 was not 7 or 8.

Note also that pane windows are not skipped by any of the above calls.

Related APIs

None

Filter Entry Points

Rectangle Copy Filter
On entry

R2=Destination bounding box: min x
R3=Destination bounding box: min y
R4=Destination bounding box: max x
R5=Destination bounding box: max y
R6=Source bounding box: min x
R7=Source bounding box: min y
R8=Source bounding box: max x
R9=Source bounding box: max y

R10=Window handle, minus one
(only in Nested Wimp variants from v3.90 onwards)

R12=Value of R2 when registered

On exit

R0-1preserved
R3-10preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

Entry-point is not re-entrant

Use

The rectangle copy filter is called when the Wimp is about to copy a
rectangle across the screen, not exclusively due to Wimp_BlockCopy. The
current and previous graphics cursor positions are describing the area to
be copied, ready for the VDU block copy operation, but the actual
operation has not yet been performed.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs

None

Get Rectangle Filter
On entry

R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R12=Value of R2 when registered

On exit

R0-1preserved
R3-10preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

Entry-point is not re-entrant

Use

The get rectangle filter is called just before the redrawing of a rectangle
begins, before the window background has been filled (if appropriate), and
even before the VDU graphics window has been set up. This filter is no
longer called when it is only the caret which is being redrawn; the new
rectangle filters below never have been.

Note that on entry, R10 is undefined (this may change to match the other
rectangle filters, but don't rely on it).

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs

None

Post-Rectangle Filter
On entry

R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R10=Window handle, minus one
R12=Value of R2 when registered

On exit

R0-1preserved

R3-10preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

Entry-point is not re-entrant

Use

The post-rectangle filter is called after the window background is filled as
part of a rectangle redraw, i.e. shortly before Wimp_GetRectangle or
Wimp_RedrawWindow (or their internal equivalents) reset the VDU state
and return, unless the call is returning with "no more to do" status. The
filter is linked to the filling-in of the window background; redraw loops
initiated by Wimp_UpdateWindow never cause this filter to be called,
because they do not cause the window background to be redrawn.
However, the filter is called after a "transparent" window background
would have been filled.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs

None

Post-Icon Filter
On entry

R2=Task handle
R6=Rectangle to be drawn: min x
R7=Rectangle to be drawn: min y
R8=Rectangle to be drawn: max x
R9=Rectangle to be drawn: max y

R10=Window handle, minus one
R12=Value of R2 when registered

On exit

R0-1preserved
R3-10preserved

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in svc mode

Re-entrancy

Use

In the past, the rectangle redraw cycle has consisted of the Wimp filling
the background and returning control to the application, which then draws
whatever it wants and calls Wimp_GetRectangle. The Wimp subsequently
draws the icons before moving on to the next rectangle and filling its
background, and so on. This did mean that applications never got a chance
to draw on top of the icons; the post-icon filter now allows them to.

All bounding boxes (R6-R9 values on entry) are in screen coordinates.

Related APIs

None

References
The Filter Manager

PRM Volume 3, section 56, pp. 303-312 and erratum, Volume 5a, page 668.

The Window Manager: Wimp_RegisterFilter

PRM Volume 3, section 53, pp. 224-225

Acorn Filter Manager v0.18: Functional Specification

Document reference 1215,102/FS.

Document information
History: Revision Date Author Changes

1116,011/
FS_1

06 Feb 1998 Original Version (not
released)

1116,011/
FS_2

10 Feb 1998 • HTML version
completed for
publishing on the Web

1116,011/
FS_3

16 Feb 1998 • Fixed up the HTML a
bit

• in Wimp_CreateWindow
the title foreground
colour defaults to 7, not
to 2

- 23 Feb 1998 • Various HTML tweaks;
no content change

1215,401/
FS_1

02 Mar 1998 General Release
• Document number now

1215,401/FS
• Updated history, and

navigation links in the
page footer now include
the specifications
section.

• no other content
changes

1215,401/
FS_2

08 Apr 1998 • Added
Wimp_RegisterFilter
details.

• Some missing spaces
added.

• Alphabetic components
of the hex SWI numbers
in body text capitalised.

• Added References
section.

• Used <acronym> tag
for acronyms.

1215,401/
FS_3

21 Sep 2021 Alan
Robertson

Initial version in
PRMinXML format

• No major changes to
text. Removed the
'Document Status'
section as information
captured in 'Document
information' section

• Prefixed the Acorn

Functional Specification
Document Number to
each Issue revision
(where possible) in
original

• Removed links to
external files

• The Filter Entry Points
are now defined within
their own section,
rather than as part of
Wimp_RegisterFilter

Disclaimer:
Originally appearing as 1116,011/FS up to issue 3, this
specification now has a document number of 1215,401/FS for
General Release.

Various authors for original document, including:

• Piers Wombwell
• Kevin Bracey

Later revisions for first formal specification:

• Ben Avison
• Andrew Hodgkinson

CryptRandom

Contents
• Introduction
• Overview

◦ Installation
◦ Lineage

• Technical details
◦ contact
◦ Sources

• SWIs
◦ SWI CryptRandom_Byte
◦ SWI CryptRandom_Stir
◦ SWI CryptRandom_AddNoise
◦ SWI CryptRandom_Block
◦ SWI CryptRandom_Word

Introduction
CryptRandom is a module for generating cryptographically useful random
bytes under RISC OS. It can use a number of sources to provide this
information to clients needing secure, or high quality random data.

Overview
Computers are, by their nature, deterministic - so applying the same
sequence of inputs to any program is likely to produce the same result.
This is a bad thing when it comes to cryptography, as if you use a known
sequence to encrypt a data stream, next time you turn on your machine
you'll use the same known sequence, making the code possible to break.
Thus we need a random sequence so that no pattern can be spotted in it.
Basic provides a pseudo-random sequence, but this is the same every time
the machine is turned on, so is not very good. It is also just a sequence,
which will eventually repeat. True randomness is only possible on a
computer by attaching it to other devices such as a radioactive source -
not very practical.

CryptRandom applies another method, which will produce different values
showing to no known pattern, which are different each time you switch the
machine on. This is much less secure than using a true random source, but

better than using a predictable random number generator like that Basic
uses.

The CryptRandom module provides SWI calls which allow access to
random data retrieved from a variety of sources.

Installation

CryptRandom is supplied in an archive containing a !System directory. It
can be installed by decompressing this archive, then using a !System
merge tool - such as that accessible by running !Boot, or !SysMerge for
RISC OS 3.1 machines.

CryptRandom provides a service to clients that require it. Such
applications should load it in the following way:

RMEnsure CryptRandom a.bc RMLoad System:Modules.CryptRand
RMEnsure CryptRandom a.bc Error CryptRandom version a.bc is required

where a.bc is the oldest version supporting the features the application
requires (see the history file). Note that this version should be at least that
of the latest security advisory (if any).

Lineage

CryptRandom is based on code from PuTTY, the Windows SSH client by
Simon Tatham (see http://www.chiark.greenend.org.uk/~sgtatham/putty/).
It consists of a 'pool' of random data, which is 'stirred' every time a byte is
requested, using a complex hashing function to ensure there is no
discernible pattern. The pool is supplied by 'entropy' from various sources,
designed so that they are different every time they are called. The
numerous sources include:

Technical details
• On initialisation of CryptRandom:

◦ Unique machine ID
◦ Current WIMP tasks
◦ Current dynamic areas
◦ Disc free space
◦ Disc directory listings
◦ Previous saved CryptRandom seed

• Every time a byte is requested:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

◦ Real time clock
◦ System interval timer
◦ Battery manager data (voltages/temperatures etc)

• Every mouse and key press:

◦ Press data
◦ Mouse position
◦ System timer

Sources are ignored if they don't work (eg a Risc PC doesn't have a battery
manager).

Interrupts are disabled on SWIs as mentioned above - this is to allow
multiple users to access the pool from interrupt routines (events/callbacks
etc) - this may be subject to change in future versions.

The seed is saved over sessions to preserve the entropy - it'll first look for
CryptRandom$SeedFile, and if this is set use this as the seed location,
otherwise try Choices:Crypto.CryptRand.Seed or if Choices$Path is
unset use <Wimp$ScrapDir>.Seed.

I don't claim to prove the security of the hashing process, so I can't
guarantee the randomness of the output, but it appears to be white noise -
if in doubt, do your own tests. The hash is based on SHA-1, which is
believed by the computing community to be secure. Any comments in this
respect would be welcomed.

contact

Newer versions (if any) of this software may be found at
http://www.markettos.org.uk/ or else by contacting the author at: email
theo@markettos.org.uk

Theo Markettos
5 Willow Close
Liphook
Hants
GU30 7HX
UK

I'd also welcome any bug reports or fixes, or any other comments.

Sources

Sources can be obtained from http://www.markettos.org.uk/

To build them you'll need:

• Acorn C v4 or v5 (the Makefiles are designed for Castle's 32bit C
compiler, so may need modification otherwise)

• SDLS if have Acorn C v4 http://www.excessus.demon.co.uk/acorn/
ssr/

• Syslog (optional) http://www.drobe.co.uk/archives/
freenet.barnet.ac.uk/Acorn/freenet/j.ribbens/syslog-0.17.spk (note
that Syslog 0.19 appears to have bugs in it which may cause
problems)

• Makatic (optional) http://www.mirror.ac.uk/collections/hensa-
micros/local/riscos/projects/makatic.zip

• OSLib http://ro-oslib.sourceforge.net/

SWIs

CryptRandom_Byte
(SWI &51980)

Reads a byte from the random pool

On entry

None

On exit

R0=Random byte value (0-255)

Interrupts

Interrupts are disabled
Fast interrupts are undefined

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI reads a byte from the pool, and subsequently stirs it.

Related SWIs

CryptRandom_Block, CryptRandom_Word

CryptRandom_Stir
(SWI &51981)

Stirs the random pool

On entry

None

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are undefined

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI stirs the random pool - this should not be necessary in normal
use

Related SWIs

CryptRandom_AddNoise

CryptRandom_AddNoise
(SWI &51982)

Introduce data to the random pool

On entry

R0=Pointer to block of noise data to add
R1=Size of data in the block

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are undefined

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

Adds a block of noise to the random pool - shouldn't be necessary in
normal use.

Related SWIs

CryptRandom_Stir

CryptRandom_Block
(SWI &51983)

Reads multiple bytes from the random pool

On entry

R0=Pointer to block to fill with random bytes
R1=Number of bytes to fill into the buffer

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are undefined

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

Generates a block of random data. Note this is called with interrupts off,
so large blocks may cause your machine to hang while they are generated.
Note also the entropy generated by this call is likely to be less than
multiple CryptRandom_Byte calls (since times/battery status etc are likely
to be the same during this call, but not if _Byte calls are spread at
different points in your program), so randomness may suffer as a result.

Related SWIs

CryptRandom_Byte, CryptRandom_Word

CryptRandom_Word
(SWI &51984)

Reads a 32-bit word from the random pool

On entry

None

On exit

R0=Random 32-bit word from the pool

Interrupts

Interrupts are disabled
Fast interrupts are undefined

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This reads a 4 bytes from the pool, and assembles them into a 32-bit word.

Related SWIs

CryptRandom_Byte, CryptRandom_Block

Document information
Maintainer(s):Gerph <gerph@gerph.org>

Theo Markettos <theo@markettos.org.>
History: RevisionDateAuthor Changes

0.13 Theo
Markettos

Text documentation
• Original documentation for

the CryptRandom module.
0.13a Gerph PRM-in-XML documentation

• Documentation re-written as
PRM-in-XML.

Disclaimer:
Copyright 2000-1 Theo Markettos.
Portions copyright Simon Tatham, Gary S. Brown and Eric
Young

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the
Software.

mailto:gerph@gerph.org
mailto:theo@markettos.org.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
SIMON TATHAM OR THEO MARKETTOS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Filing system drive information

Contents
• Introduction
• Technical details
• UpCalls

◦ DriveAdded
◦ DriveRemoved

Introduction
Filing systems may be based on devices which are able to be changed
dynamically in use ('hot pluggable'). These devices may issue an UpCall to
indicate that a device is now available, or has become unavailable.

Technical details
Two UpCalls are used to indicate that a filing system path residing on a
device is now available, or has been made unavailable:

• UpCall_DriveAdded
• UpCall_DriveRemoved

Not all devices and filing systems issue these UpCalls, so clients should
treat them as advisory.

UpCalls

UpCall_DriveAdded
(UpCall &18)

A filing system may be available on a given path.

On entry

R0=24 (&18)
R1=Pointer to a zero-terminated filing system path prefix for a new

device

On exit

R0-1preserved

Use

This UpCall is issued by a device when filing system path has been made
available. This may happen due to a new disc being inserted, a device
being formatted, or a remote system becoming available.

At the time that the UpCall is issued the filing system path should be
accessible through normal filing system operations. The nature of hot
pluggable systems mean that by the time this call is received, the device
may have already become unavailable, or the filing system on the device
may not be present.

The filing system path takes the form of a filing system name, a disc name
specification and an optional path specification. For some devices, the disc
name may be a number, indicating that no name has been determined yet,
or that there is no name available. For others, a name may be given. It is
recommended that the path be canonicalised to obtain the correct name of
the device.

Example prefix names:

• ADFS::4
• SDFS::0
• Share::Storage
• HostFS::Host.$.Mountpoint

This UpCall must not be claimed.

Related upcalls

UpCall_DriveRemoved

UpCall_DriveRemoved
(UpCall &19)

A filing system is no longer available on a given path.

On entry

R0=25 (&19)
R1=Pointer to a zero-terminated filing system path prefix for a new

device

On exit

R0-1preserved

Use

This UpCall is issued by a device when filing system path is no longer
available. This may happen due to a disc being removed, a device being
formatted, or a remote system becoming unavailable.

At the time that the UpCall is issued the filing system path will not be
accessible and no further information is available. As such, clients should
attempt to track the paths to which the drive may refer. In particular,
devices may refer to drive numbers, without any name being
canonicalised, and clients may therefore need to track which drive
numbers refer to which canonicalised disc names.

This UpCall must not be claimed.

Related upcalls

UpCall_DriveAdded

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 23 Dev 2021Gerph Initial version

• Created from examples
of sources using it.

Related:https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/SDFS/
SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/ADFS/

mailto:gerph@gerph.org
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/SDFS/SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/SDFS/SDFS/-/blob/master/c/service
https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/ADFS/ADFSFiler/-/blob/master/s/ADFSFiler#L1055

ADFSFiler/-/blob/master/s/ADFSFiler#L1055
Disclaimer:

© Gerph, 2021.

https://gitlab.riscosopen.org/RiscOS/Sources/FileSys/ADFS/ADFSFiler/-/blob/master/s/ADFSFiler#L1055

Pointer devices (supplement for
Pyromaniac)

Contents
• Introduction and overview
• Technical details

◦ PointerV
◦ Driver updates in RISC OS Select

▪ Quadrature mouse driver
▪ PS 2 mouse driver
▪ Touch screen or tablet drivers

◦ OSPointer handling of extended requests
◦ Additional buttons
◦ Programmers interface

• SWI calls
◦ SWI OS_Mouse
◦ SWI OS_Pointer 2 - ReadAltPosition

• Software vectors
◦ Vector EventV 21,4 - ExpansionMouseScroll
◦ Vector PointerV 4 - ExtendedRequest

Introduction and overview
Pointer devices (usually mice) have been extended to provide additional
functionality found in more modern devices such as additional buttons and
an alternate positioning device (usually provided as a single or dual 'scroll
wheel'). Similarly, devices which provide absolute positioning such as
tablets and touchscreens are now capable of being serviced by the pointer
system. In order to provide these extra functions, a revised form of the
PointerV interface has been used.

This builds upon the interface declared in PRM 5a, but moves some
functions away from the driver.

The OSPointer module controls pointer movement and will handle these
extended functions. Previously the Kernel provided management of the
pointer. These functions are now provided entirely by the OSPointer
module.

The operation is split into two major parts:

• How drivers provide information to the OSPointer module about the
new features

• How programmers access this information

In addition, a separate document details the operation of the
WindowScroll module which provides functionality for desktop tasks.

Technical details
PointerV

PointerV has been extended with a new reason codes - PointerV 4 - in RISC
OS Select to support the use of alternative pointing device values.
Specifically this allows for the scroll wheel provided by modern mice, and
for tablet or touch screen devices.

Driver updates in RISC OS Select

Quadrature mouse driver

The quadrature mouse driver ('Mouse' module) has been updated to
provide an additional device type for Stuart Tyrrell's PS2 mouse interface.
This interface functions in 'driver' mode to provide alternate device
support for single axis devices (primarily vertical scroll wheels).

Dual axis movement is presently not supported.

PS 2 mouse driver

The PS 2 mouse driver ('PS2Driver' module) has been updated to provide
support for 'Intellimouse' and 'Intellimouse Pro' devices. These are more
commonly known as 'scroll mice' or '5 button mice' respectively.

Dual axis movement is presently not supported.

Touch screen or tablet drivers

No touch screen or tablet driver is supplied with the current version of
RISC OS. Developers wishing to implement such a driver should contact
their supplier.

OSPointer handling of extended requests

The OSPointer module will issue the Extended request for versions of the
OS which support these new features (RISC OS 4.32 and later). If the call

returns unclaimed (R0 having not been set to -1 or 5), the module will
issue PointerV 1 (Request) and defer button handling to the driver.

If the call is claimed, the OSPointer module will issue KeyV events for the
buttons which have been pressed and apply the change or absolute
position to the pointer.

The absolute positioning interface is available from version 0.25 of the
OSPointer module.

Additional buttons

In addition to the base 3 buttons up to 8 buttons are supported by the
OSPointer module. 5 button mice are common and the PS 2 driver has
been updated to support such devices.

The additional buttons are reported through the extended KeyV interface
for mouse buttons. These buttons are detected by the OSPointer module
and returned as useful values through the standard interfaces.

Programmers interface

In order obtain position details for the alternate scrolling device, a new
reason has been added, OS_Pointer 2.

SWI calls

OS_Mouse
(SWI &1C)

Read current mouse state

On entry

None

On exit

R0=X position of the pointer
R1=Y position of the pointer
R2=

mouse buttons:

Bit(s) Meaning
0 right button
1 middle button
2 left button
3 fourth button
4 fifth button
5 sixth button
6 seventh button
7 eigth button

8-31 Reserved, must be zero

R3=time of button chan

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI returns the pointer position from the mouse buffer if events are
buffered or the current position if the buffer is empty. It has been extended
from the interface described in PRM 1-699 by adding additional buttons.

Related SWIs

Pointer 2

Related vectors

PointerV 4

OS_Pointer 2
(SWI &64)

Read alternate position

On entry

R0=2 (reason code)
R1=Register details

On exit

R0=signed 32bit X position of the alternate device
R1=signed 32bit Y position of the alternate device

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI returns the position of the alternate positioning device. The
device position is unbounded and thus may wrap when the limits of the
32bit representation are reached. Should the device position wrap past a
limit, it will be reset to zero. Thus, should the position exceed either
&7FFFFFFF or -&80000000 it will be reset. Clients should be aware of
this and handle such conditions appropriately.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.48
Supported

Related SWIs

Mouse

Related vectors

PointerV 4, EventV 21,4

Software vectors

EventV 21,4
(Vector &10)

Scroll event has been triggered by the user

On entry

R0=reason code (21)
R1=subreason code (4)
R2=signed 32bit change in X position
R3=signed 32bit change in Y position

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This event is generated by the OSPointer module when a scroll event is
triggered by the user. Clients which track mouse movements should

monitor this event. This allows clients to monitor either changes or the
absolute position should they wish to do so. If clients wish to cause the
scroll event to be ignored they should claim the event.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.48
Supported

Related SWIs

Mouse, Pointer 2

Related vectors

PointerV 4

PointerV 4
(Vector &38)

Request information about the current pointing device position

On entry

R0=reason code (4)
R1=pointer type

On exit

R0=
Request state:

Value Meaning
-1 Extended request claimed for this pointer type, for relative

positioning device
4 Extended request not understood
5 Extended request claimed for this pointer type, for absolute

positioning device

R1preserved

R2=
relative device: signed 32 bit change in X position

absolute device: fractional 16 bit X position

R3=
relative device: signed 32 bit change in Y position

absolute device: fractional 16 bit Y position

R4=
relative device: signed 32 bit change in X position of alternate device

absolute device: must be 0

R5=
relative device: signed 32 bit change in Y position of alternate device

absolute device: must be 0

R6=
Mouse buttons:

Bit(s) Meaning
0 Right button
1 Middle button
2 Left button

3-7 May be provided at the discretion of driver
8-31 Must be 0

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector reason is called by the OSPointer module to determine the
position of the pointing device in a similar manner to that of PointerV 1
(Request). Drivers should check the pointer type and if it matches the
device being provided details should be returned and the vector claimed.
If the pointer type does not match the vector should be passed on.

Unlike PointerV 1 (Request), drivers should not issue KeyV requests for
the mouse buttons that they provide. This task will be performed by the
OSPointer module based on the button state returned. Drivers wishing to
support both the old and new protocol may share code between PointerV 1
(Request) and PointerV 2 (Result) but they must ensure that registers are
not corrupted unduly and that the different mouse button processing is
performed based on the request type.

Relative devices and absolute devices respond to the same request but
provide slightly different responses. The value returned in R0 is used to
determine the type of response made.

Absolute devices return a 16 bit value (0-65535) which determines the
position of the event. The driver may determine how the event is to be
processed and indicate an equivalent button state for the event. This
allows devices to provide positioning within the absolute device as distinct
from button click events. For absolute devices the meaning of R4 and R5 is
undefined and the registers must be returned as 0 for future compatibility.
Internally, the absolute position request is scaled by the screen size and
converted into a relative position which is applied to the mouse position
with an equivalent of a mouse step of 1.

For scroll wheel-like alternate devices the +ve Y direction should be that
for pushing the wheel 'away' from the user.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related SWIs

Mouse, Pointer 2

Related vectors

EventV 21,4

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 17 May 2023Gerph Initial version

• Created from Select
technical
documentation.

Related:http://www.riscos.com/support/developers/riscos6/input/
pointerdevices.html

Disclaimer:
© Gerph, 2023.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/input/pointerdevices.html
http://www.riscos.com/support/developers/riscos6/input/pointerdevices.html

Icon bar file drags

Contents
• Introduction
• Technical details

◦ Icon bar save protocol
◦ Icon bar copy protocol

• System variables
◦ FSFiler$DefaultPath

• Wimp messages
◦ FilerDevicePath (&408)

Introduction
For RISC OS 4 the behaviour of the iconbar device icons was updated to
allow files dropped on them to be saed to a specified directory for the
device. Usually this would be the root of the device, but is configurable.
This avoids the user opening a save box but being unable to drop the file
anywhere.

Technical details
File drags from save boxes to icon bar Filer icons will cause the file to be
saved in a specified directory of the device, most sensibly the root. The
Filer will then open the directory viewer. In combination with the
autofronting icon bar in the new window manager, the user will now never
face the situation of having a save box open, but nowhere to drag the file
to.

For consistency, drags from Filer windows to icon bar icons will cause files
to be copied/moved to the directory. As with saves, the Filer will open the
directory viewer.

The directory which a file is saved/copied to will be specified by a system
variable and will default to the root directory. The system variable will be
of the form <FSName>Filer$DefaultPath. For example
ADFSFiler$DefaultPath or NetFiler$DefaultPath.

Icon bar save protocol

In order for files to be saved to icon bar device icons, the FS Filers will
now be required to receive the WIMP message Message_DataSave. They
will reply with Message_DataSaveAck specifying a pathname for the saved
file. They will also receive Message_DataLoad on completion of the save
and use this as the trigger for opening the Filer window of the directory
the file has been saved in.

Icon bar copy protocol

For file copies to work, a different system is necessary. Without
modification, when a file is dragged from a Filer viewer to a device icon,
the Filer will send a Message_DataLoad to the FS Filer responsible for the
device. All the FS filers will be changed to receive this message and then
to reply with a new message, Message_FilerDevicePath.

System variables

FSFiler$DefaultPath
Default path for files dropped on the filer icon

Use

The iconbar device filers should use these variables - substituting their
own filing system name in the name - to decide where to save files when
the user drops a file on their iconbar icon.

Related messages

Message_FilerDevicePath

Wimp messages

Message_FilerDevicePath
(&408)

Request to Filer to copy a file to a location

Message

Offset Contents
R1+20 zero-terminated path name to copy to

Source

Icon bar Filer tasks

Destination

Filer

Delivery

Message must be sent directly to task
Message may only be sent normally (reason code 17)

Use

This message is sent by icon bar filer tasks to the Filer in response to a
Message_DataLoad to request that it copy the file to a new location.

The path that should be copied to is formed as <DevicePath>.<path>.

Where <DevicePath> is the root directory of the device eg.
ADFS::HardDisc4.$, and <path> is the expansion of
FSFiler$DefaultPath. If the variable is unset, the root of the device
should be used. By default, these system variables will be unset but will be
left to more experienced users to set, as needed.

An example may help to clarify. If the user has set
ADFSFiler$DefaultPath to be Files.Junk and they drag a file from a
Filer viewer to the HardDisc4 icon, then the ADFS Filer should return a
Message_FilerDevicePath, with the path name
ADFS::HardDisc4.$.Files.Junk and the Filer will copy the file into that
directory (if it exists).

The FS Filer will also prompt the Filer to open the directory viewer for the
directory who's path it has just specified, using Message_FilerOpenDir.

If the path name consists of no characters and then the terminator, it is
assumed that the root directory is read only. FIXME: What does this
mean? Does it mean that the variable can be set to an empty string to not
perform the save ?

Related system variables

FSFiler$DefaultPath

Related messages

Message_FilerOpenDir

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
A-H 28 Jan 1988RML Initial version
2 24 Jan 2022Gerph Conversion to PRM-in-XML

• Created from original
RISC OS 4
documentation

Related:None
Disclaimer:

© Gerph, 2022.

mailto:gerph@gerph.org

Icon bordering filters

Contents
• Introduction
• Overview
• Technical details

◦ Registration
◦ Rendering icons
◦ Customisable features

▪ Border colouring
▪ Fill colouring
▪ Bordering
▪ Filling
▪ Sizing the text
▪ Highlighting

◦ Common parameters
▪ Icon flags word
▪ Icon border rendering box
▪ Icon border colour table
▪ Icon rendering flags

◦ Configuration
• SWI calls

◦ SWI Filter_RegisterIconBorderFilter
◦ SWI Filter_DeRegisterIconBorderFilter

• Entry points
◦ IconBorder_Draw
◦ IconBorder_Fill
◦ IconBorder_Size
◦ IconBorder_Colour
◦ IconBorder_State

Introduction
The WindowManager has, since RISC OS 3, been able to render icons with
styled borders. In RISC OS 3.0 this was through the 'Z' validation, and
with RISC OS 3.1 this settled on the 'R' validation to select the button
style. The forms of borders that the WindowManager renders were, at that
time, fixed to be 3D-effect rectangular regions. The WindowManager and
FilterManager have been updated to provide the ability to offload the
rendering of icon borders to third party extensions through Icon border
filters.

Icon border filters are able to change the presentation of the icons with
styled borders through extension modules. A 'plain' rendering, which
matches the original style used by RISC OS 3 onwards, is supplied in the
form of the IconBorderPlain. As the first registrant, this is used as a
fallback when no other custom form of buttons is available. This results in
an experience for users which is unchanged until another customised
module is loaded (or activated).

Customisation of the icon borders is intended to allow greater degrees of
customisation for the user, and easier development of 'themes' which
group many stylistic elements into a cohesive look and feel. RISC OS
Select is supplied with a customisable border filter which allows for
rounded buttons, and some variation on the standard rectangular button.

Icon border filtering is available in RISC OS Select versions of the
WindowManager from 4.64 onwards.

Overview
Icon border filters are provided by relocatable modules, registered
through Filter_RegisterIconBorderFilter. The WindowManager will call the
FilterManager to dispatch requests to draw icon borders to the registered
filters. The WindowManager does not contain any code to render the
styled borders - and if no filters are registered which can provide the
rendering of the requested icons, there will be no border drawn.

Icon border filters are dispatched in most recent registration order. This is
the same behaviour as other filters within FilterManager, and of the
software vectors. This means that filters may layer their behaviour upon
one another if necessary.

Icon border filters can:

• Change the outer border style
• Change the inner fill style
• Change the colouring of borders and filled regions
• Change the position of text within the border
• Look different when selected
• Look different when the mouse is over them

Technical details
Registration

Icon border filters may be registered by modules when they start, using

Filter_RegisterIconBorderFilter. When they are finalised they must de-
register themselves with Filter_DeRegisterIconBorderFilter.

Modules should be aware of the FilterManager's service calls. They should
register themselves if they receive Service_FilterManagerInstalled, and
note that they are not registered on receipt of
Service_FilterManagerDying

Rendering icons

When an icon with a styled border needs to be redrawn by the Window
Manager the following steps are followed:

1. Call IconBorder_State to determine whether a full redraw is
required due to the shape changing.
If it does require a full redraw, redraw all the content from the
window background up to the icon.

2. Call IconBorder_Colour to determine the colours to use for the icon,
supplying the initial colours given by the icon itself.

3. Apply any additional changes to the colour of the icon indicated by
its validation:

◦ Apply any tinting validation
◦ Apply selected icon highlighting
◦ Apply shading of the colours

4. If the icon is filled, call IconBorder_Fill to render the background of
the icon.

5. Call IconBorder_Draw to render the border of the icon.

6. Call IconBorder_Size to determine the size to set the graphics
window to, to render the text and/or sprite within the icon.

Customisable features

Icon borders can customise some of the rendering features of the icon, but
are constrained by the existing use of the icons within applications, and
the expectations of users. A given filter can change just as much of an
icon's rendering as it wants, although if this matches up poorly with other
filters, or the applications, it may give an unappealing look.

In general, there are a few features of icons that icon border filters may
wish to check before attempting to render icons.

• Filled flag: Some icons are commonly filled, for example buttons
(type 5 and 6) and writable boxes (type 7). Recognising unfilled

forms of these icons and rejecting them may prevent unexpected
effects.

• Sprite icons: Any of the styled borders which use sprites are likely
to have undesireable effects if the icon border deviates far from the
expected 3D effect.

• Long text: The 'L' validation to render long text inside the icon may
not wrap correctly if the borders of the icon change significantly.

• Oversize icons: For stylistic reasons, styled borders may have been
used to create tall regions, or vertical dividers with a very thing
icon. Checking the size of the icon is suitable and rejecting the icon
if it is unsuitable may ensure that the intended effect is retained for
the user.

• Inactive buttons: The button type borders (type 5 and 6) may have
been used in cases where the icon's button type is set to a type
which does not react to the user's clicks. It may be undesireable to
style such buttons as if they are pressable.

Border colouring

Border colours may be changed by the filter. This might be as simple as
changing the strength of the 3D effect, or forcing the colours to match a
different style. The colouring of the border can be modified at will by the
filter, but this may need to be done with care to avoid explicit choices by
application authors being overridden in ways that produce unusable
interfaces.

For example, forcing the border of all icons to be solid black with no 3D
effect would look fine within a regular application, but any application
which used a black background with white text would find that the border
became indistinguishable from the filled background of the icon. Filters
should either declare that they are not suitable for use with applications
which do not follow its expectations, or should attempt to cater for non-
standard forms. This might mean disabling themselves when colours are
not as expected, or providing variations which retain contrast.

Restricting effects to just where the button borders (type 5 and 6) may
avoid making too great a set of changes to the buttons.

Fill colouring

The background fill colour can equally be changed as freely, but has a
much greater impact on the user's experience as most button icons (type 5
and 6) will be filled. Informational fields which are shown as sunk borders
(type 2) are commonly filled, but that form of field is also commonly used
as a colour selector region.

Bordering

Although the border is expected by designers and users to be a
rectangular border, equally surrounding the text of the icon, the icon
border author will find that there is flexibility in how the border is drawn.

The most obvious change that can be made is to use non-rectangular
borders. The round borders supplied with RISC OS Select through the
IconBorderReound module show that with some degree of freedom for
regular button icons (type 5 and 6) the corners can be varied. Any changes
to the rendered border width must also be reflected when the size of the
text is calculated.

The border shape can be different for a selected and unselected border.
This can have useful effects for pressing buttons. For example, when
pressed, the button might bulge outwards (although it must still not
exceed the bounds given by the icon). If the rendered shape of the border
changes when pressed, the border filter must return with bit 0 set in the
filter flags when IconBorder_State is called.

The border is not required to use the colours supplied to it. Whilst using
other colours will mean that layered filters will be unable to change the
style of a button, it may allow certain styles which are otherwise
impossible. For example, an default button might have a more stylised
shape which uses more colours than the single 'well colour'. Used with
care, this may make for an interesting effect.

Generally it is best to keep to colours based on those supplied. For
example, the IconBorderRound implementation allows a graduated fill to
be used to make the button appear more rounded. This uses a colour
slightly lighter and slightly darker than the supplied colour, with the
horizontal mid-line being the colour supplied.

Filling

The fill operation is performed before the text is rendered, and should fill
the region within the bordered itself. Not all icons are filled, and those
that are not filled will never receive the call to their IconBorder_Fill entry
point.

As with the border, filling is not required to use the colours supplied to it.
The problems of selecting different colours for the fill are worse than that
of the border as the text must be visible on top of whatever colour is filled.

Generally it is best to keep to colours based on those supplied. For
example, the IconBorderRound implementation allows a graduated fill to
be used to make the button appear more rounded. This uses a colour
slightly lighter and slightly darker than the supplied colour, with the

horizontal mid-line being the colour supplied.

Sizing the text

Although the expectation is that the icon will have a symmetric border,
this is not required. Varying degrees of success have been found with
creating icon borders for buttons which have one size larger than the
other. When the border has different sizes, the size which the text can be
rendered into must be returned correctly when the IconBorder_Size entry
point is called.

The default behaviour when buttons (type 5 and 6) are selected is to
change the border rendering. However, for some effects, moving the text
to one side when selected may be a useful effect. This can be acheived by
changing the size of the region which the text can be rendered into. As
most bordered text is centred horizontally, this will generally have the
effect of moving the text by half the distance that the border was
increased.

Highlighting

Where supported by the WindowManager, the icon borders may be aware
of the pointer being placed over the bordered icon. This is indicated by bit
23 (the 'deleted' bit) being set in the icon flags. The highlighting of the
icons will only happen when the IconBorder_State call returns with bit 1
set, indicating that the icon supports being highlighted.

Highlighting the icon may be as simple as changing the colours. However,
it may mean a completely different border shape, or even a different text
position.

Common parameters

The entry points have some common parameters passed through the
registers on entry.

Icon flags word

The icon flags word supplied to the border rendering entry points is the
same as that used in the icon block, with a small exception. The 'icon is
deleted' bit (bit number 23) is repurposed to indicate that the pointer is
currently over the icon. This bit is only set when the entry point has
declared that the filter is able to change when the pointer is over the icon.

The inverted and shaded bits in the flags word will be set according to the
original icon's state, and may change the rendering of the border. The
colours supplied to the border rendering entry points will have been
updated by the WindowManager to reflect the icon's state when the

IconBorder_Draw and IconBorder_Fill entry points are called.

Icon border rendering box

The icon rendering box is supplied as a parameter to the border entry
points to describe the region the icon border should cover. It contains 8
words which describe the box, together with the size of the pixels on the
screen. The coordinates are in half-open format (x0 and x1 are inclusive
coordinates, and x1 and y1 are exclusive coordinates).

Offset Contents
+0 x0 coordinate in OS units
+4 y0 coordinate in OS units
+8 x1 coordinate in OS units

+12 y1 coordinate in OS units
+16 x pixel size in OS units
+20 y pixel size in OS units
+24 x pixel size in OS units - 1
+28 y pixel size in OS units - 1

Icon border colour table

The colour table is supplied as a parameter to the border entry points to
describe the colours to be used for the icon border regions. The colours
are supplied as 32bit palette entries in the form &BBGGRRxx.

Offset Contents
+0 Foreground colour
+4 Background colour
+8 Selected background colour (for border type 5 and 6)

+12 Well colour (for border type 6)
+16 'Face' colour (usually the light highlight colour)
+20 'Opposite' colour (usually the dark highlight colour)

Icon rendering flags

The icon rendering flags passed to the icon border filter allow the
WindowManager to control additional features of the rendering. This
allows the icon to be rendered consistent with configuration of the
WindowManager by honouring the configuration to dither colours, or

sprites.

Bit(s) Meaning
0 Dither background colours
1 Dither deep sprites
2 Reserved, must be zero

Configuration

Modules which provide icon border filters should include *Commands to
allow them to be activated and deactivated. They may also provide the
ability to configure their capabilities. It is strongly recommended that
modules initialise in their disabled state. This will allow users to load
multiple filter modules and select which are active.

SWI calls

Filter_RegisterIconBorderFilter
(SWI &4264C)

Register a filter to handle the rendering of icon borders

On entry

R0=Pointer to zero-terminated string describing the filter (must be static
for the lifetime of the filter)

R1=Pointer to entry point for the filter code
R2=R12 value to supply to the filter code
R3=

Mask of border types supported by this filter

Bit(s) Meaning
0 Simple bordered icons (not used in current versions)
1 R1 border supported (Raised region)
2 R2 border supported (Lowered region)
3 R3 border supported (Ridge group)
4 R4 border supported (Channel group)
5 R5 border supported (Action button)

6 R6 border supported (Default button)
7 R7 border supported (Writable box)

8-31 Reserved, must be zero

On exit

R0-9preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The Filter_RegisterIconBorderFilter SWI is used to register a new filter
with the FilterManager which is capable of providing rendering of the
borders on icons. The new filter code is registered for only certain border
types through the use of mask bits. The filter will only be called for those
button types which have been registered.

Although the filter may report an interest in a given set of borders, it is not
required to actually service any of the requests. For example, a filter might
only take effect for a particular size of border, and for all others it can pass
on the call to other filters.

Related SWIs

Filter_DeRegisterIconBorderFilter

Filter_DeRegisterIconBorderFilter
(SWI &4264D)

De-register a filter from handling the rendering of icon borders

On entry

R0=Pointer to zero-terminated string describing the filter (should be the
same pointer as used on registration)

R1=Pointer to entry point for the filter code
R2=R12 value to supply to the filter code

On exit

R0-9preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

The Filter_DeRegisterIconBorderFilter SWI is used to remove the
registration of border rendering code. The values supplied in R0-R2 must
match those that were supplied on registration.

Related SWIs

Filter_RegisterIconBorderFilter

Entry points

IconBorder_Draw
(&0)

Draw an icon border on behalf of the WindowManager

On entry

R0=Border type (0-7) of the bordered icon
R1=Icon flags word of the bordered icon
R2=Pointer to Icon border rendering box for the icon being drawn
R3=Pointer to Icon border colour table for the icon being rendered
R4=Icon rendering flags for the icon
R9=0 (reason code)

On exit

R9=-1 if handled, or preserved to pass to the next filter

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render the
border of an icon. The border type will have been filtered by the mask
supplied on registration. Filters may decide to handle the border returning
with R9 set to -1, or pass it on to other border filters by preserving R9.

The filter may update the icon border rendering box if it is passing on the
call. This can be used if the border wishes to handle part of the outer
rendering of the border before the next filter handles it.

The filter may use any of the parameters to decide whether it wishes to
handle rendering of the border. For example, a filter may only handle
certain sizes of boxes, or only icons which have a particular combination of
flags set. Care must be taken to ensure that this presents a consistent
experience to the user, as icons which change in style may be confusing.

The filter should draw a suitable border within the bounds of the icon
border rendering box, and reduce the bounding box size accordingly. To be
consistent with the user's configuration, the flags in R4 should be used to
decide whether dithering should be used to draw the border.

Related SWIs

Filter_RegisterIconBorderFilter

Related entry points

IconBorder_Fill, IconBorder_Colour, IconBorder_Size, IconBorder_State

IconBorder_Fill
(&1)

Fill an icon border on behalf of the WindowManager

On entry

R0=Border type (0-7) of the bordered icon
R1=Icon flags word of the bordered icon
R2=Pointer to Icon border rendering box for the icon being drawn
R3=Pointer to Icon border colour table for the icon being rendered
R4=Icon rendering flags for the icon
R9=1 (reason code)

On exit

R9=-1 if handled, or preserved to pass to the next filter

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render the
fill of a bordered icon. The border type will have been filtered by the mask
supplied on registration. Filters may decide to handle the border returning

with R9 set to -1, or pass it on to other border filters by preserving R9.

The filter may use any of the parameters to decide whether it wishes to
handle rendering of the border. Usually this is the same criteria used to
decide whether icon should be handled in the IconBorder_Draw entry
point. For example, a filter may only handle certain sizes of boxes, or only
icons which have a particular combination of flags set. Care must be taken
to ensure that this presents a consistent experience to the user, as icons
which change in style may be confusing.

The filter should fill the region not covered by the border within the
bounds of the icon border rendering box. The bounding box supplied will
be that of the icon itself. The filter will only be called icon flag bit is set in
the icon flags word which indicates that the icon is filled. To be consistent
with the user's configuration, the flags in R4 should be used to decide
whether dithering should be used to fill the icon.

Related SWIs

Filter_RegisterIconBorderFilter

Related entry points

IconBorder_Draw, IconBorder_Colour, IconBorder_Size, IconBorder_State

IconBorder_Size
(&2)

Return the size available for text after rendering the icon border

On entry

R0=Border type (0-7) of the bordered icon
R1=Icon flags word of the bordered icon
R2=Pointer to Icon border rendering box for the icon being drawn
R9=2 (reason code)

On exit

R9=-1 if handled, or preserved to pass to the next filter

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is not re-entrant

Use

This entry point is called when the WindowManager wishes to render the
text of a bordered icon. The text within an icon will be bounded by the
edges of the border. In order that this text be clipped to those edges, this
entry point must reduce the size of the icon border reendering box in R2
by the space covered by the border. The border type will have been
filtered by the mask supplied on registration. Filters may decide to handle
the border returning with R9 set to -1, or pass it on to other border filters
by preserving R9.

The filter may use any of the parameters to decide whether it wishes to
handle this border. Usually this is the same criteria used to decide
whether icon should be handled in the IconBorder_Draw entry point. For
example, a filter may only handle certain sizes of boxes, or only icons
which have a particular combination of flags set. Care must be taken to
ensure that this presents a consistent experience to the user, as icons
which change in style may be confusing.

The filter should increase the x0 and y0 values, and decrease the x1 and
y1 values in the bounding box to reflect the region that the text of the icon
may use.

Related SWIs

Filter_RegisterIconBorderFilter

Related entry points

IconBorder_Draw, IconBorder_Fill, IconBorder_Colour, IconBorder_State

IconBorder_Colour
(&4)

Update the colours for an icon border on behalf of the WindowManager

On entry

R0=Border type (0-7) of the bordered icon
R1=Icon flags word of the bordered icon
R2=Pointer to Icon border rendering box for the icon being drawn
R3=Pointer to Icon border colour table for the icon being rendered
R9=4 (reason code)

On exit

R9=-1 if handled, or preserved to pass to the next filter

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is not re-entrant

Use

This entry point is called when the WindowManager is about to render a
bordered icon, to give the border rendering filters an opportunity to
override the icon's own colours. The border type will have been filtered by
the mask supplied on registration. Filters may decide to handle the border
colours returning with R9 set to -1, or pass it on to other border filters by
preserving R9.

The filter may use any of the parameters to decide whether it wishes to
handle rendering of the border. Usually this is the same criteria used to
decide whether icon should be handled in the IconBorder_Draw entry
point. For example, a filter may only handle certain sizes of boxes, or only
icons which have a particular combination of flags set. Care must be taken
to ensure that this presents a consistent experience to the user, as icons
which change in style may be confusing.

The filter should update the values in the icon border colour table in R3 if
it wishes to override the colours that the icon has selected. The colours in
the table have not yet been updated to invert, shade, tint or apply other
colour effects to the icon. As such, the colours chosen here are the base
colours. After this entry point has returned, the colours will be updated by

the WindowManager to reflect the effects that the icon requests.

Related SWIs

Filter_RegisterIconBorderFilter

Related entry points

IconBorder_Draw, IconBorder_Fill, IconBorder_Size, IconBorder_State

IconBorder_State
(&5)

Get information about the type of icon border filter

On entry

R0=Border type (0-7) of the bordered icon
R1=Icon flags word of the bordered icon
R2=Pointer to Icon border rendering box for the icon being drawn
R3=

Filter flags word

Bit(s) Meaning
0 The border changes in shape, so must be redrawn

completely on all state transitions
1 The border has a different style when the pointer is over it

(the border is 'highlightable')
2 Reserved, must be zero

R9=5 (reason code)

On exit

R3=Filter flags word updated with this filter's behaviour for the icon
R9=-1 if handled, or preserved to pass to the next filter

Interrupts

Interrupts are enabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is not re-entrant

Use

This entry point is called when the WindowManager needs to know about
the filter's behaviour with the icon. The border type will have been filtered
by the mask supplied on registration. Filters may decide to handle the
border colours returning with R9 set to -1, or pass it on to other border
filters by preserving R9.

The filter may use any of the parameters to decide whether it wishes to
handle rendering of the border. Usually this is the same criteria used to
decide whether icon should be handled in the IconBorder_Draw entry
point. For example, a filter may only handle certain sizes of boxes, or only
icons which have a particular combination of flags set. Care must be taken
to ensure that this presents a consistent experience to the user, as icons
which change in style may be confusing.

The entry point is used to decide whether to redraw it fully from the
background when a state change happens, or if the icon needs to be drawn
at all as the pointer moves over it. The filter should update the flags by
OR-ing any new flags into the supplied filter flags word and returning the
new value in R3.

Shape changes

If the rendered border changes shape when there are state transitions,
then bit 0 should be set on return. This might happen if the icon had
rounded edges normally and square edges when selected, or if the outer
edges were not drawn in any colour unless the pointer was over the icon.

Highlightable borders

If the rendered border provides a form of highlighting when the pointer is
over the icon, then bit 1 should be set on return. The highlighting will only
be performed on border types 5 and 6.

Related SWIs

Filter_RegisterIconBorderFilter

Related entry points

IconBorder_Draw, IconBorder_Fill, IconBorder_Colour, IconBorder_Size

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 04 Aug 2021Gerph Initial version

• Created the
documentation from
implementation details,
as original
documentation has been
lost.

Related:https://github.com/gerph/iconborders-example
Disclaimer:

© Gerph, 2002-2021.

mailto:gerph@gerph.org
https://github.com/gerph/iconborders-example

Iconbar priorities

Contents
• Introduction
• Technical details

◦ Object sources and sinks
◦ Data source / sink controllers
◦ User applications
◦ System control applications

Introduction
Iconbar priorities have been vague at best, with some usages being
declared to be the 'easiest way to do things'. In addition to this, some
entities such as ADFSFiler have used incorrect iconbar priorities by
accident. This particular case means that Floppy discs do not appear
where they are documented to appear in the PRMs. Floppies are
documented to appear at &60000000. They actually appear at
&70000000. ShareFS used a priority of &68000000. This results in a
mismatched iconbar, where the three cases of documentation, logical
appearance and prior use cannot be resolved simultaneously.

Thus, it has been decided to clarify the usage of parts of the iconbar. This
should make for a more logical system, and the possibility of multi-tier
iconbars and other such changes.

Technical details
These categorisations provided here amend and expand on documentation
provided in the PRMs. The intent is to clarify the system for a logically
organised iconbar, with clearly defined positioning for components, and
whilst retaining the current state wherever possible.

The iconbar should be viewed as:

Iconbar layout

Object sources and sinks

These are icons for devices to which objects can be sent or retrieved from.
They are ordered logically from read only devices on the left through read/
write devices to write only devices towards the right. Alongside write only
devices are the volatile devices; those devices whose contents are not
likely to remain permanent from session to session (or even within a
session).

The full ordering is:

Priority Name Meaning
&76000000 Scanners Read-only device
&74000000 CD-ROM Read-only device
&70000000 Hard disc Read-write device

Examples: Any fixed RW medium falls into this
category

&68000000 Floppies Read-write device
Examples: Any removable RW medium falls
into this category

&60000000 Network Read-write/Read-only device
Examples: Any network filing system falls into
this category

&40000000 Volatiles Read-write device
Examples: RAMFS, Transient, Trash cans,
Memphis, Scrap, etc

&0F000000 Printers Write-only device
&04000000 Accelerators Examples: ResourceFS, "Pinned" items,

Director, Menon, etc.

All devices in this category should have a name underneath, ideally
identifying the medium name with which they are associated. If no

medium is associated (eg. a removable, or unconfigured device), they
should display the medium name (eg. Zip disc, Printer, LanMan, etc), or a
generalised medium identifier (eg. the drive or port number).

These applications should not provide a "Quit" option.

Data source / sink controllers

This is basically a place for internet servers, connection systems and other
network utilities to live, as well as local servers. Like the Object sources,
these should have their name under them. Samba, TelnetD, Newsbase,
InetSuite, WebServe and Netplex would fall into this category. These will
grow to the right when the user loads a new controller.

These applications should provide "Quit" options. Most should provide a
status window, and many will provide configuration windows.

User applications

This is where user applications appear when loaded. They will grow to the
left as they are loaded, taking up the free gap space.

These applications should provide a "Quit" option.

They should not have text placed under them unless they are configured
into a particular state that must be described. Such applications are
discouraged unless there is a genuine need.

System control applications

This is where system control applications live. These are things that will
control the machine, the desktop or the way in which the system works.
Initially, this comprises the Task Manager and Display Manager. Because
of its high priority, Help lives here too. This may be rationalised in future.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 08 Feb 2000Gerph Initial version

• Released as part of
Technote 20000502-001.

2 12 Jan 2022 Gerph PRM-in-XML conversion
• Created from original

Select documentation.

mailto:gerph@gerph.org

Related:http://www.riscos.com/support/developers/riscos6/desktop/
wimp/iconbarpriorities.html

Disclaimer:
© Gerph, 2021.

http://www.riscos.com/support/developers/riscos6/desktop/wimp/iconbarpriorities.html
http://www.riscos.com/support/developers/riscos6/desktop/wimp/iconbarpriorities.html

Hardware timer device driver
(TimerManager)

Contents
• Introduction
• Overview
• Technical details

◦ Measurement format
• SWI calls

◦ SWI TimerManager_ReturnNumber
◦ SWI TimerManager_Claim
◦ SWI TimerManager_Release
◦ SWI TimerManager_SetRate
◦ SWI TimerManager_Convert

Introduction
The Timer module provides an abstraction of the hardware timers. It is
used by the Kernel in order to provide the monotonic timer used for the
system clock, interval timer, monotonic timer, and system timed events.
The module also provides an interface to allow other hardware timers to
be controlled by other components. Timers may run off independant clock
sources and so may have different granularity and ranges of rates at which
they may generate interrupts.

Each hardware implementation has an independant Timer module
implementation specific to the timers which are available to the operating
system.

Overview
The number of timers provided by the hardware can be read using
Timer_ReturnNumber. Timers may be claimed and released by
components using Timer_Claim and Timer_Release. The rate at which a
timer is running can be modified after it has been claimed by using
Timer_SetRate. The relationship between timer rates and external
measurements can be obtained by using Timer_Convert.

Technical details
A number of timers may be provided by a TimerManager hardware device
driver. These timers can be claimed by a single client at any time. The
timer's rate may be defined in a number of different forms, to allow clients
to specify the rate in the most natural manner. Not all timers may support
the exact rate requested, so clients should expect to handle different forms
of timers.

Timers are numbered from 0, and timer 0 is reserved for use by the Kernel
as the monotonic timer.

Measurement format

Many of the SWIs take a number of flags to indicate the measurement
format of the timer. The measurement format flags take the form of 8 bits:

Bit(s) Meaning
0-2

Unit scaler:

Value Meaning
0 Invalid
2 Scaled by 1/1000000
3 Scaled by 1/1000
4 Scaled by 1
5 Scaled by 1000
6 Scaled by 1000000
7 Scaled by 1000000000

3 Reserved, must be zero
4-5

Measurement type:

Value Meaning
0 Native ticks
1 Frequency (interrupts per second)
2 Period (in seconds)
3 Invalid

6-7 Reserved, must be zero

For example, to request a frequency of 100 Hz one could use a
measurement type of 1, a scaler of 4 (scale by 1) and a value of 100.
Alternatively, this could be represented as a period of 1/100th second by
using a measurement type of 2, a scaler of 3 (scale by 1/1000) and a value
of 10.

For SWIs which take an input rate the measurement format flags are held
in the bits 0-7 of the SWI flags.

For SWIs which return a rate the measurement format flags are held in
bits 8-15 of the SWI flags.

SWI calls

TimerManager_ReturnNumber
(SWI &58B80)

Return number of supported timers

On entry

R0=Flags (must be 0)

On exit

R0=Number of timers available

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to find the number of timers available to the operating
system. Timers are numbered from 0, so the maximum timer number that
may be used is the value returned - 1.

Related APIs

None

TimerManager_Claim
(SWI &58B81)

Claim a hardware timer

On entry

R0=
Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate
16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7
R3=Pointer to function to call on interrupt
R4=Value to pass in R12 to interrupt function

On exit

R2=Actual timer rate, using the measurement format from bits 8-15, or 0
if the rate cannot be represented

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to claim a timer for dedicated use by a client. Only a
single client may claim a timer; subsequent claims will return an error.
The timer specified will be set to the rate given and interrupts will call the
routine specified. The interrupt routine may corrupt R0-R3 but should
preserve all other registers.

An error will be returned if the input measurement format in R0 bits 0-7 is
not valid or cannot be provided by the timer.

If the meaurement format used for return in R0 bits 8-15 is invalid the
value returned in R2 will be 0, but no error will be raised. The return value
is provided as a convenience.

Related vectors

TimerManager_Release, TimerManager_SetRate, TimerManager_Convert

TimerManager_Release
(SWI &58B82)

Release a hardware timer

On entry

R0=Flags (must be zero)
R1=Timer number

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to release a previously claimed timer. The IRQ will no
longer cause the specified routine to be called.

Related vectors

TimerManager_Claim

TimerManager_SetRate
(SWI &58B83)

Change the rate used by a hardware timer

On entry

R0=
Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate
16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7

On exit

R2=Actual timer rate, using the measurement format from bits 8-15, or 0
if the rate cannot be represented

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to change the rate used by a timer. Only timers which
have been claimed can have their rate changed; unclaimed timers will
return an error. The timer specified will be set to the rate given.

An error will be returned if the input measurement format in R0 bits 0-7 is
not valid or cannot be provided by the timer.

If the meaurement format used for return in R0 bits 8-15 is invalid the
value returned in R2 will be 0, but no error will be raised. The return value
is provided as a convenience.

Related vectors

TimerManager_Claim, TimerManager_Convert

TimerManager_Convert
(SWI &58B84)

Convert between rate formats used by a hardware timer

On entry

R0=
Flags:

Bit(s) Meaning
0-7 Measurement format for the timer rate

8-15 Measurement format for the returned timer rate

16-31 Reserved, must be zero

R1=Timer number
R2=Timer rate, using the measurement format from bits 0-7

On exit

R2=Timer rate in form specified by R0 bits 8-15

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to convert between timer rate formats. The values
converted will be checked to ensure that the timer is capable of those
rates.

An error will be returned if the input measurement format in R0 bits 0-7 is
not valid or cannot be provided by the timer.

An error will be returned if the meaurement format used for return in R0
bits 8-15 is invalid.

Related vectors

TimerManager_Claim, TimerManager_SetRate

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 17 Nov 2022Gerph Initial version

• Created from Select

mailto:gerph@gerph.org

technical
documentation.

Related:http://www.riscos.com/support/developers/riscos6/hardware/
timer.html

Disclaimer:
© Gerph, 2022.

http://www.riscos.com/support/developers/riscos6/hardware/timer.html
http://www.riscos.com/support/developers/riscos6/hardware/timer.html

NVRAM vector

Contents
• Introduction
• Technical details

◦ Terminology
• Software vectors

◦ Vector NVRAMV
◦ Vector NVRAMV 0 - FillCache
◦ Vector NVRAMV 1 - ReadByte
◦ Vector NVRAMV 2 - WriteByte

Introduction
The RISC OS system uses memory which is preserved whilst the power is
off to store configuration information. This allows the system to start with
the correct settings such as hardware configuration and user preferences.
Examples of hardware configuration are settings such as the filing system
to boot from and which drive should be used. User preferences include the
type and volume of system beep.

Technical details
Under earlier versions of the operating system the non-volatile RAM
('NVRAM', also referred to as CMOS RAM, or battery backed RAM) was
handled entirely by the Kernel. From Kernel 9.48, the handling of NVRAM
is delegated to hardware support modules. The Kernel communicates with
these modules through the vector NVRAMV.

Driver modules which provide the NVRAMV vector should be initialised
with the early initialisation flag (module flags bit 1) set. This allows the
modules to be started before the configuration for unplugged modules is
required.

Terminology

The configuration data handled by NVRAMV has generally been termed
'CMOS' or 'CMOS data'. Historically, the configuration information was
used CMOS technology to store the contents of the memory, but this is not
required. The name 'non-volative RAM' is a more general term which does

not imply the use of a particular technology, so is used to describe the
mecanishm for storing the configuration data.

Software vectors

NVRAMV
(Vector &3E)

Operations on non-volatile memory used for configuration

On entry

R0=reason code:

Value Meaning
0 Populate the cache with NVRAM data
1 Read a single value from NVRAM
2 Write a single value to NVRAM

On exit

R0=-1 if handled, preserved if not handled
R1-9=dependant on reason code

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by the Kernel to control the configuration data stored

in the NVRAM.

Related SWIs

OS_Byte 161, OS_Byte 162

NVRAMV 0
(Vector &3E)

Populate the cache with NVRAM data

On entry

R0=0 (reason code)
R1=pointer to cache block to fill
R2=number of bytes to fill

On exit

R0=-1 (operation complete)
R1preserved
R2=number of bytes populated

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by the Kernel to fill in its cache of NVRAM values. A
cache is provided in order to reduce the impact of repeated reading of
configuration data by clients. Clients should write 0 to the cache for
unsupported values. The number of bytes to fill may take any value. The
total amount of NVRAM should be returned, not the amount of NVRAM
filled. Only the first 240 bytes of NVRAM will be used by the Kernel

initially.

Related APIs

None

NVRAMV 1
(Vector &3E)

Read a single value from NVRAM

On entry

R0=1 (reason code)
R1=byte to read

On exit

R0=-1 (operation complete)
R1=value read, or 0 if byte is out of range

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by the Kernel to read a single value. It will usually
only be used before the NVRAM cache has been populated during system
initialisation.

Related SWIs

OS_Byte 161

NVRAMV 2
(Vector &3E)

Write a single value to NVRAM

On entry

R0=2 (reason code)
R1=byte to read

On exit

R0=-1 (operation complete)
R1=value read, or 0 if byte is out of range

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by the Kernel to write a single value to the NVRAM.

Related SWIs

OS_Byte 162

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 31 May 2023Gerph Initial version

• Created from Select
technical

mailto:gerph@gerph.org

documentation.
Related:http://www.riscos.com/support/developers/riscos6/hardware/

nvramv.html
Disclaimer:

© Gerph, 2023.

http://www.riscos.com/support/developers/riscos6/hardware/nvramv.html
http://www.riscos.com/support/developers/riscos6/hardware/nvramv.html

Real Time Clock

Contents
• Introduction
• Service calls

◦ RTCSynchronised
• SWI calls

◦ SWI OS_Word 15, 5
◦ SWI OS_ResyncTime

Introduction
The Real Time Clock has previously been handled by the Kernel. With
Kernel 8.64 and later the clock is managed by the RTC module. This
communicates with the hardware driver through a vector (RTCV) whose
default claimant is the RTCHW module. The RTCHW module provides
implementations for the RiscPC, A7000-series, RiscStation, and A9.

The RTC module provides the Kernel SWI OS_ResyncTime and all the
OS_Word 14 and 15 operations to control the clock. A new reason code has
been added to OS_Word 15 for setting the clock's 5 byte time directly.

A separate section describes the RTCV vector.

Service calls

Service_RTCSynchronised
(Service &DD)

Real time clock has been synchronised

On entry

R1=&DD (reason code)

On exit

R1preserved

Use

This service is issued by the RTC module to inform clients that the
software and hardware clocks have been synchronised. It may indicate
that an indeterminate period of inactivity has taken place, such as after
returning from a suspend state. Where possible, timed events should be
synchronised and where necessary appropriate action taken to ensure that
queued events take place.

This service should never be claimed.

Related SWIs

OS_ResyncTime

SWI calls

OS_Word 15, 5
(SWI &7)

Set real time clock to UTC time as a 5-byte value

On entry

R0=15 (reason code)
R1=

Pointer to time values:

Offset Contents
+0 5 (sub-reason code)
+1 5 bytes of time value as centiseconds since 1900 in UTC

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call is used to set the Real Time Clock to a time value as a UTC time.
It avoids the requirement to convert a UTC time to a locale-specific time
string first.

This call was new to RISC OS 4.

Related APIs

None

OS_ResyncTime
(SWI &6C)

Synchronisation operations for RTC

On entry

R0=
Reason code:

Value Meaning
0 Synchronise with hardware clock

other Reserved

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to cause the software clock to be resynchronised with the
hardware clock, where available. When changed, a service call
Service_RTCSynchronised will be issued.

This call was new to RISC OS 4.

Related services

Service_RTCSynchronised

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation.
Related:http://www.riscos.com/support/developers/riscos6/time/

rtc.html
http://www.riscos.com/support/developers/riscos6/time/
osword15.html

Disclaimer:
© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/rtc.html
http://www.riscos.com/support/developers/riscos6/time/rtc.html
http://www.riscos.com/support/developers/riscos6/time/osword15.html
http://www.riscos.com/support/developers/riscos6/time/osword15.html

Real Time Clock Vector

Contents
• Introduction
• Software vectors

◦ Vector RTCV
◦ Vector RTCV 0 - ReadTime
◦ Vector RTCV 1 - WriteTime

Introduction
The Real Time Clock Vector is a means for alternate clock implementations
to be provided for differing hardware. The calls which are provided by the
Operating System (either within the Kernel or through an extension
module) for setting the system time - OS_Word 14 calls - are decoded and
passed to this vector for processing.

The time values passed to the RTCV handlers will be specified as UTC
time. That is, they will have had any time zone or daylight saving time
adjustments removed from them. Handlers should use the values directly
with the suitable hardware.

Certain clock implementations, for example the RiscPC clock chip, do not
provide sufficient information to allow the values to be read directly from
the chip and returned. In such cases additional steps may be taken by the
hardware driver.

The RiscPC clock chip driver code is limited by only storing a year value in
the range 0-3. As such, two NVRAM bytes have been allocated to augment
this (byte &80 and &81). Should similar adjustments be required for other
hardware it is recommended that these bytes be used. During the vector
call it is safe to issue NVRAM OS_Byte calls.

Software vectors

RTCV
(Vector &3F)

Abstracted interface to the real time clock

On entry

R0=reason code:

Value Meaning
0 Read time from hardware Real Time Clock
1 Update hardware Real Time Clock with a new value

R0-8=Dependant on the reason code

On exit

R0=-1 if reason claimed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

The Real Time Clock vector is called to manipulate the real time clock.

Related APIs

None

RTCV 0
(Vector &3F)

Read time from hardware Real Time Clock

On entry

R0=0 (reason code)

On exit

R0=-1 if reason claimed
R1=centiseconds (0-99)
R2=seconds (0-59)
R3=minutes (0-59)
R4=hours (0-23)
R5=day of month (1-31)
R6=month (1-12)
R7=year (0-99)
R8=century (19-21)

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This reason code is called when it is necessary to synchronise the internal
clock with the hardware-supplied time source. For devices which take a
significant time to be read the driver may initiate a request of the time
from the hardware and pass on the call. When the hardware has been read
such a driver should call SWI OS_ResyncTime request to update the
Operating System with the new values and notify other clients of an
updated internal clock.

Where inaccurate values are available from hardware the driver should

return the middle value for the relevant range.

Related vectors

RTCV 1

RTCV 1
(Vector &3F)

Update hardware Real Time Clock with a new value

On entry

R0=1 (reason code)
R1=centiseconds (0-99)
R2=seconds (0-59)
R3=minutes (0-59)
R4=hours (0-23)
R5=day of month (1-31)
R6=month (1-12)
R7=year (0-99)
R8=century (19-21)

On exit

R0=-1 if reason claimed
R1-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This reason code is called when a request is made to set the hardware
clock to a specific value. The Operating System's internal representation
will not yet have been updated to reflect these values. Any of the values
passed in R1-R8 value may be -1 to indicate that it is not to be modified.

Related vectors

RTCV 0

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation
Related:http://www.riscos.com/support/developers/riscos6/time/

rtcv.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/rtcv.html
http://www.riscos.com/support/developers/riscos6/time/rtcv.html

System clock

Contents
• Introduction

Introduction
The system clock, as accessed by OS_Word 1 and 2, is no longer a pair of
incrementing timers. Because of this the 'timer switch' state (OS_Byte
243) is no longer used and will return a constant value.

The system clock is not related to the interval timer (OS_Word 3,4) or to
the monotonic time (OS_ReadMonotonicTime) except that all are triggered
at 100Hz.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation
Related:http://www.riscos.com/support/developers/riscos6/time/

systemclock.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/time/systemclock.html
http://www.riscos.com/support/developers/riscos6/time/systemclock.html

ShareFS

Contents
• Introduction
• System variables

◦ ShareFS$Filer
• Service calls

◦ Sharing
• SWI calls

◦ SWI ShareFS_CreateShare
◦ SWI ShareFS_StopShare
◦ SWI ShareFS_EnumerateShares
◦ SWI ShareFS_IdentifyShare

• Wimp messages
◦ FileShareDir (&408)

Introduction
ShareFS provides a simple mechanism for accessing files on locally
networked RISC OS systems. The system uses Freeway to distribute
details of the shared discs. This allows any Freeway reachable system
(usually those on the local network, but may include any NetI accessible
networks), to access the shared files. Although the objects are known as
'shared discs' they may refer to parts of a filing system. Under Select 1,
and later, the Filer menu offers the option to share sub-directories.

In the past the SWI calls for ShareFS have been undocumented. They are
presented here to fill in this gap, but may be extended and modified
without notice. The flags on the SWIs are inconsistent for legacy reasons.

From ShareFS 3.97 onward, the ShareFS Filer can be disabled by setting
the ShareFS$Filer variable to 'no'. The filer can be re-enabled by setting it
to any other value.

System variables

ShareFS$Filer
Whether the ShareFS Filer is enabled

Use

Controls whether the ShareFS Filer icon is displayed. It can be disabled by
setting the ShareFS$Filer variable to 'no'. The filer can be re-enabled by
setting it to any other value.

Related APIs

None

Service calls

Service_Sharing
(Service &801C8)

Change to shared directories

On entry

R0=pointer to zero-terminated filing system name ('ShareFS' in our case)
R1=&801C8 (reason code)
R2=Share state: 0 if object is unshared, 1 if object is shared
R3=pointer to zero-terminated directory name being shared
R4=pointer to zero-terminated name of the shared object
R5=private data (filesystem specific)

On exit

R0-5preserved

Use

This service is issued when a path is shared or unshared by a filing
system. It should not be claimed.

Related SWIs

ShareFS_CreateShare, ShareFS_StopShare

SWI calls

ShareFS_CreateShare
(SWI &47AC0)

Share a directory through ShareFS

On entry

R0=
Flags:

Bit(s) Meaning
0 Share is protected
1 Share is read only
2 Share is hidden
3 Share is a 'sub directory'
4 Share is a CD ROM
5 Share is authenticated (use R3 as key)

6-31 Reserved, must be zero

R1=Pointer to zero-terminated share name
R2=Pointer to zero-terminated directory name
R3=Authentication key number (if bit 5 of the flags is set)

On exit

R0-3preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to share a directory.

Related SWIs

ShareFS_StopShare

Related messages

Message_FileShareDir

ShareFS_StopShare
(SWI &47AC1)

Stop sharing a directory through ShareFS

On entry

R0=
Flags (reserved, must be 0)

R1=Pointer to zero-terminated share name, or directory name

On exit

R0-1preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to stop sharing a directory.

Related SWIs

ShareFS_CreateShare

Related messages

Message_FileShareDir

ShareFS_EnumerateShares
(SWI &47AC2)

List the currently shared directories

On entry

R0=
Flags:

Bit(s) Meaning
0 Share is protected
1 Share is read only
2 Share is hidden
3 Share is a 'sub directory'
4 Share is a CD ROM

5-30 Reserved, must be zero
31 Share is authenticated (use R5 as key)

R4=Opaque value for enumeration, starting from 0
R5=Authentication key number (if bit 5 of the flags is set)

On exit

R1=Pointer to zero-terminated disc name
R2=Pointer to zero-terminated directory name
R3=Flags used for the share
R4=New opaque value, or -1 if no more details

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to enumerate the shared discs.

Related SWIs

ShareFS_CreateShare, ShareFS_IdentifyShare

ShareFS_IdentifyShare
(SWI &47AC3)

Identify a shared disc

On entry

R0=
Flags:

Bit(s) Meaning
0 Set: R1 contains share name

Clear: R1 contains directory name
1-31 Reserved, must be zero

R1=Pointer to zero-terminated share name or directory name
R2=Pointer to buffer for data
R3=Length of buffer

On exit

R0=Flags for share (see ShareFS_CreateShare)
R3=Length of data written to buffer, or -ve length if the name would not

fit

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to identify a share given its name or directory name.

Related SWIs

ShareFS_CreateShare, ShareFS_EnumerateShares

Wimp messages

Message_FileShareDir
(&408)

Request a dialogue for sharing directories

Message

Offset Contents
R1+20

Flags:

Bit(s) Meaning

0 Share is protected (public access attributes are obeyed)
1 Share is read only
2 Share is hidden (doesn't appear in display)
3 Share is authenticated (blank password initially)
4 Share is a CD ROM (Read only, with a different icon)

5-29 Reserved, must be zero
30 Open window at position given
31 Reserved, must be zero

R1+24 x co-ordinate to open at (if bit 30 set)
R1+28 y co-ordinate to open at (if bit 30 set)
R1+32 zero-terminated directory name to share

Source

Tasks

Destination

ShareFS Filer task

Delivery

Message must be broadcast (destination 0)
Message must be sent recorded delivery (reason code 18)

Use

This message will cause ShareFS to open a dialogue box showing the
share details requests, or the live share details if the directory is already
shared.

It should be sent by an application which wishes to present the user with a
set of options for sharing a directory. A window will be opened either
around the pointer, or at the position requested.

Related SWIs

ShareFS_CreateShare

Related messages

Message_FileShareDir

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 28 Dec 2021Gerph PRM-in-XML conversion
• Created from original

documentation for RISC
OS Select.

Related:http://www.riscos.com/support/developers/riscos6/
networking/sharefs.html

Disclaimer:
© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/sharefs.html
http://www.riscos.com/support/developers/riscos6/networking/sharefs.html

Internet address collisions

Contents
• Introduction
• Service calls

◦ InternetStatus

Introduction
The Internet module now issues a service when it detects another system
on the network with the same address. Components may recover from this
by reconfiguring the interface.

Service calls

Service_InternetStatus
(Service &B0)

Duplicate Internet address detected

On entry

R0=8 (subreason code)
R1=&B0 (reason code)
R2=pointer to zero-terminated interface name, eg 'ea0'
R3=pointer to Driver Information Block for interface
R4=IPv4 address which has been duplicated (network byte order)
R5=pointer to hardware address of system with a duplicate IP address

On exit

R0-5preserved
R0=0 to claim service when duplicate address has been resolved, or

preserved to shut down the Internet module

Use

This service call is issued by the Internet module (version 5.08 or later)
when it detects a machine using a duplicate IP address. This is normally
detected when an incoming ARP packet is received with our IP address
but a different hardware address.

As a probe, whenever an interface is reconfigured, the Internet module
sends out an ARP request for our IP address to make any such machines
reply. That will then trigger this service call.

Normally, the Internet module will shut down outright as a safety measure
if this happens. However, if this service call is claimed it will continue
operation. It is expected that anyone claiming this service call should take
appropriate action; for example the DHCP module might remove our IP
address, send a DHCPDECLINE message and go back into the DHCP INIT
state.

Related APIs

None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 28 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation.
Related:http://home.gerph.org/~charles/Reference/RISCOS/

LastRODocs/HTML/Networking/AddressCollision.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://home.gerph.org/~charles/Reference/RISCOS/LastRODocs/HTML/Networking/AddressCollision.html
http://home.gerph.org/~charles/Reference/RISCOS/LastRODocs/HTML/Networking/AddressCollision.html

DCI Driver Link Status

Contents
• Introduction
• Service calls

◦ DCIDriverStatus 2 - LinkActive

Introduction
Under the DCI, network device drivers must announce their presence
through Service_DCIDriverStatus. It is assumed that devices announcing
themselves in this way are available for use. The device may become
unavailable, most likely due to link loss (such as a cable being
disconnected) or memory shortage. No indication is available to the user
as to the state of the device from the driver.

In order to allow notifications of such states to be provided to the user
(and to other clients who may need to be aware of network infrastructure
changes), it is proposed that the service call be extended. Authors should
consult the DCI driver specification or the Internet chapter within PRM 5a
for more details of the current interface. In summary,
Service_DCIDriverStatus is issued by drivers to announce startup (reason
0) and shutdown (reason 1) of a driver and its associated DIB (Device
Information Block).

This has been extended to include announcement of link status changes
(Service_DCIDriverStatus 2). Two new reason codes are to be used for this
purpose.

Service calls

Service_DCIDriverStatus 2
(Service &9D)

Notification that the link provided by a DCI driver has become active

On entry

R0=Pointer to Device Information Block
R1=&9D (reason code)
R2=2 (sub-reason code)
R3=DCI version supported

On exit

R0-3preserved

Use

This service is issued to announce changes to a Device Driver. An 'active
link' indicates that the device driver is capable of sending and receiving
data. An 'inactive link' will never send or receive data. This mirrors the use
of the DCI statistics flag. For compatibility with devices which are not
aware of these new reason codes, all modules should assume that a newly
started device driver has an active link. It follows that any device which
starts up and is aware of these new reason codes must issue the 'link
inactive' (reason code 3) service if its link is not available.

Expected uses for this service:

• Dynamic address configuration in presence of new network
infrastructure (eg ZeroConf address re-announcement, DHCP lease
renewal)

• User notification of network absence (eg Notifier protocol)

Non-module clients, and module clients wishing to obtain more
information about the state of the link should query the statistics for the
DCI driver in the usual manner.

Drivers may, but are not required to, defer announcement of inactive links
if their physical state is such that transient failures (in the order of
seconds) may occur. Drivers which can detect the physical nature of the
network to which they are connected must signal a link state change when
they detect such a change (eg configuration changes to a wireless network
SSID, encryption key, channel, etc).

Clients should expect that any 'link inactive' notification may indicate that
the previous network connection is invalid. On 'link active' notification,
clients may attempt to re-establish connections to remote systems.

Clients should attempt to use the existing connections before restarting a
lengthy negotiation or configuration process. Where confidential
information is involved, clients should not attempt to re-establish any
connection without first confirming the action with the user.

Related services

Service_DCIDriverStatus 3

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation
Related:http://www.riscos.com/support/developers/riscos6/

networking/dcidriverlink.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/dcidriverlink.html
http://www.riscos.com/support/developers/riscos6/networking/dcidriverlink.html

RouterDiscovery

Contents
• Introduction
• Service calls

◦ InternetStatus &40
◦ InternetStatus &41
◦ InternetStatus &42

• SWI calls
◦ SWI RouterDiscovery_Control
◦ SWI RouterDiscovery_Control 0 - ActivateHost
◦ SWI RouterDiscovery_Control 1 - ActivateRouter
◦ SWI RouterDiscovery_Control 2 - Deactivate
◦ SWI RouterDiscovery_Status

Introduction
The RouterDiscovery module implements RFC1256 Router Discovery for
multiple interfaces as hosts or routers. The action of the RouterDiscovery
must be triggered by the user in order to be used. It is expected that
address configuration clients will perform this trigger when appropriate.
ZeroConf would be expected to trigger RouterDiscovery if no other
address has been configured. DHCP would be expected to trigger
RouterDiscovery if the relevant options are returned in the DHCP packets
from the configuration server.

The module will monitor interface changes and resend solicitations or
advertisements as appropriate. Non-availability of the router system is not
currently checked for.

Multiple interfaces are supported.

Service calls

Service_InternetStatus &40
(Service &B0)

RouterDiscovery has changed its host behaviour for an interface

On entry

R0=&40 (sub-reason code)
R1=&B0 (reason code)
R2=

New state:

Value Meaning
0 No longer monitoring interface
1 Starting soliciting on interface
2 Starting monitoring interface

R3=Pointer to zero terminated interface name

On exit

R1-3preserved

Use

This service call is issued by the RouterDiscovery module when it starts
monitoring an interface for router advertisement packets. The module will
start by issuing solicitations. Once an advertisement is received the
module will modify the default route appropriately.

This service should never be claimed.

Related APIs

None

Service_InternetStatus &41
(Service &B0)

RouterDiscovery has changed its router behaviour for an interface

On entry

R0=&41 (sub-reason code)
R1=&B0 (reason code)

R2=
New state:

Value Meaning
0 Ending advertisements
1 Starting advertisements

R3=Pointer to zero terminated interface name
R4=Number of routes being advertised
R5=Pointer to router/preference pairs for routers being advertised

On exit

R1-5preserved

Use

This service call is issued by the RouterDiscovery module when it starts
issuing advertisements on an interface. The module will initially issue a
few advertisements, before settling into a much more leisurely
advertisement every 10 minutes. If a solicitation is received from a host,
an advertisement will be made.

This service should never be claimed.

Related APIs

None

Service_InternetStatus &42
(Service &B0)

RouterDiscovery has changed the route

On entry

R0=&42 (sub-reason code)
R1=&B0 (reason code)
R2=Pointer to zero terminated interface name
R3=IP address of gateway through which packets will be routed, or 0 if

the default route has been deleted due to non-responsiveness.

On exit

R1-3preserved

Use

This service call is issued by the RouterDiscovery module when it changes
the default route based on information provided from RouterDiscovery
operations.

This service should never be claimed.

Related APIs

None

SWI calls

RouterDiscovery_Control
(SWI &57D80)

Control the operation of the RouterDiscovery module

On entry

R0=
Reason code:

Value Meaning
0 Activate Host mode for the interface
1 Activate Router mode for the interface
2 Deactivate control of interface

On exit

None

Interrupts

Interrupts are undefined

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to control the operation of the RouterDiscovery module.

Related APIs

None

RouterDiscovery_Control 0
(SWI &57D80)

Activate Host mode for the interface

On entry

R0=0 (reason code)
R1=Pointer to zero terminated interface name to activate on
R2=

IPv4 Aaddress to use for solicitations or special value:

Value Meaning
&0 use appropriate address based on interface

&FFFFFFFF use broadcast address
&E0000002 use 'all routers' multicast group

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to allow the RouterDiscovery module to control the
operation of an interface as a Host. Solicitations will be sent when the
interface changes state and a default route will be configured based on
those addresses.

Interface names will not be validated, allowing the interfaces to become
available at a future point. Absent interfaces will cause the module to
become quiescent until the interfaces become available.

Related SWIs

RouterDiscovery_Control 2

RouterDiscovery_Control 1
(SWI &57D80)

Activate Router mode for the interface

On entry

R0=1 (reason code)
R1=Pointer to zero terminated interface name to activate on
R2=

IPv4 Aaddress to use for advertisements or special value:

Value Meaning
&0 use appropriate address based on interface

&FFFFFFFF use broadcast address

&E0000001 use 'all hosts' multicast group

R3=Minimum advertisement interval in seconds, or 0 for default
R4=Maximum advertisement interval in seconds, or 0 for default
R5=pointer to a list of router/preference pairs, terminated by a 0 word. A

pointer of 0 will mean that the address of the interface will be used,
however the interface must be present for this to function.

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to allow the RouterDiscovery module to issue
advertisements of router addresses on an interface. Advertisements will be
sent regularly, as specified, or when the interface changes state.

Interface names will not be validated unless the pointer in R5 is 0. Absent
interfaces will cause the module to become quiescent until the interfaces
become available.

Related SWIs

RouterDiscovery_Control 2

RouterDiscovery_Control 2
(SWI &57D80)

Deactivate control of interface

On entry

R0=2 (reason code)
R1=Pointer to zero terminated interface name to deactivate

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to stop an interface being monitored by the
RouterDiscovery module.

An interface being killed will not implicitly cause this to happen in order
that interfaces can be restarted without affecting the operation of
RouterDiscovery.

Related SWIs

RouterDiscovery_Control 0, RouterDiscovery_Control 1

RouterDiscovery_Status
(SWI &57D81)

Return information about the RouterDiscovery module

On entry

R0=
Reason code (none defined)

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is not implemented.

Related APIs

None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 09 May 2022Gerph PRM-in-XML conversion
• Created from original

documentation for RISC
OS Select.

Related:http://www.riscos.com/support/developers/riscos6/
networking/routerdiscovery.html

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/routerdiscovery.html
http://www.riscos.com/support/developers/riscos6/networking/routerdiscovery.html

Disclaimer:
© Gerph, 2022.

DHCPClient

Contents
• Introduction
• Service calls

◦ InternetStatus 4 - BootPReply
◦ InternetStatus 5 - DHCPOffer
◦ InternetStatus 48 - DHCPLeaseGained
◦ InternetStatus 49 - DHCPLeaseLost

• SWI calls
◦ SWI DHCPClient_Control
◦ SWI DHCPClient_State
◦ SWI DHCPClient_Enumerate

• *Commands
◦ *DHCP
◦ *DHCPStatus

Introduction
The DHCPClient module provides an implementation of the 'Dynamic Host
Configuration Protocol'. This allows a server to allocate addresses to a
client based on its internal ethernet 'MAC' address.

The module is able to control multiple interfaces simultaneously.
Information about the DHCP configuration process is recorded to the
DHCP log.

Service calls

Service_InternetStatus 4
(Service &B0)

Response received for BootP/DHCP request

On entry

R0=4 (sub-reason code>

R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=Pointer to Device Information Block for interface
R4=Pointer to BootP/DHCP reply message buffer
R5=Size of BootP/DHCP reply

On exit

R0preserved
R1=0 to claim service, else preserved

R2-5preserved

Use

This service call is issued by the Internet module (version 5.28 or later)
when a BOOTP/DHCP reply is received. Clients may inspect the contents
of the buffer to extract any configuration information.

If you want to alter information in the buffer you may do so, but you must
then claim the service call by setting R1 to zero on exit. If the service call
is claimed the Internet module will reprocess the buffer as if it had just
arrived from the network. Another Service_InternetStatus 4 will arrive in
due course.

You should not normally claim this service call.

Related APIs

None

Service_InternetStatus 5
(Service &B0)

DHCPOffer has been received

On entry

R0=5 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=Pointer to Device Information Block for interface
R4=Pointer to DHCPOFFER message buffer
R5=Size of DHCPOFFER message

On exit

R0preserved
R1=0 to claim service, else preserved

R2-5preserved

Use

This service call is issued by the DHCPClient module whenever it receives
an offer of an IP address lease which is better than its current best choice
(or if it is the first acceptable offer). You may inspect the buffer, but it must
not be modified.

If clients choose to retain information about offers they MUST use the
value of OPTION_SERVERIDENTIFIER as an opaque key to identify which
offer has been chosen.

If you claim this service the DHCPClient module will not accept the offer,
but will wait for another offer to be made.

You should not normally claim this service call.

Related APIs

None

Service_InternetStatus 48
(Service &B0)

DHCP address has been configured on an interface

On entry

R0=48 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=IP address assigned to interface

On exit

R0-3preserved

Use

This service call is issued by the DHCPClient module (after 0.37) when it
has successfully configured an interface with an address leased from a
DHCP server. If the interface is reconfigured, the server releases the
lease, the server fails to renew the lease, a duplicate address is identified,
or the network stack is stopped, the lease will be lost and
InternetStatus_DHCPLeaseLost will be issued. This service will not be
reissued for renewals of the lease.

This service should never be claimed.

Related services

Service_InternetStatus 49

Service_InternetStatus 49
(Service &B0)

DHCP address has been removed from an interface

On entry

R0=49 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated interface name
R3=IP address that was assigned to interface

On exit

R0-3preserved

Use

This service call is issued by the DHCPClient module (after 0.37) when it
has lost the DHCP server leased address allocated to an interface. A new
address may be established by the DHCPClient if the server responds, or
the interface may be manually reconfigured (however, this service may
have been issued because of a manual reconfiguration). See
Service_InternetStatus 48 for details of circumstances in which this
service will be issued.

This service should never be claimed.

Related services

Service_InternetStatus 49

SWI calls

DHCPClient_Control
(SWI &55E00)

Controls the DHCPClient interface management

On entry

R0=
Reason code:

Value Meaning
0 Add interface
1 Remove interface
2 Renew lease/re-try obtaining a lease on an interface

R1=Pointer to zero-terminated interface name

On exit

R0-1preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to add or remove an interface from the DHCPClient's
control. Once placed under the control of the DHCPClient the interface
will continue to operate according to the DHCP protocol until either the
interface is configured manually or it is removed from the module's control
by being reconfigured.

Related * commands

*DHCP

DHCPClient_State
(SWI &55E01)

Reads the status of a DHCPClient managed interface

On entry

R0=Pointer to zero-terminated interface name
R1=

Pointer to a list of information types as words, terminated by -1.
Information types:

Value Meaning
0

Interface state (1 word):

Value Meaning
0 sleeping
1 initreboot
2 init
3 rebooting
4 selecting
5 requesting
6 bound
7 renewing
8 rebinding

1 Bound address - 'yiaddr' (1 word)
2 Server address - 'siaddr' (1 word)
3 Gateway address - 'giaddr' (1 word)
4 lease period in centiseconds (1 word)
5 T1 period in centiseconds (1 word)
6 T2 period in centiseconds (1 word)
7 DHCP start (8 bytes; 5 bytes time, 3 bytes padding)
8 Lease start (8 bytes; 5 bytes time, 3 bytes padding)
9 Lease end (8 bytes; 5 bytes time, 3 bytes padding)

10 T1 end (8 bytes; 5 bytes time, 3 bytes padding)
11 T2 end (8 bytes; 5 bytes time, 3 bytes padding)

R2=Pointer to buffer for returned data
R3=Size of the output buffer

On exit

R0preserved
R1=Pointer to invalid option, or -1 if all types are valid
R2=Pointer to first free byte in the output block
R3=Space left, or negative space needed if data would not fit

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to read the current DHCP client state for an interface. R1
points to a list of types which will be returned in the output buffer in the
order in which they were supplied. If the block was not large enough, a
'Buffer overflow' error will be returned, with R3 set to the -ve size

required. If the type of information requested was invalid, an error will
return and R1 will point to the invalid entry.

Related * commands

*DHCPStatus

DHCPClient_Enumerate
(SWI &55E02)

Enumerates names of interfaces controlled by DHCPClient

On entry

R0=Pointer to zero-terminated interface name of the last interface, or 0
initially

R1=Pointer to buffer for returned data
R2=Size of the output buffer

On exit

R0=Number of state transitions
R1=pointer to buffer on entry, or 0 if no interfaces remain
R2=Space left, or negative space needed if data would not fit

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI enumerates the interfaces under DHCPClient control.

Related SWIs

DHCPClient_State

*Commands

*DHCP
Modify the DHCP control of an interface

Syntax

*DHCP [-+] <interface>

Parameters

<interface> -Name of the interface to change management of.

Use

This command is used to control whether the DHCPClient module will
configure the network automatically using the DHCP protocol.

If no prefix is applied to the interface name the interface will be added to
the list of those controlled by the DHCP module.

If a '-' prefix is used, the interface name will be removed from those
controlled by the DHCP module and any address which is in use will be
removed.

If a '+' prefix is used, an existing DHCP lease on that interface will be
renewed, or a new attempt to obtain a lease will be made.

Example

*DHCP eh0

Related APIs

None

*DHCPStatus
Display information on DHCP controlled interfaces

Syntax

*DHCPStatus

Parameters

None

Use

This command is used to display information about interfaces controlled
by the DHCPClient module.

Example

*DHCP eh0

Related * commands

*ShowStat

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation
Related:http://www.riscos.com/support/developers/riscos6/

networking/dhcpclient.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/dhcpclient.html
http://www.riscos.com/support/developers/riscos6/networking/dhcpclient.html

Chapter Title

Contents
• Introduction

◦ Conformance
• Service calls

◦ InternetStatus 32 - ZeroConfAddressAcquired
◦ InternetStatus 33 - ZeroConfAddressLost

• SWI calls
◦ SWI ZeroConf_Control
◦ SWI ZeroConf_Control 0 - ZeroConfAddInterface
◦ SWI ZeroConf_Control 1 - ZeroConfRemoveInterface
◦ SWI ZeroConf_Status
◦ SWI ZeroConf_Status 0 - ConfigurationState

Introduction
The ZeroConf module deals with Link-Local zero-configuration network
address assignment. This module has been present since Select 3. The
implementation follows that of RFC3927. The module can only handle a
single interface. It will be automatically configured by the InetConfigure
module when 'Dynamic' network addressing is configured.

The ZeroConf module will always configure alias 9 of an interface, for
example 'eh0:9'.

Conformance

The ZeroConf module and other components of the stack follow the
protocol laid down by this RFC with certain caveats:

• Link-local addresses assigned to interfaces with routable addresses
will continue to be advertised by the Internet stack through the
SIOCGIFCONF interface. (1.9 rule 2)

• No operational changes have been made to prevent the issuing of
link-local packets to a router, or forwarding by a router if so
configured. (2.6.2, 2.7, 7)

• The use of subnetting is not prevented. (2.8)
• DNS addresses supplied by external sources may be cached for link-

local addresses. (2.9)
• DNS server may provide locally known link-local addresses. (2.9)

• Operation where multiple interfaces use link-local addresses is not
supported by the ZeroConf module and, where manual
configuration occurs is not expected to route correctly. (3)

Select 3 ZeroConf implementation follows draft 7 of the link-local standard
and had the following differences from the released RFC:

• 4 probes will be sent initially (RFC now states 3).
• The maximum number of conflicts before rate limiting was 60 (RFC

now states 10).

Service calls

Service_InternetStatus 32
(Service &B0)

Address has been acquired by the ZeroConf module

On entry

R0=32 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated aliased interface name
R3=IP address assigned to the interface

On exit

R1-3preserved

Use

This service call is issued by the ZeroConf module when it has successfully
configured an interface with a link-local address. This address may be
used just like any other address. This address may be changed (and the
appropriate services issued) if collisions occur or if manually modified.

This service should never be claimed.

Related services

Service_InternetStatus 33

Service_InternetStatus 33
(Service &B0)

Address has been lost by the ZeroConf module

On entry

R0=33 (sub-reason code>
R1=&B0 (reason code)
R2=Pointer to zero-terminated aliased interface name
R3=IP address that was assigned to the interface

On exit

R1-3preserved

Use

This service call is issued by the ZeroConf module when it has lost the
link-local address allocated to an interface. A new address may be
reestablished by the ZeroConf module if the reason for the address loss
was due to a collision.

This service should never be claimed.

Related services

Service_InternetStatus 32

SWI calls

ZeroConf_Control
(SWI &56A00)

Controls the ZeroConf interface management

On entry

R0=
Reason code:

Value Meaning
0 Places an interface under management by ZeroConf
1 Releases an interface from management by ZeroConf

R1-8=Dependant on reason code

On exit

R0-8=Dependant on reason code

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to control the operation of the ZeroConf module.

Related APIs

None

ZeroConf_Control 0
(SWI &56A00)

Places an interface under management by ZeroConf

On entry

R0=0 (reason code)
R1=Pointer to zero-terminated interface name

On exit

R0-1preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to add an interface to those that the ZeroConf module
controls. Only a single interface can be controlled by the ZeroConf
module. An error will be returned if the interface cannot be added.

Related APIs

None

ZeroConf_Control 1
(SWI &56A00)

Releases an interface from management by ZeroConf

On entry

R0=0 (reason code)
R1=Pointer to zero-terminated interface name

On exit

R0-1preserved

Interrupts

Interrupts are undefined

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to remove an interface from those that the ZeroConf
module controls. If the interface named is not controlled by ZeroConf, an
error will be returned.

Related APIs

None

ZeroConf_Status
(SWI &56A01)

Reads the status of the ZeroConf module

On entry

R1=
Status type:

Value Meaning
0 Reads the current configuration status

R1-8=Dependant on reason code

On exit

R0-8=Dependant on reason code

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to read the status of the ZeroConf module.

Related APIs

None

ZeroConf_Status 0
(SWI &56A01)

Reads the current configuration status

On entry

R1=0 (reason code)

On exit

R0=
State of the ZeroConf module

Value Meaning
0 idle
1 probing for address
2 announcing address assignment
3 configured
4 configured, defending against address collision

R1=Pointer to zero-terminated interface name

Interrupts

Interrupts are undefined

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to read the state of the operation of the ZeroConf
module.

Related APIs

None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 2006 Gerph Initial version

• Released as RISC OS
Select documentation.

2 30 Dec 2021Gerph PRM-in-XML conversion
• Created from original

Select documentation
Related:http://www.riscos.com/support/developers/riscos6/

networking/zeroconf.html
Disclaimer:

© Gerph, 2021.

mailto:gerph@gerph.org
http://www.riscos.com/support/developers/riscos6/networking/zeroconf.html
http://www.riscos.com/support/developers/riscos6/networking/zeroconf.html

Graphics Mode Specification

Contents
• Introduction and Overview
• Technical details

◦ Mode specifiers
◦ Mode numbers
◦ Sprite mode words
◦ Mode selectors
◦ Mode strings

Introduction and Overview
Graphics modes can be specified in a number of ways, which have been
added to with each iteration of the Operating System. Originally only
mode numbers were allowed, but hardware improved and more flexibility
was required, so the mode specification was extended.

Graphics modes may be supplied to a number of interfaces, most of which
will eventually come down to a call to OS_ReadModeVariable. Some of the
interfaces that you may find using mode specifications are:

Interface Usage
OS_ReadModeVariable Read values for a given mode.

OS_CheckModeValid Return whether the mode specified can be
selected.

OS_ScreenMode Operations on the graphics mode
ColourTrans_*ForMode Colour operations for a given mode

OS_SpriteOp Sprite creation operations may be supplied
modes

Sprite Header Defines the type of data within a sprite
Wimp_SetMode Selects the mode used by the Window Manager

Technical details
Mode specifiers

Mode specification is always through a single 32bit word value known as a
mode specifier. This allows it to be supplied in many of the places that a
mode number was used in earlier interfaces. This mode specifier can
represent a number of ways of describing a mode. The following mode
specifier formats are defined:

• Mode number
• Sprite mode word
• Sprite pointer
• Mode selector

These can be distinguished by the following algorithm:

• If the mode specifier is < 256:
◦ This is a mode number, and shadow bank selection.
◦ The mode number is in the low 7 bits, and shadow bank

selection is given in bit 7.
◦ If the mode number is not recognised Service_ModeExtension

is issued to determine the mode's parameters.
◦ Modes up to 7 are supported from the BBC onwards.
◦ Shadow modes are supported from the Master onwards

(although they are less reliable from RISC OS 3.6 onwards)
• If the mode specifier has bit 0 set, this is a sprite mode word:

◦ Sprite mode words are given in the sprite header, but may
also be supplied to many of the mode functions (except for
display selection).

◦ They only contain the DPI (and thus eigenfactors), and type
of data within the sprite. No resolution information is
available.

◦ Sprite mode words are supported from RISC OS 3.5 onwards.
• If the mode specifier has bit 0 and 1 clear, this is a pointer to data,

whose meaning is differentiated by the value of the first word.
◦ If the first word has bit 0 clear, the data is a sprite (the mode

specifier is a sprite pointer):
▪ Sprite pointers allow information about the width and

height to be included in the information, and allow the
use of palette data as well. These types of mode
specification are usually only used with
ColourTrans_*operations.

▪ Sprite pointers are supported from RISC OS 3
onwards.

◦ If the first word has bit 0 set, the data is a mode selector:
▪ Mode selectors expose the base specifications for the

mode and modifications to mode variables.

▪ Mode selectors allow for extended formats, but only a
single format is currently defined.

▪ Mode selectors are supported from RISC OS 3.5
onwards.

• If the value has bit 0 clear and bit 1 set, this is an invalid mode
specification.

Mode numbers

Mode numbers may be extended through the Service_ModeExtension
interface. This allows new numbered modes to be defined, either
completely or based on other modes.

Sprite mode words

Sprite mode words allow some of the parameters of the mode to be
determined, but because they do not include resolution information they
cannot be selected. Sprite mode words are only supported from RISC OS
3.5 onwards.

The sprite mode word format has undergone a few revisions. The current
definition of the sprite mode word is:

Bit(s) Meaning
0 Set (indicator that this is a new format sprite, together with set

bits in bits 27-31)
1-13 Horizontal dots per inch, should be 180, 90, 45, 23/22, 11

14-26 Vertical dots per inch, should be 180, 90, 45, 23/22, 11
27-30

Sprite type :

Value Meaning
0 Old format mode word (mode is a standard number)
1 1 bpp
2 2 bpp
3 4 bpp
4 8 bpp
5 15 bpp in 16bit values
6 24 bpp in 32bit values
7 CMYK
8 24 bpp compact format (allocated but not used)

9 JPEG data (allocated but not used)
10-15 Reserved

31 Set: Alpha channel data present. May not be set for type 0
sprites

Clear: Binary mask data present

For sprite types 1-4, the palette is only supported from RISC OS 3.6
onwards.

Although the DPI value should be the values defined above, values outside
these may be supported. Certain interfaces, such as
PlotSpriteTransformed, may use this information to render the sprites to
the correct size for the display. Other interfaces, such as
OS_ReadModeVariable and PlotSpriteScaled, may quantise these DPI
values to the closest eigenfactor.

CMYK format sprites are supported from Select 2 onwards. JPEG data has
been supported by third party extensions.

Compatibility

RISC OS < 3.5
Does not support sprite mode words.

RISC OS >= 3.5
Sprite types 0 to 6 supported, but does not support palettes on types
1-4.

RISC OS >= 3.6
Supports palettes on sprite types 1-4.

RISCOS Ltd RISC OS >= Select 2
Sprite types 0-6 and 7 (CMHK) supported.

RISCOS Ltd RISC OS >= Select 3
Supports alpha channel data in addition to the types supported by
Select 2.

RISC OS Pyromaniac RISC OS >= 7.19
Sprite types 0-6 supported.

Gerph JPEGSprites
Adds support for sprite type 9 (JPEG) to those supported by RISC OS
3.5.

Mode selectors

A mode selector is a word-aligned structure that defines the properties of
a mode. This includes its resolution, numbers of colours, frame rate and
other mode variables.

A mode selector has the following format:

Offset Contents
+0

mode selector flags:

Bit(s) Meaning
0 1 (this differentiates it from a sprite pointer)

1-7 mode specifier format (0 for this format)
8-31 other flags (reserved - must be zero)

+4 x-resolution (in pixels)
+8 y-resolution (in pixels)

+12 colour data format and depth:
Value Meaning

0 1 bpp
1 2 bpp
2 4 bpp
3 8 bpp
4 15 bpp in 16 bit values
5 24 bpp in 32 bit values

+16 frame rate (in Hz); -1 => use highest rate available
+20 pairs of [mode variable index, value] words; there may be any

number of these, including zero
+n -1 (terminator)

Mode variables may be given in any order, although it is recommended
that they be supplied in ascending order. Repeating a variable definition
has undefined behaviour.

Compatibility

RISC OS < 3.5
Does not support mode selectors.

RISC OS >= 3.5
Supports mode selectors as described.

RISC OS Pyromaniac RISC OS >= 7.19
Supports mode selectors as described.

Mode strings

To allow modes to be described within a string specification, a mode string
is able to be supplied to various interfaces. Mode strings must be
converted to a mode specifier before they can be used with many
interfaces. OS_ScreenMode allows these mode strings to be converted to
and from mode specifiers.

The mode string takes the form of a space or comma separated list of
parameters. Each parameter is a sequence of alphabetic characters
defining the parmeter, followed by a number sequence and possible
qualifiers.

The mode string parameters have the following format:

Parameter Meaning
X# X resolution in pixels
Y# Y resolution in pixels
C# Number of colours (# = 2, 4, 16, 64, 256, 32T, 32K, 16M)
G# Number of greys (# = 4, 16, 256)
T# Teletext mode, with specified number of colours (# as C)

EX# X eigen factor (# = 0, 1, 2, 3)
EY# Y eigen factor (# = 0, 1, 2, 3)

F# Frame rate in Hz
TX# Teletext display width in characters
TY# Teletext display height in characters

Up to RISC OS Select 3, the X and Y resolution must be values from
100-9999. From Select 3 inwards, any value other than 0 may be supplied,
although support for resolutions above 16384 may not be reliable.

Teletext mode selection and character width/height is supported from
RISC OS Select 3 onwards.

Selection of modes with 64 colours results in an old-style VIDC 1 mode
selection of a 256 colour mode with 192 derived colours. Prior to Select 3,
selection of 'C256' would result in a the old-style VIDC 1 mode being

selected.

The OS_ScreenMode interface for converting and selecting mode strings is
supported from RISC OS Select 3 onwards.

*WimpMode supports selecting mode strings from RISC OS 3.5 onwards.

Compatibility

RISC OS >= 3.5
Supports mode string specifications X, Y, C, G, EX, EY and F, but only
through '*WimpMode'.

RISCOS Ltd RISC OS >= Select 3
Supports specifications for T, TX and TY in addition to those supported
by RISC OS 3.5. C256 will select a full 256 colour palette, whilst C64
will support a VIDC 1 palette. OS_ScreenMode mode string processing
supported.

RISC OS Pyromaniac RISC OS >= 7.19
Supports specifications for T, TX and TY in line with RISC OS Select 3.
C64 will emulate old VIDC 1 palettes. OS_ScreenMode mode string
processing supported.

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 22 Nov 2020 Gerph Initial version

• Created from PRM and
Select technical
documentation.

2 19 May 2023Gerph Compatibility with
Pyromaniac

• Added details about the
compatibility of the
interfaces with RISC OS
Pyromaniac and RISC
OS Select.

Disclaimer:
© Gerph, 2020-2023.

mailto:gerph@gerph.org

The Image File Renderer

Contents
• Introduction and Overview
• Technical Details

◦ Sequence numbers
◦ Rendering quality
◦ Transformation types

▪ Render to fit
▪ Render scaled
▪ Render transformed
▪ Arbitrary transformations

◦ Clipping
◦ Image file origins
◦ Colour mapping

▪ Extensions for more complex colour mapping
◦ Sprite file extensions
◦ Renderers

▪ Custom renderers
▪ Renderer name
▪ Renderer flags

• Service calls
◦ ImageFileRender_Started
◦ ImageFileRender_Dying
◦ ImageFileRender_RendererChanged

• SWI calls
◦ SWI ImageFileRender_Render
◦ SWI ImageFileRender_BBox
◦ SWI ImageFileRender_Transform
◦ SWI ImageFileRender_DeclareFonts
◦ SWI ImageFileRender_Info
◦ SWI ImageFileRender_RendererInfo
◦ SWI ImageFileRender_Register
◦ SWI ImageFileRender_Deregister
◦ SWI ImageFileRender_EnumerateRenderers

• Error Messages
◦ IFR_BadTransformType
◦ IFR_Reserved
◦ IFR_ReservedRendererFlags
◦ IFR_Memory
◦ IFR_NoSuchRendererToRemove
◦ IFR_NoRenderr
◦ IFR_BadAPI

◦ IFR_CantTransform
◦ IFR_NoColourMap
◦ IFR_BadInfoQuery
◦ IFR_BadInfoLength
◦ IFR_BadSpriteMode
◦ IFR_BadSpriteFile
◦ IFR_NoSuchSprite

• Entry Points
◦ IFR_Start
◦ IFR_Stop
◦ IFR_Render
◦ IFR_BBox
◦ IFR_DeclareFonts
◦ IFR_Info

• *Commands
◦ *ImageFileRenderers
◦ *ImageFileViewer

Introduction and Overview
A number of graphics formats are supported natively by RISC OS. JPEG,
DrawFiles and Sprites are directly renderable, and PNGs are supported
through a number of conversion calls. Each of these formats, however, is
rendered using slightly different calls. The ImageFileRender module
simplifies rendering these (and potentially other third party) image files.

All graphics formats have two things in common :

• They cover a region (even empty files must say what space they
cover).

• They have a resolution at which they are drawn.

The region they cover is known as the 'bounding box'. For many graphics
formats, this will be aligned with the origin - for example a bitmap
graphic. For others, this bounding box may be elsewhere in the image - for
example vector formats such as DrawFiles.

The resolution at which they have been drawn describes how accurately
the images is stored. Usually this is stored in 'dots per inch' (DPI) along
with the image itself. Screen resolution is usually - this depends on the
eigenfactors for the screen mode in use - treated as 90 DPI. Some formats
may use much more accurate internal representations than this; for
example DrawFiles are stored at 2048 DPI.

For the purposes of rendering the image file, we ignore the colour depth
because the rendering process will generate its results in the most
accurate manner possible for output depth.

Images may be rendered using a number of transformation types, allowing
them to be rendered to fit a region, to a scale, or using a more general
transformation.

Within each image file there may be a number of individual images. These
can be accessed by a sequence number which indicates their logical
location within the file. The images may be related - as would be the case
with frames of an animation - or they may be unrelated - as would be the
case with a collection of resources.

When accessing images, additional information may be provided to the
renderer which may perform specific operation on the image. This extra
data is specific to the renderer and cannot be handled generically.

Technical Details
Sequence numbers

Graphics files may contain multiple logical images which may either be
frames of an animation, alternate versions, or other image resources.
These images are accessed through a sequence number which must be
supplied to all images. A sequence number of 0 will render the 'default'
image within the file. This may be the first image in some formats, the last
in others, or some arbitrary image. A sequence number higher than that of
the last image should be treated as the last image. A sequence number of
1 indicates the first image should be processed.

Rendering quality

Image files may contain data which is more accurate than can be
represented by the display. This is usually the case for bitmap images at
high colour depths and almost always the case for bitmap images. In order
to allow some control over the quality of the rendered image (and usually
the rendering speed) a 'quality' parameter can be provided to the
renderer. This is a value from 1 to a renderer specific limit (with a
maximum of 15) and will be bounded to the maximum that the renderer
supports. Thus, if the highest quality is required, a value of 15 should be
supplied. If the lowest quality is required, a value of 1 should be supplied.
In the majority of cases, however, the 'default' will be required. This is a
value which the renderer feels is suitable for most operations and does not
require excessive processing to complete. To request the default quality, a
value of 0 should be specified as the quality.

Transformation types

Graphics files may be transformed in a number of ways. This allows us to

provide a simpler interface for rendering based on the requirements of the
application. At present, there are three transformation types provided by
the module:

Value Meaning
0 Render to fit
1 Render scaled
2 Render transformed

For all rendering types an x and y origin are supplied from which all
operations will be based. This allows the same details to be used for the
fit, scale or transform regardless of the images location on the screen.

Render to fit

When rendering to fit, a width and height must be supplied by the
application. The image file will be scaled to fit within this region. In
addition, a border and angle may be provided to specify an area around
the image which should be left clear, and to specify the angle through
which the image should be rotated.

Rotation is performed anti-clockwise. The centre of the rotation is not
strictly relevant to this operation because the image is always scaled to fit
the width and height supplied.

The 'fit' block has the following structure:

Offset Contents
+0 width (in OS units)
+4 height (in OS units)
+8 border (to apply to all edges)

+12 angle (in degrees clockwise, as a 16.16 fixed point value)

As the shape is scaled to fit the size specified, the point about which
rotation occurs is not important. It can be considered to be the centre of
the image.

Render scaled

When rendering scaled, a pair of multiplication and division factors should
be supplied which describe the scale at which the image should be
rendered. The scale block is a standard RISC OS scale block (as used by
SpriteExtend)

The scaling block has the following structure :

Offset Contents
+0 X multiplication factor
+4 Y multiplication factor
+8 X division factor

+12 Y division factor

Render transformed

Rendering images through a transformation matrix is the most flexible
method of rendering that the ImageFileRender module provides.
Transformation matrices are provided in standard RISC OS tranformation
blocks (as used by SpriteExtend, Draw, DrawFile and others).

The transformation has the following structure:

Offset Contents
+0 m00
+4 m10
+8 m01

+12 m11
+16 m20
+20 m21

where the matrix is constructed:

{ m00, m01, 0 }

{ m10, m11, 0 }

{ m20, m21, 1 }

m00, m01, m10, and m11 are 16.16 fixed point values.

m20 and m21 are 24.8 fixed point values.

Arbitrary transformations

Not all image formats support arbitrary transformations. Because of this,
certain formats will be unable to render when a complex transformation is
in use. A typical example of such limitations is that of JPEGs. The internal

renderer can only render JPEGs as a scaled object. If rotation, or other
complex transformations are applied to files which are not capable of
those transformations, an error will be returned.

Clipping

All images will be clipped to the standard graphics rectangles. If an image
must not pass outside a region, a graphics window should be used. This
can be set through a VDU 24 sequence.

Image file origins

Whilst most images are based at the origin, some images will have a
bounding box which are not. When the image is rendered 'to fit', the image
origin is implicitly ignored. When scaling and transforming however, the
origin is maintained and will be scaled with the image itself. Because this
can make manipulating such images more complex, this origin offset can
be negated by the ImageFileRender module. In this mode, the image can
be treated as if it does not have any offset from the origin.

Colour mapping

In order to provide highlighting and other colour manipulation on the
image, the ImageFileRender module can use colour mapping functions (as
used by SpriteExtend, DrawFile, and ColourTrans). These allow the
colours in the image to be manipulated to provide effects such as
highlighting or shading.

Extensions for more complex colour mapping

The operations that can be provided in a generic manner by the
ImageFileRender module do not cover the full range of operations that
might be applied to every image file format. Because of this, extension
data may be provided which is specific to the renderer in use. Because
each renderer may provide specific data to enable it to render images, and
there may be multiple providers of rendering facilities, a 'magic' identifier
is allocated to each renderer. This is ensures the the renderer is not given
data in a form which it does not understand.

Where a magic identifier is supplied and a suitable renderer is available, it
will be used. If no suitable renderer can be found, the last registered
renderer will be used. This ensures that the where extension data is used
it is passed to the appropriate renderer, and falls back to using the most
recent renderer installed.

The extension data block must be word aligned, and the first word
contains the magic identifier for the render that it is intended for. The

remainder of the extension data block is specific to the renderer in use.

The magic identifier may be any 32bit value, but we recommend that these
are registered with RISCOS Ltd to ensure that there are no duplicated
identifiers. At present, allocations are of the form &6699ccii, where cc
indicates the company or individual producing the renderer, and ii is some
image format number at the company or individual's discretion.

Sprite file extensions

When rendering sprite files, by default the first sprite is rendered from the
file. This covers the majority of the situations that it will be required, but
where different sprites are required, the extension block describes which
to use. The identifier for the RISCOS Ltd sprite renderer is &66990101.
The named sprite will only be used when the sequence number is left as
'default'.

Offset Contents
+0 &66990101
+4 Sprite name, up to 12 characters

Renderers

Custom renderers

Custom renderers may be registered with the ImageFileRender module.
These renderers can provided additional rendering facilities for third party
filetypes, or provide additional facilities over those of the standard
renderers.

Renderers have four components:

1. A routine which calculates the bounding box and resolution of an
image

2. A routine which renders an image
3. A routine which declares fonts in a document (may be omitted)
4. A routine which returns information about an image

In addition, they provide a number of informational fields which describe
the renderer's capabilities:

• The filetype that the renderer applies to
• The name of the renderer (including the version and author)
• A flags word that describes the renderers capabilities
• The renderers 'magic' identifier (or 0 if it provides no special

operations)

Renderer name

The renderer name provides details about the renderer in order that
diagnostics may be performed and information about the installed
renderers is available. The renderer name consists of three, tab (ASCII 9)
separated, fields:

• The renderer name
• The version number in the form x.xx
• The authors (or publishers) name

Renderer flags

Not all renderers have the same capabilities, as stated earlier. The flags
provide details to ImageFileRender of the capabilities of the renderer. This
is a bit field, structured:

Bit(s) Meaning
0-1

Renderer transformation capabilities:

Value Meaning
0 Renderer cannot draw anything but identity scaling and

translation
1 Renderer can translate and scale, but scaling must be by

identical factors
2 Renderer can translate and scale by any values in both

axes
3 Renderer supports any form of transformation

These bits should be set to the capabilities of the renderer.

Attempts to render files of which the capabilities word indicates
are not possible by the renderer will be faulted by
ImageFileRender module.

2
Renderer supports colour mapping.

This bit should be set if the renderer can perform colour
mapping. If unset, attempts to use colour mapping on this file
type will be faulted by ImageFileRender.

3
Renderer can draw irregular shapes so must be called to
calculate bounding boxes.

This bit should be set if transforming a shape using a complex
matrix (eg skew or rotate) may result in a different bounding box
than that which would be generated for a rectangular area. If
unset, the renderer will be called to calculate the bounds of an
identity transform only. ImageFileRender will perform the
remainder of the calculations.

If a renderer can only render rectangular areas then leaving this
bit clear simplifies the implementation.

4-7
Maximum number of 'quality' levels supported (1-15).

The highest quality level which is supported by the renderer.

If the quality level requested by a client exceeds this, the
renderer will be called with this value.

8-11
Default 'quality' level to use (1-15).

Where quality settings are omitted (ie when 'default' quality is
selected) the default quality will be passed to the renderer. A
value of 0 means that quality levels are ignored.

Service calls

Service_ImageFileRender_Started
(Service &80D40)

ImageFileRenderer has initialised

On entry

R0=API version (102 at present)
R1=&80D40

On exit

None

Use

This service is issued after the ImageFileRender module has initialised.
Renderers should register themselves with the module.

Related services

Service_ImageFileRender_Dying

Service_ImageFileRender_Dying
(Service &80D41)

ImageFileRenderer about to finalise

On entry

R0=API version (102 at present)
R1=&80D41

On exit

None

Use

This service is issued as the ImageFileRender module finalises to notify
clients that it is no longer providing rendering facilities.

Related services

Service_ImageFileRender_Started

Service_ImageFileRender_RendererChanged
(Service &80D42)

A renderer has initialised or finalised

On entry

R0=API version (102 at present)
R1=&80D42
R2=Filetype affected

On exit

None

Use

This service is issued when a renderer registers or deregisters with the
ImageFileRender module. Clients which have cached details of other
renderers should re-read any renderer values necessary after checking
whether the filetype matches those which they are interested in.

Related SWIs

ImageFileRender_Register

SWI calls

ImageFileRender_Render
(SWI &562C0)

Render an image

On entry

R0=Rendering flags:
Bit(s) Meaning

0-2 Transformation type:
Value Meaning

0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved

3 Colour mapping function supplied

4 Ignore document origin
5 Reserved, must be zero

6-9 Quality to render at:
Value Meaning

0 Use default quality
1 Lowest quality

2-14 Renderer specific values
15 Highest quality

10-16 Reserved, must be zero
17-31 Reserved, must be zero

R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number, or 0 for default image
R6=X coord for origin
R7=Y coord for origin
R8=Transformation data:

Value Name Transformation type in R0
0 Pointer to size Image file origin is ignored
1 Pointer to scale block Offset Contents

+0 X mult
+4 Y mult
+8 X div

+12 Y div

2 Pointer to
transformation matrix

Standard draw transformation
matrix format

R9=Pointer to colour map descriptor

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to render an image file.

Related entry points

IFR_Render

ImageFileRender_BBox
(SWI &562C1)

Calculates an image's bounding box

On entry

R0=Rendering flags:
Bit(s) Meaning

0-2 Transformation type:
Value Meaning

0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved

3 Reserved, must be zero
4 Ignore document origin
5 Return in OS units (otherwise bounding box will be

returned in draw units
6-31 Reserved, must be zero

R1=Filetype
R2=Pointer to data to render
R3=Length of data

R4=Pointer to extension, or 0 if none
R5=Image sequence number, or 0 for default image
R6=Pointer to transformation data (see above)
R7=Pointer to bounding box to fill in

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to calculate the bounding box for a transformation
operation.

Related entry points

IFR_BBox

ImageFileRender_Transform
(SWI &562C2)

Return transformation matrix for render operation

On entry

R0=Rendering flags:
Bit(s) Meaning

0-2 Transformation type:
Value Meaning

0 Render to fit
1 Render scaled
2 Render transformed

3-7 Reserved

3 Reserved, must be zero
4 Ignore document origin

5-31 Reserved, must be zero
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension, or 0 if none
R5=Image sequence number
R6=Pointer to transformation data
R7=Pointer to output transformation block to fill in

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to calculate the transformation matrix that would be used
for an operation without performing that operation. Where clients wish to
combine a transform matrix with the operation applied by the scaling
specified, this call can obtain the transformation matrix which
ImageFileRender will use.

Related APIs

None

ImageFileRender_DeclareFonts
(SWI &562C3)

Declare fonts prior to printing

On entry

R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number
R6=Flags to pass to PDriver_DeclareFont

On exit

R0-6preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI should be used when printing images using the ImageFileRender
module before any printing operations begin. Refer to the section 'Declare
the fonts your document uses' in the chapter on Printing for more details.

Related entry points

IFR_DeclareFonts

ImageFileRender_Info
(SWI &56264)

Discover miscellaneous image information

On entry

R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to data to render
R3=Length of data
R4=Pointer to extension data, or 0 if none
R5=Image sequence number
R6=Query type:

Value Meaning
&00000000 Base details

&00000001-&00000FFF Reserved for system use
&00001000-&0000FFFF Reserved for developers
&00FF0000-&00FFFFFF Reserved for private use

Others are reserved for future expansion.
R7=Pointer to query block
R8=Length of query block

On exit

R8=
If successful, R8 returns the length of block used.

If the block was too small, R8 returns a negative value showing how
much space was required. If another error occurs, R8 will be
positive.

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI should be used to find out information which is not provided by
the generic APIs. It may be used (for example) to read the time between
frames for a custom renderer, or to read additional information about the
image which would otherwise not be available.

The base details query returns the following:

Offset Contents
+0 Sequence number
+4 X DPI
+8 Y DPI

+12 Colour type:
Value Meaning

0 Unspecified colour type (usually 'free' colour selection)
1 1bpp RGB
2 2bpp RGB
3 4bpp RGB
4 8bpp RGB
5 16bpp RGB
6 24bpp RGB
7 CMYK

Others Reserved

+16 Image flags:
Bit(s) Meaning

0 If set, the image is solid and covers the entire bounding
box described. If clear, the image may have sections
which reflect the background colour.

1-31 Reserved, must be zero

The base query is used to get generic information on an image in the file
which was not necessary for the rendering of the file. This call is most
commonly used to find the sequence number of the default and last logical
image within a file. The sequence number may be set to &FFFFFFFF to
indicate that the sequence number is not known. This might be the case if
the format has no indication of the number of images present.

The image flags provide additional information about the image which
might be useful to renderers. The only defined flag at present is that
indicating if the image is 'solid' or not. This can be used by clients to
decide whether drawing a background behind the image is neccessary or
not.

Related entry points

IFR_Info

ImageFileRender_RendererInfo
(SWI &56265)

Discover information on the renderer

On entry

R0=Flags (must be 0)
R1=Filetype
R2=Magic identifier

On exit

R0=Pointer to renderer definition block (read only)
R1=Pointer to renderer name

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to return information about a renderer.

Related SWIs

ImageFileRender_EnumerateRenderers

ImageFileRender_Register
(SWI &56266)

Register a renderer

On entry

R0=Flags (reserved, must be 0)
R1=Pointer to definition (all will be copied):

Offset Contents
+0 API version (102 at present)
+4 Renderer flags
+8 Filetype

+12 Magic value, or 0 if none
+16 Pointer to name to be copied, in the format:

<name><tab><version x.xx><tab><author>
+20 Workspace value for R12
+24 Pointer to start entry point (IFR_Start)
+28 Pointer to stop entry point (IFR_Stop)
+32 Pointer to render entry point (IFR_Render)
+36 Pointer to bounding box entry point (IFR_BBox)
+40 Pointer to declare fonts entry point (IFR_DeclareFonts)
+44 Pointer to information entry point (IFR_Info)

Or use 0 to get the current API version

On exit

R1=API version (even if an error occurred)

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to register a new renderer.

Related SWIs

ImageFileRender_Deregister

ImageFileRender_Deregister
(SWI &56267)

Deregister a renderer

On entry

R0=Flags (reserved, must be 0)
R1=Filetype
R2=Pointer to name used on registration
R3=Magic value to match (must be the same as when registered

On exit

R0-3preserved

Interrupts

Interrupts are disabled

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to deregister a renderer.

Related SWIs

ImageFileRender_Register

ImageFileRender_EnumerateRenderers
(SWI &56268)

Enumerate the active renderers

On entry

R0=Flags (reserved, must be 0)
R1=Last filetype, or -1 for first call
R2=Magic value, or 0 for first call

On exit

R0=Pointer to renderer definition block (read only)
R1=Filetype of this renderer, or -1 if there are no more
R2=Magic value of this renderer

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

This SWI is used to enumerate the renderers which have been registered
with the ImageFileRender module.

Related SWIs

ImageFileRender_RendererInfo

Error Messages

Error_IFR_BadTransformType
(Error &81A800)

Bad transform type

Use

This error is returned when the transformation type specified is invalid.

Error_IFR_Reserved
(Error &81A801)

Reserved flags set for ImageFileRender SWI

Use

This error is returned when a SWI has been called with flags set which
have been defined as reserved. Where possible, this will be returned to
allow clients to use new features when they are available, and to fall back
to older methods where the features requested are not avialable.

Error_IFR_ReservedRendererFlags
(Error &81A802)

Reserved flags set for ImageFileRender renderer

Use

This error is returned during renderer registration when the flags
specified in the renderer definition has flags set which have defined as
reserved.

Error_IFR_Memory
(Error &81A803)

Not enough memory for ImageFileRender

Use

This error is returned when there is not enough memory for the rendering
(or other) operation.

Error_IFR_NoSuchRendererToRemove
(Error &81A804)

Renderer not known

Use

This error is returned when the renderer being deregistered is not known
to the ImageFileRender module.

Error_IFR_NoRenderr
(Error &81A805)

No renderer registered for that filetype

Use

This error is returned when an operation is attempted on a filetype for
which no renderer has been registered.

Error_IFR_BadAPI
(Error &81A806)

Bad API version

Use

This error is returned when an operation is attempted for which the
renderer API is not understood by the renderer. This will most likely not be
seen by external clients. Clients who proxy their rendering through
another renderer may see this if the APIs provided do not match between
the proxy and the client.

Error_IFR_CantTransform
(Error &81A807)

Transformation type not supported by filetype

Use

This error is returned when the rendering operation cannot be performed
because the renderer does not support the transformation requested by
the client. The most likely cause for this error is attempted to skew or
rotate a filetype which cannot be skewed or rotated (for example JPEGs).

Error_IFR_NoColourMap
(Error &81A808)

Colour mapping not supported by filetype

Use

This error is returned when a rendering operation cannot be performed
because the renderer does not support colourmapping and colourmapping
has been requested by the client.

Error_IFR_BadInfoQuery
(Error &81A809)

Query type not recognised

Use

This error is returned when the ImageFileRender_Info query type has not
been recognised by the renderer.

Error_IFR_BadInfoLength
(Error &81A80A)

Bad query length

Use

This error is returned when the ImageFileRender_Info query type has
been recognised by the renderer, but the length supplied was not
understood.

Error_IFR_BadSpriteMode
(Error &81A810)

Bad sprite mode

Use

This error is returned by the sprite renderer when the image being
rendered uses a mode which is not understood by the system.

Error_IFR_BadSpriteFile
(Error &81A811)

Sprite file corrupt or contains unrecognised data

Use

This error is returned by the sprite renderer when the image being
rendered is malformed or contains data which is not understood.

Error_IFR_NoSuchSprite
(Error &81A812)

Sprite not found

Use

This error is returned by the sprite renderer when it cannot locate the
sprite named in the extension data.

Entry Points

IFR_Start
(&0)

Initialisation routine for ImageFileRender

On entry

R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data, 0 initially

R2=0
R12=Workspace value on entry to ImageFileRender_Register

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The 'start' routine is called before any operations are applied to an image.
This allows clients to cache information relevant to the image such that
subsequent calls do not have to re-read the data. If the image data is not
recognised, it should be faulted. Errors should be reported by setting V
and returning an error block in R0.

Clients may fill in the private word with cached data. Usually this is a
pointer to some workspace specific to this image.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister

Related entry points

IFR_Stop

IFR_Stop
(&1)

Finalisation routine for ImageFileRender

On entry

R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data

R2=0
R12=Workspace value on entry to ImageFileRender_Register

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The 'stop' routine is called after all operations are applied to an image.
This allows clients to release space allocated for cache information
relevant to the image. If there is any internal error, the client should tidy
up as best it can and return an error. Errors should be reported by setting
V and returning an error block in R0.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister

Related entry points

IFR_Start

IFR_Render
(&2)

Rendering routine for ImageFileRender

On entry

R0=API version * 100 (102 in this version)

R1=Pointer to image descriptor:
Offset Contents

+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data

R2=Pointer to rendering descriptor:
Offset Contents

+0 Flags :
Bit(s) Meaning

0-2 Reserved, must be zero
3 Colour mapping function supplied

4-5 Reserved, must be zero
6-9 Quality to render at:

Value Meaning
0 Use default quality
1 Lowest quality

2-14 Renderer specific values
15 Highest quality

10-31 Reserved, must be zero

+4-24 Transformation matrix to apply (standard format)
+28 Minimum X clipping rectangle in external coordinates
+32 Minimum Y clipping rectangle in external coordinates
+36 Maximum X clipping rectangle in external coordinates
+40 Maximum Y clipping rectangle in external coordinates
+44 Pointer to colour mapping routine
+48 Workspace for colour mapping routine

R12=Workspace value on entry to ImageFileRender_Register

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The rendering routine is called to render an image using a given
transformation. If the image data is not recognised, it should be faulted.
Errors should be reported by setting V and returning an error block in R0.

The clipping rectangle passed represents the graphics rectangle as
external coorinates (OS units) which is currently in use. It is provided for
information such that rendering can take advantage of fast rejection of
regions which do not need to be redrawn.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister,
ImageFileRender_Render

IFR_BBox
(&3)

Bounding box function for ImageFileRenderer

On entry

R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data

R2=Pointer to bounding box descriptor:
Offset Contents

+0 Flags (0)
+4-24 Transformation matrix to apply (standard format)

+28 Minimum X position in Draw coordinates
+32 Minimum Y position in Draw coordinates
+36 Maximum X position in Draw coordinates
+40 Maximum Y position in Draw coordinates

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The bounding box routine is called to calculate the bounding box for a
given transformation. If the image data is not recognised, it should be
faulted. Errors should be reported by setting V and returning an error
block in R0. The bounding box should be returned in draw coordinates for
the images extent. That is, OS units * 256. Resolution values should be
provided for information. If no DPI information is available, 180 (the
screen resolution) should be returned.

If bit 3 of the renderer flags was clear on registration, the transformation
matrix will be an identity matrix and can effectively be ignored. The
scaling to the clients required size will be performed by ImageFileRender
module based on the bounding box returned.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister,
ImageFileRender_BBox

IFR_DeclareFonts
(&4)

Declare fonts function for ImageFileRenderer

On entry

R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data

R2=Pointer to declare fonts descriptor:
Offset Contents

+0 Flags (0)
+4 Flags to pass to PDriver_DeclareFont

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The font declaration routine need only be provided by renderers which use
fonts. The renderer should call PDriver_DeclareFont with the names of all
fonts and the flags passed in R4. If the image data is not recognised, it
should be faulted. Errors should be reported by setting V and returning an
error block in R0.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister,
ImageFileRender_DeclareFonts

IFR_Info
(&5)

Information function for ImageFileRenderer

On entry

R0=API version * 100 (102 in this version)
R1=Pointer to image descriptor:

Offset Contents
+0 Pointer to data to render
+4 Length of data
+8 Pointer to extension data, or 0 if no data

+12 Image sequence number
+16 Private image data

R2=Pointer to information descriptor:
Offset Contents

+0 Query type
+4 Query data length
+8 Pointer to data block to take details from / fill in

On exit

R0=If V flag set, a pointer to an error block, or a special error code :
Value Meaning

1 Invalid query type - the query was not understood.
2 Invalid query length - the query was understood but its

length was invalid.

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Entry-point is re-entrant

Use

The information routine should be provided by renderers to query
information about the images. The routine should fault invalid queries and
invalid query lengths.

Related SWIs

ImageFileRender_Register, ImageFileRender_Deregister,
ImageFileRender_Info

*Commands

*ImageFileRenderers
List renderers registered with ImageFileRender

Syntax

*ImageFileRenderers

Parameters

None

Use

*ImageFileRenderers is used to list the renderers known to the
ImageFileRender module. This can be used to check which file formats are
available for use with ImageFileRender from the command line.

Example

*ImageFileRenderers &695 00000000 ConvertGIF 0.08 RISCOS Ltd
(via IFC)
&69c 00000000 ConvertBMP 0.05 RISCOS Ltd (via IFC)
&69e 00000000 ConvertPNM 0.02 RISCOS Ltd (via IFC)
&aff 00000000 ImageFileRender 0.25 RISCOS Ltd
&b60 00000000 ConvertPNG 0.09 RISCOS Ltd (via IFC)
&b61 00000000 ConvertXBM 0.06 RISCOS Ltd (via IFC)
&c85 00000000 ImageFileRender 0.25 RISCOS Ltd
&d94 00000000 IFR Artworks 0.08 RISCOS Ltd
&fc9 00000000 ConvertSun 0.05 RISCOS Ltd (via IFC)
&ff9 66990101 ImageFileRender 0.25 RISCOS Ltd

Related SWIs

ImageFileRender_EnumerateRenderers, ImageFileRender_Register

*ImageFileViewer
Sets the default viewer to use for files known to ImageFileRender

Syntax

*ImageFileViewer [<command>]

Parameters

None

Use

*ImageFileViewer is used to register a command which can be used to
view files known to ImageFileRender. The Alias$@RunType_XXX variables
will be set for filetypes known to ImageFileRender which have not already
been set. If no parameter is passed to the command, the default viewer wil

be cleared and all the variables will be unset.

The effect of issuing this command is that any files know to
ImageFileRender which are not recognised by running applications when
double-clicked in Filer (or run explicitly) will cause the command specified
to be run, passing the filename of the file run as the first parameter.

Example

*ImageFileViewer /<ImgViewer$Dir>.!Run -file %*0

Related APIs

None

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
pre-1 AMH Pre-release

• Converted from original text
to XML

pre-2 AMH Pre-release
• Modified

ImageFileRender_BBox to
add sequence number.

• Modified service call names
to Render rather than
Renderer.

• Updated the base details
query.

pre-3 20 Nov 2002 ROL Validated
• XML validated.
• Corrected sections which

were undefined (IRQ, FIQ,
Reentrancy).

pre-4 21 Jan 2003 ROL Misc corrections
• Corrected the DPI size

given for drawfiles.
• Added details of start and

stop operations.
• Finished off remaining

undefined sections.
• Added error message

definitions.

mailto:gerph@gerph.org

pre-5 31 Jan 2003 ROL Added Enumerate SWI
• Added documentation about

EnumerateRenderers SWI.
pre-6 21 Jan 2003 ROL Misc corrections

• Correction for
ImageFileRender_Transform
description.

pre-7 15 Feb 2003 ROL New commands
• Added documentation of

ImageFileRenderers and
ImageFileViewer
commands.

pre-8 06 Apr 2003 ROL Misc corrections
• Added magic error values

for IFR_Info.
• Corrected documentation of

IFR_BBox parameter block.
• Added hyperlinks to

ImageFileRender_Register
and a few related
references.

pre-8 01 May 2004ROL Table correction
• ImageFileRender_Render's

R8 table has been clarified.
1 17 Oct 2020 Gerph Backported text file changes

• Backported changes from
the text version.

• Bitfields for the quality were
incorrectly specified one bit
short (should be bits 6-9)

• Range for query types didn't
actually match up
consistently.

• Renderer name wasn't
specified in the
documentation, although it
was expected for
presentation.

Disclaimer:
Part or all of this document has been worked upon by Andrew Hill
of MH Software as part of the RISC OS Documentation Project.
Those portions are Copyright © MH Software, 2001-2003. They
are to be distributed by RISC OS Ltd. with permission for
publication on the select.riscos.com website and Select CD.
The remainder of this work retains the copyrights stated above.
No responsibility will be borne by MH Software for the accuracy

of this work, nor for any losses which may result from it.

Video drivers (supplement for RISC
OS Pyromaniac)

Contents
• Introduction and Overview
• Technical details

◦ Text operations
◦ Graphics operations

▪ Coordinates
▪ Colour operation
▪ Graphics context

◦ Pointer operations
◦ Mode operations
◦ Teletext operations
◦ Display device registration

• Software vectors
◦ Vector VideoV
◦ Vector VideoV 0 - Text_ChangeDestination
◦ Vector VideoV 1 - Text_DefineChar
◦ Vector VideoV 2 - Text_SetTextColour
◦ Vector VideoV 3 - Text_WriteTextChar
◦ Vector VideoV 4 - Text_TextCursor
◦ Vector VideoV 5 - Text_ClearBox
◦ Vector VideoV 16 - Graf_SetColour1
◦ Vector VideoV 17 - Graf_SetColour2
◦ Vector VideoV 18 - Graf_ChangeDestination
◦ Vector VideoV 19 - Graf_ChangeBase
◦ Vector VideoV 20 - Graf_ReadPrimitives
◦ Vector VideoV 21 - Graf_Rectangle
◦ Vector VideoV 22 - Graf_Triangle
◦ Vector VideoV 23 - Graf_Parallelogram
◦ Vector VideoV 24 - Graf_BlockCopy
◦ Vector VideoV 25 - Graf_CircleOutline
◦ Vector VideoV 26 - Graf_CircleFill
◦ Vector VideoV 27 - Graf_CircleArc
◦ Vector VideoV 28 - Graf_CircleSegment
◦ Vector VideoV 29 - Graf_CircleSector
◦ Vector VideoV 30 - Graf_EllipseOutline
◦ Vector VideoV 31 - Graf_EllipseFill
◦ Vector VideoV 32 - Graf_FillRight
◦ Vector VideoV 33 - Graf_FillLeftAndRight
◦ Vector VideoV 34 - Graf_FillFlood

◦ Vector VideoV 35 - Graf_PolyHLine
◦ Vector VideoV 512 - Pointer_Define
◦ Vector VideoV 513 - Pointer_Select
◦ Vector VideoV 514 - Pointer_Update
◦ Vector VideoV 515 - Pointer_Remove
◦ Vector VideoV 516 - Pointer_SetPalette
◦ Vector VideoV 768 - Mode_VetMode
◦ Vector VideoV 769 - Mode_SetMode
◦ Vector VideoV 770 - Mode_Scroll
◦ Vector VideoV 771 - Mode_SetPalette
◦ Vector VideoV 772 - Mode_Enable
◦ Vector VideoV 773 - Mode_Disable
◦ Vector VideoV 774 - Mode_PowerSave
◦ Vector VideoV 775 - Mode_SetRGBTable
◦ Vector VideoV 776 - Mode_AccelConfigure
◦ Vector VideoV 777 - Mode_AccelControl
◦ Vector VideoV 778 - Mode_DisplaySelect
◦ Vector VideoV 800 - Mode_BankCount
◦ Vector VideoV 801 - Mode_BankDisplay
◦ Vector VideoV 802 - Mode_BankDriver
◦ Vector VideoV 803 - Mode_BankCopy
◦ Vector VideoV 1024 - TTX_Init
◦ Vector VideoV 1025 - TTX_ClearBox
◦ Vector VideoV 1026 - TTX_Update
◦ Vector VideoV 1027 - TTX_WriteChar
◦ Vector VideoV 1028 - TTX_Scroll
◦ Vector VideoV 1029 - TTX_FlashState
◦ Vector VideoV 1030 - TTX_ReadChar
◦ Vector VideoV 1031 - TTX_TextCursor
◦ Vector VideoV 1032 - TTX_SetQuality
◦ Vector VideoV 1033 - TTX_RevealState

• Entry points
◦ VideoV_Context_HLine
◦ VideoV_Context_Point

Introduction and Overview
The video system was traditionally been part of the RISC OS Kernel.
However, this overly complicated the assembler portion of the Kernel,
made new hardware harder to support, and meant that providing more
flexible and faster rendering was significantly impeded. In RISC OS Select
3, the video system was moved out of the Kernel and became a set of
regular modules.

There are a number of parts of the video system which were handled by
the RISC OS Kernel, and which have been made available through a
standard RISC OS vector. These parts are, from lowest level to highest

level:

• Mode and frame buffer initialisation. These are handled by a
hardware driver such as VideoHWVIDC, VideoHWVF or
VideoHWPL110.

• Pointer operations. These are usually handled by the hardware
driver.

• VDU 4 text. These are, by default, handled by the software driver,
VideoSW, but may be accelerated.

• Graphics operations. These are also handled by the software driver.
• Sprite operations. These are still handled by the Kernel, but are

already vectored through SpriteV.
• Teletext operations. These are handled by the VideoTTX module.

This separation makes the maintenance of the video system much easier,
and allows runtime modifications to its behaviour. In additioon, the video
system has been extended to allow for multiple displays by allowing a
separate driver to take over the graphics system. Although in RISC OS
Select this was a limited operation, allowing only a single active display at
any time, the framework provided allows for greater flexibility in the
future.

Technical details
The graphics system has been split up in modern versions of RISC OS. The
intention of the division of the system is to allow for accelerated graphics
drivers. Graphics operations will be passed to drivers using the new
VideoV vector (&2C). The operation to be performed is passed in a fixed
register to the vector.

The reason codes for the vector are grouped into the major regions that
they cover:

• &000 - &00F - Text (VDU 4) operations
• &010 - &1FF - Graphics (OS_Plot and similar) operations
• &200 - &2FF - Pointer operations
• &300 - &3FF - Mode and display driver operations
• &400 - &4FF - Teletext operations

Text and graphics operations are provided by the VideoSW module on the
VideoV vector. Should there be no accelerated handler earlier on the
vector the VideoSW driver will provide the operation.

Text operations

Text operations may be accelerated by the driver, or if no implementation
is provided they will be provided by the VideoSW module. Drivers should

pay attention to the current display start as set with VideoV 18 in order to
know whether their display, or a sprite output has been selected.

Graphics operations

Graphics operations may be accelerated by the driver, or if no
implementation is provided they will be provided by the VideoSW module.
Drivers should pay attention to the current display start as set with VideoV
18 in order to know whether their display, or a sprite output has been
selected.

Coordinates

All coordinates passed to the functions have taken account of the eigen-
factors for the output. They describe the pixels from the bottom left corner
of the output. Many interfaces will require that these coordinates be
inverted by subtracting them from the screen height to get the offset from
the top of the screen. Coordinates are signed.

Colour operation

The graphic operations may use a special values in R6 to indicate the type
of colour operation being performed. Whilst these may be a fixed 'OR-EOR'
pattern (see VideoV 16 and VideoV 17 for more details), they may also
take one of 4 special values. Clients may use these values as a short hand
notation to remove the need to check on every graphic operation the
whether the operation can be accelerated or not. The values are :

Value Meaning
0 No effect - the operation can just return
1 Use the last set Colour 1
2 Use the last set Colour 2
3 Invert destination

Any value other than these special values is a pointer to an ECF. If either
of bit 0 or 1 is set on these pointers it should be ignored by the driver. This
allows for future expansion.

Graphics context

The graphics operations may use a block in R7 to determine the current
graphics context. This contains a number of values which may vary
between calls. Clients should check these against each operation.

Offset Contents
+0 Graphics clipping window x-min (inclusive)
+4 Graphics clipping window y-min (inclusive)
+8 Graphics clipping window x-max (exclusive)

+12 Graphics clipping window y-max (exclusive)
+16 Function to call to render a bounded horizontal line
+20 Function to call to render a unbounded horizontal line
+24 Function to call to render a bounded point
+28 Function to call to render a unbounded point

The functions for bounded and unbounded point rendering have the same
interface, but the bounded entry points should clip the rendering to the
supplied clipping window.

Pointer operations

Pointer operations are generated by the OSPointer module. The hardware
driver should provide an implementation which does not affect the screen
buffer (for example, by hardware overlay).

Mode operations

The mode operations are generally only handled by hardware drivers.
Each driver will usually decide whether to handle the operation based on
the display number. The only exception to this is the display selection
entry point which must be handled by all clients in order to determine
whether the display is selected.

Teletext operations

Teletext operations are provided as a software supported device driver.
Once a teletext mode has been selected, the teletext operations will be
passed through the vector in place of the standard text operations. A few
of the operations have been modified in order to provide more specialised
operations in the teletext modes. Only a single teletext mode is ever in use
at any time. Sprite redirection does not allow for teletext within sprite
images.

Display device registration

Display devices should register themselves with the Operating System
using OS_ScreenMode 255, and deregister when they have been
terminated with OS_ScreenMode 254.

The order of operations for a display driver on initialisation should be
along the lines of:

• Set private display number variable to -1.
• Initialise any video hardware to a functioning, but disabled state.

This may include setting up a display buffer.
• Claim VideoV vector.
• Construct a display device descriptor for the hardware.
• Call OS_ScreenMode 255 to register the display.
• If an error was returned, release all resources and exit with the

error.
• Set private display number variable to the value returned.
• Store the VSync dispatcher and its workspace pointer for use later
• If R3 was set to 1, issue OS_ScreenMode 11 to select the display

number supplied.
• If an error was returned from the display selection, attempt to

select a known supported mode with OS_ScreenMode 0. If a further
error is returned, release all resources and exit with the error.

• Complete initialisation and return with no error.

During finalisation it is important that the device shut itself down safely.
The following sequence is recommended:

• Set the private display number variable to -1, such that no vector
calls will be interpreted and that VSyncs will no longer be triggered
by the driver.

• Release the VideoV vector to prevent any other calls being serviced.
• Disable VSyncs for the hardware.
• Call OS_ScreenMode 254 to deregister the display.
• Release other hardware resources, shutting the hardware down to

its most quiescent state.
• Release any other claimed resources.
• Complete finalisation and return with no error.

During the reset sequence, Service_PreReset will be issued. As with other
hardware drivers, the hardware should be placed into a quiescent state,
and interrupts disabled where necessary. The driver should place itself in
a state similar to that of finalisation, except that the VideoV vector may be
called and operations on the display buffer may still be performed by other
components. Hardware may not have any reset lines asserted or similar
within the system and it must be possible for the initialisation sequence to
successfully start the hardware from the state which Service_PreReset
placed it.

Details of OS_ScreenMode 255, 254 and the display device descriptor can
be found in the OSScreenMode documentation.

Software vectors

VideoV
(Vector &2C)

Graphics operation abstraction

On entry

R0-6=Dependant on reason code
R7=Display number (where relevant)
R8=

Reason code

Value Meaning
0 Notifies the text system when redirection occurs
1 Defines the bitmap of a text character
2 Change the colour used for rendering text
3 Render a character on the screen
4 Render a cursor on the screen
5 Clear a region of the screen for text

16 Selects a colour to use as the primary drawing colour
17 Selects a colour to use as the secondary drawing colour

(background)
18 Notifies the graphics system when redirection occurs
19 Notifies the graphics system that the destination base has

changed
20 Read primitive operations to use for the current output
21 Render a rectangle
22 Render a triangle
23 Render a parallelogram
24 Copy a rectangle
25 Render the outline of a circle
26 Render a filled circle
27 Render the outline of an circle arc
28 Render a filled segment of a circle

29 Render a filled sector of a circle
30 Render the outline of an ellipse
31 Render a filled ellipse
32 Fill a line right from a position
33 Fill a line left and right from a position
34 Flood fill a region
35 Fill multiple horizontal lines

512 Define a pointer shape
513 Select a pointer for use
514 Updates the location of the pointer on the screen
515 Removes the pointer from the screen
516 Set a colour used by the pointer
768 Check the validity of a mode
769 Select a screen mode for use
770 Hardware scroll of the display
771 Change displayed colours in paletted modes
772 Enable display hardware
773 Disable display hardware
774 Select a power saving mode for the display
775 Modify RGB mapping tables (gamma tables)
776 Configure acceleration options
777 Immediate control operations for acceleration
778 Select a display for use
800 Read number of supported screen banks
801 Change the displayed screen bank
802 Change the screen bank used by VDU drivers
803 Copy a screen bank

1024 Initialise teletext mode
1025 Clear a region of the display
1026 Update the frame buffer with teletext changes
1027 Write a character to the teletext screen
1028 Scroll a region of the teletext buffer
1029 Change the flash state of the teletext buffer

1030 Read a character from the teletext buffer
1031 Invert the text cursor in the teletext screen
1032 Change the quality of teletext rendering
1033 Change the reveal state for hidden characters

On exit

R0-7=Dependant on reason code

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

The vector should be claimed when it is handled entirely within the driver.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Only teletext calls are issued by the graphics system.

Related APIs

None

VideoV 0
(Vector &2C)

Notifies the text system when redirection occurs

On entry

R0=pointer to the base of the destination (DisplayStart)
R1=line length for this destination (LineLength)
R2=maximum height in text lines (ScrBRow)
R3=destination log2bpp depth (Log2BPP)
R4=mode flags for destination (ModeFlags)
R8=0 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called a new destination has been selected for output. In
particular, it will be called on mode change and sprite redirection. Clients
should initialise any variables which are necessary for their operation.
Clients wishing to handle the entire Text interface may claim this call
point, but it is strongly recommended that the call be passed on.

The mode flags will indicate any special features which are present in the
mode specified. In particular:

Bit(s) Meaning

2
'Gap mode', indicating that characters will be spaced 9 rows
apart, rather than 8 - leaving a single line which will not be
written to.

This flag is deprecated and support is not required of any clients.

3
'BBC gap mode', should be treated as identical to Bit 2.

This flag is deprecated and support is not required of any clients.

5
Double height-VDU characters, indicating that characters should
be written 16 units high, rather than 8

This flag is deprecated and support is not required of any clients.

This vector should never be claimed.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 1
(Vector &2C)

Defines the bitmap of a text character

On entry

R0=the character to define (32-255)
R0=pointer to word aligned 8 bytes to use as the character
R8=1 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to define a character. Clients should normally make a
note of the changes and pass this call on.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 2
(Vector &2C)

Change the colour used for rendering text

On entry

R0=foreground screen colour
R1=background screen colour
R2=BPP of the current mode
R8=2 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called whenever the text colour has been changed and text
output is about to be performed. It is expected that clients initialise any
cached data they require in order to render characters in the new colours.
The colours supplied are values to be written to the screen for that pixel,
for example, in 2 BPP modes, a foreground colour of 3 would be used to
indicate that all pixels set for that character would use the value 3 in
memory. Clients may need to replicate these bits across a word in order to
perform operations more rapidly, however implementation details are left
to the client's discretion.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV, VideoV 3

VideoV 3
(Vector &2C)

Render a character on the screen

On entry

R0=character to write (32-255)
R1=pointer to address of top left pixel to write (word aligned) on the

screen
R2=character x (origin top left)
R3=character y (origin top left)
R8=3 (reason code)

On exit

R0-8corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to render a character on the screen at a text position.
Characters are 8x8 pixels in all modes and should be rendered in the
colours specified by VideoV 2. Unset pixel data for the character should
use the background colour, and set pixel data for the character should use
the foreground colour. Registers R2 and R3 are provided for clients which
require the actual pixel position to render the character.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 4
(Vector &2C)

Render a cursor on the screen

On entry

R0=composite cursor position (&SS0000EE)
R1=pointer to address of top left pixel for the character (word aligned)

on the screen
R2=character x (origin top left)
R3=character y (origin top left)
R4=offset of start of the cursor, from R1
R5=offset of line after the end of the cursor, from R1
R8=4 (reason code)

On exit

R0-8corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to render a 'cursor' at a text position. This should be
an inverted rectangle which spans the lines of the character requested by
R0, or R4 and R5. The composite cursor mask is provided for clients which
use the pixel position of the character to render the shape. The cursor
should be rendered at the character specified by inverting the current
contents of that location. The vector will be called repeatedly in order to
'flash' the cursor. In 'split' editing mode, the vector will be called to render
whichever cursor requires redrawing.

The composite cursor position indicates the start and end lines of the

cursor by the SS and EE values. The EE value is the last line that should
be drawn. Thus, SS=6, EE=7 would invert lines 6 and 7 within the
character. Similarly, SS=8, EE=9 would invert lines 8 and 9 within the
character. Line 8 and 9 are only applicable to gap-modes.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 5
(Vector &2C)

Clear a region of the screen for text

On entry

R0=
pointer to box description

Offset Contents
+0 left char x
+4 bottom char y

+12 right char x
+16 top char y
+20 top left address to start at (might be byte aligned)
+24 number of bytes to fill per line (might be byte aligned;

usually will be the same as LineLength)
+28 number of lines to fill
+32 character line size (8, 10, 16, 20)
+36 fill word for first 8/16 lines of each character
+40 fill word for subsequent lines (gap fill)

R8=5 (reason code)

On exit

R0-8corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to clear a region of the text window. The supplied
description block gives the character positions, and the memory positions
which require clearing. The clear operation should be performed using the
fill words given in +36 and +40. These words will be the same unless the
user is in a BBC-style gap mode. Such modes are not expected to be used
by clients in the future and support may be omitted from accelerated
modules. The software implementation provides support for all
combinations.

As with other text operations, the character positions are specified with
their origin at the top left.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 16
(Vector &2C)

Selects a colour to use as the primary drawing colour

On entry

R0=action type, for information purposes
R1=

pointer to OR-EOR pattern to use

Offset Contents
+0 Value to OR in word for line 0
+4 Value to EOR in word for line 0
+8 Value to OR in word for line 1

+12 Value to EOR in word for line 1
+16 Value to OR in word for line 2
+20 Value to EOR in word for line 2
+24 Value to OR in word for line 3
+28 Value to EOR in word for line 3
+32 Value to OR in word for line 4
+36 Value to EOR in word for line 4
+40 Value to OR in word for line 5
+44 Value to EOR in word for line 5
+48 Value to OR in word for line 6
+52 Value to EOR in word for line 6
+56 Value to OR in word for line 7
+60 Value to EOR in word for line 7

R8=&10 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to set the primary colours to use for plotting graphics
operations. Clients should record the details. They may pre-cache the
values after determining whether they can handle the operation type.

Lines are measured from the top left of the screen and should be ANDed
with 7. Consult the example VideoSW code for more details (s/GrafPoint
gives an obvious use).

Whilst many store and invert operations will be simple to accelerate within
drivers, the more complex operations may be deferred to the software
driver where necessary. In particular, drivers should be aware that the
operation pattern may not correspond directly to any PLOT reason code.
Users may manually select different colour operations for different bit
regions or lines.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV, VideoV 16

VideoV 17
(Vector &2C)

Selects a colour to use as the secondary drawing colour (background)

On entry

R0=action type, for information purposes
R1=pointer to OR-EOR pattern to use, as for VideoV 16
R8=&11 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to set the secondary colour used for graphics
operations. This is commonly called the 'background colour'. The
operation is identical to that of VideoV 16.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV, VideoV 16

VideoV 18
(Vector &2C)

Notifies the graphics system when redirection occurs

On entry

R0=
pointer to context information

Offset Contents
+0 Mode flags
+4 Text screen width-1
+8 Text screen height-1

+12 Number of colours
+16 X-eigen factor
+20 Y-eigen factor
+24 Line length
+28 Total output size
+32 Base of the output buffer
+36 Log2 Bits Per Pixel
+40 Log2 Bits Per Addressable Pixel (hang-over from double-

width pixel modes)
+44 Graphics screen width-1
+48 Graphics screen height-2

R1=0 if the destination is the screen, otherwise the destination is a sprite
R8=&12 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called whenever the output changes destination, usually due
to a mode change or sprite redirection. Drivers should cache the context
information for use within other calls. This vector should never be
claimed.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 19
(Vector &2C)

Notifies the graphics system that the destination base has changed

On entry

R0=pointer to base of the buffer
R8=&13 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called when the output destination base address has
changed. It may be called under a number of circumstances, including
sprite deletion, mask changes and hardware scrolling. Drivers should
make a note of the new address and base all their calculations from it.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 20
(Vector &2C)

Read primitive operations to use for the current output

On entry

R0=pointer to where to store HLine handler (r12, function)
R1=pointer to where to store Point handler (r12, function)
R2=pointer to where to store VLine handler (r12, function)
R8=&14 (reason code)

On exit

R0=new pointer to where to store HLine details at
R1=new pointer to where to store Point details at
R2=new pointer to where to store VLine details at
R3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to read the primitive operations which can be used to

render a horizontal line, a point and a vertical line. Since these operations
are expected to be called regularly it is important that they be fast. Rather
than using the vector dispatch for every line or point to be rendered, a
single function dispatch can be used - obviating the need for a SWI call,
and subsequent vector dispatch. Consult the Graf_ReadPrimitives source
for more details of the operation.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 21
(Vector &2C)

Render a rectangle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x-min (inclusive)
+4 y-min (inclusive)
+8 x-max (exclusive)

+12 y-max (exclusive)

R6=Colour operation
R7=pointer to Graphics context
R8=&15 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a rectangle. Clients should bound the
coordinates if necessary and then plot the rectangle.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 22
(Vector &2C)

Render a triangle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x0
+4 y0
+8 x1

+12 y1

+16 x2
+20 y2

R6=Colour operation
R7=pointer to Graphics context
R8=&16 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a triangle. Clients should plot the triangle,
bounded by the coordinates given.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 23
(Vector &2C)

Render a parallelogram

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x0
+4 y0
+8 x1

+12 y1
+16 x2
+20 y2

R6=Colour operation
R7=pointer to Graphics context
R8=&17 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a parallelogram. Clients should plot the
parallelogram, bounded by the coordinates given. The coordinates given
are in no particular order. The fourth verex can be calculated from the
other three.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 24
(Vector &2C)

Copy a rectangle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 source x0
+4 source y0
+8 source x1

+12 source y1
+16 destination x0
+20 destination y0
+24 destination x1
+28 destination y1

R6=Colour operation
R7=pointer to Graphics context
R8=&18 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to copy a rectangle from part of the display
elsewhere. No context or colour operation is provided. The region has
already been bounded to the screen and graphics window (both the source
and destination are guarenteed to be within the buffer). The source data,
where not overwritten, should be unaffected by the copy operation.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 25
(Vector &2C)

Render the outline of a circle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x edge

+12 y edge

R6=Colour operation

R7=pointer to Graphics context
R8=&19 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 26
(Vector &2C)

Render a filled circle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre

+4 y centre
+8 x edge

+12 y edge

R6=Colour operation
R7=pointer to Graphics context
R8=&1A (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a circle. Clients should plot the circle, bounded
by the coordinates supplied if necessary.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 27
(Vector &2C)

Render the outline of an circle arc

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x start

+12 y start
+16 x end
+20 y end

R6=Colour operation
R7=pointer to Graphics context
R8=&1B (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to draw an arc. Clients should plot the arc, bounded

by the coordinates supplied if necessary. The coordinate order and
meaning is identical to that used by the PLOT arc operation. That is, first
coordinate pair indicates the centre of the circle, the second pair provides
the start position on the edge of the circle, and the final pair provides the
end position as a point on a line that intersects the circle. The arc should
be drawn anti-clockwise.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 28
(Vector &2C)

Render a filled segment of a circle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x start

+12 y start
+16 x end
+20 y end

R6=Colour operation
R7=pointer to Graphics context
R8=&1C (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to draw a segment. Clients should plot the segment,
bounded by the coordinates supplied if necessary. The coordinate order is
the same as VideoV 27. A segment fills the arc shape, closing it with a line
from the start position to the intersection of the end position line and the
circle.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 29
(Vector &2C)

Render a filled sector of a circle

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre

+8 x start
+12 y start
+16 x end
+20 y end

R6=Colour operation
R7=pointer to Graphics context
R8=&1D (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to draw a sector. Clients should plot the sector,
bounded by the coordinates supplied if necessary. The coordinate order is
the same as VideoV 27. A segment fills the arc shape, closing it with a pair
of lines from the start position to the centre of the circle, and from the
intersection of the end position line and the circle to the centre of the
circle. The shape is often known as a 'pie' from the common shape
produced by removing sections from pies.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 30
(Vector &2C)

Render the outline of an ellipse

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x width

+12 ignored
+16 x limit point
+20 y limit point

R6=Colour operation
R7=pointer to Graphics context
R8=&1E (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to draw an ellipse. Clients should plot the ellipse,
outline bounded by the coordinates supplied if necessary. The coordinate
order is the same as the equivilent PLOT ellipse operation. That is, the
first pair gives the centre position of the ellipse, the second pair gives the
width of the ellipse at centre line (the y coordinate is ignored), and the
final pair gives the position of the top-most, or bottom-most limit of the
ellipse.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 31
(Vector &2C)

Render a filled ellipse

On entry

R0=
pointer to coordinate block:

Offset Contents
+0 x centre
+4 y centre
+8 x width

+12 ignored
+16 x limit point
+20 y limit point

R6=Colour operation
R7=pointer to Graphics context
R8=&1F (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to draw an ellipse. Clients should plot the solid
ellipse, bounded by the coordinates supplied if necessary. The coordinate
order is as for the VideoV 30 operation.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 32
(Vector &2C)

Fill a line right from a position

On entry

R0=x start
R1=y start
R2=delimiting colour

R3=
delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour

R6=Colour operation
R7=pointer to Graphics context
R8=&20 (reason code)

On exit

R0corrupted
R1=right x position where fill ended
R2corrupted
R3=1 if anything was filled, 0 if nothing was filled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a line right until a given condition is met
(denoted by R2 and R3).

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 33
(Vector &2C)

Fill a line left and right from a position

On entry

R0=x start
R1=y start
R2=delimiting colour
R3=

delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour

R6=Colour operation
R7=pointer to Graphics context
R8=&21 (reason code)

On exit

R0=left x position where fill ended
R1=right x position where fill ended
R2corrupted
R3=1 if anything was filled, 0 if nothing was filled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to fill a line left and right until a given condition is
met (denoted by R2 and R3).

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 34
(Vector &2C)

Flood fill a region

On entry

R0=x start
R1=y start
R2=delimiting colour
R3=

delimiting condition:

Value Meaning
0 fill to delimiting colour

&80000000 fill to non-delimiting colour

R6=Colour operation
R7=pointer to Graphics context
R8=&22 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to perform a flood fill operation, stopping at a given
condition (denoted by R2 and R3).

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 35
(Vector &2C)

Fill multiple horizontal lines

On entry

R0=
pointer to buffer of horizontal line segments:

Offset Contents
+0 number of horizontal lines to draw
+4 1st horizontal line segment: x left position
+8 1st horizontal line segment: y position

+12 1st horizontal line segment: x right position
+16... Subsequent horizontal line segments

R6=Colour operation
R7=pointer to Graphics context
R8=&23 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to perform many horizontal line fill operations as a
single step. The block supplied must be copied if the driver is intending to
buffer these operations. Because this call is always issued through the
vector, clients should try to ensure that it is worthwhile calling using this
interface rather than the direct HLine interface (see
OS_ReadVduVariables).

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 512
(Vector &2C)

Define a pointer shape

On entry

R0=width
R1=pointer to pointer data

R2=height
R6=pointer number to define (0-3)
R7=display number
R8=&200 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to define one of the 4 pointer shapes. Pointer shapes
are pre-compensated for the 'active' position.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 513
(Vector &2C)

Select a pointer for use

On entry

R0=pointer number

R7=display number
R8=&201 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to select one of the pointers for use. Only one pointer
is ever displayed at a time.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 514
(Vector &2C)

Updates the location of the pointer on the screen

On entry

R0=height of the pointer
R1=y coordinate
R2=x coordinate

R3=screen height
R7=display number
R8=&202 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to update the location of the pointer on the screen.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 515
(Vector &2C)

Removes the pointer from the screen

On entry

R3=screen height
R7=display number
R8=&203 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to remove the pointer from the screen.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 516
(Vector &2C)

Set a colour used by the pointer

On entry

R0=colour number to update
R1=colour number in form &00BBGGRR
R7=display number
R8=&204 (reason code)

On exit

R0-3corrupted

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to set the colour of the pointer.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 768
(Vector &2C)

Check the validity of a mode

On entry

R0=pointer to a VIDC type 3 table
R1=memory required for the mode
R7=display number
R8=&300 (reason code)

On exit

V
flag If set, indicates an error. The usual error pointer may be supplied in

R0, or if R0 is set to 0 this indicates that a generic error will be
returned.

If clear, indicates the mode is acceptable.

R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to check the validity of a mode prior to selecting it.
Drivers should reject modes which they are incapable of displaying.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 769
(Vector &2C)

Select a screen mode for use

On entry

R0=pointer to a VIDC type 3 table
R1=memory required for the mode
R7=display number
R8=&301 (reason code)

On exit

R0=Pointer to base of screen area
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to select a screen mode for use. It has already passed
the vetting procedure above so should be able to be selected.

Drivers should perform the following actions on a mode change:

• Default to the first screen bank for display and driver
• Release any claimed memory for alternate screen banks
• Clear the palette to black

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 770
(Vector &2C)

Hardware scroll of the display

On entry

R0=number of scanlines to move down by (may be negative to scroll up)
R1=number of bytes to which this equates
R2=background colour (word) to fill lines with
R3=background colour (word) to fill 'gaps' with
R7=display number
R8=&302 (reason code)

On exit

R0=address of screen base, or 0 if hardware scroll is not supported.
The address may be the same as the current base if the operation
can be performed with acceleration (ie a 'move' operation). The
address should be in the lower mapping of the screen buffer if a
doubly mapped area is in use.

R1=
State of exposed region:

Value Meaning
1 the exposed region has been cleared to the requested

background
0 the exposed region has not been cleared and must be

cleared by the OS

R2-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to request a hardware scroll of the device. The scroll
may be a change of the base of the area, as used by the VIDC driver, or an
accelerated copy operation. Drivers can just ignore this operation, or
return 0 for both R0 and R1 to indicate that the hardware scroll is not
supported. The Kernel can perform the necessary operations if they are
not supported by the driver.

Note: (R0 AND NOT 7) lines should be filled with R2.
(R0 AND 7) lines should be filled with R3.

This allows the system to provide gap modes in the same manner as the
BBC did.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 771
(Vector &2C)

Change displayed colours in paletted modes

On entry

R0=
0-255 for regular palette entries
256 for 'border'

R1=colour in form &0sBBGGRR, where 's' indicates a supremacy nibble
which may be used for hardware masking operations. Its default will
be 0.

R7=display number
R8=&303 (reason code)

On exit

R0-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to change the displayed colours. The operation of
regular palette entries is defined within paletted modes only. Drivers or
hardware not supporting the screen 'border' colour should ignore the
operation. Drivers which cannot provide the full 24bit colour specification
should make best effort to match the colours requested. The colours
should be transformed by any RGB tables specified in a separate call if the
hardware does not support any specific transformation configuration.

Where RGB tables are not supported by the hardware, it will be necessary
to take a copy of the palette entries.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 772
(Vector &2C)

Enable display hardware

On entry

R7=display number
R8=&304 (reason code)

On exit

R0-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to enable the display hardware. This operation is
intended to allow components to restart the display hardware for client
defined reasons. The Portable module may use this to control the power to
the hardware when requested.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 773
(Vector &2C)

Disable display hardware

On entry

R7=display number
R8=&305 (reason code)

On exit

R0-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to disable the display hardware. This operation is
intended to allow components to shut down and restart the display
hardware for client defined reasons. The Portable module may use this to
control the power to the hardware when requested.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 774
(Vector &2C)

Select a power saving mode for the display

On entry

R0=
power saving state:

Value Meaning
-1 D0 DPMS state - Normal operation, display enabled
0 D0 DPMS state - No DPMS but display disabled if possible

(rest of the system will blank palette in this state; VIDC will
disable disable refresh and DMA in this state)

1 D1 DPMS state - 'Standby'
2 D2 DPMS state - 'Suspend'
3 D3 DPMS state - 'Active off'
4 DPMS state supplied in modes VIDC type 3 table (ie

'default')
other will not be used

R7=display number
R8=&306 (reason code)

On exit

R0-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to select an immediate power-save mode should be
entered. Regardless of whether this call is handled or not, the palette will
be set to black. Drivers should expect to get palette operations whilst

blanked. They may wish to ignore these.

The state values (with the exception of -1) are directly modelled after the
DPMS states. -1 can be treated as equivilent to 0 for the purposes of H/V
sync control.

If mapping directly to HSync and VSync lines, these values are:

Value Meaning
0 HSync On, VSync On
1 HSync Off, VSync On
2 HSync On, VSync Off
3 HSync Off, VSync Off

Hardware may promote or demote these settings as it sees fit, but this
should be documented in hardware documentation as appropriate.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 775
(Vector &2C)

Modify RGB mapping tables (gamma tables)

On entry

R0=
pointer to 768 byte table of R, G, B mappings

R7=display number
R8=&307 (reason code)

On exit

R0-3corrupted

R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to modify the RGB mapping tables, through which the
palette entries will be transformed. The palette should be affected
immediately. Where the hardware does not support RGB mapping tables it
will be necessary to translate all palette operations through the tables. It
is expected that unpaletted modes (16bpp, 32bpp) support this operation,
even though they do not use palette entries.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 776
(Vector &2C)

Configure acceleration options

On entry

R0=
configuration flags, or -1 to read current state:

Bit(s) Meaning

0 suspend cached screen until mode change
1 suspend automatic screen cleaning until mode change
2 disable all hardware acceleration

3-30 reserved, must be 0
31 must be set

R1=automatic screen cleaning level, 1-3 or -1 to read current state
R7=display number
R8=&308 (reason code)

On exit

R0=new or current flags, modified to acceptable values
R1=new or current automatic cleaning level

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to control the generic acceleration options provided
by the video driver. The core acceleration options are to provide a CPU
cached screen. One effect of CPU cached screen is an undesirable delay on
data being written to the physical screen memory from the processor. This
data should be flushed by the driver regularly, if it detects that data has
been written to the screen. It is usual to use abort trapping, domain
mapped dynamic areas to manage this process (consult the example VIDC
driver).

Bit 0 and 1 can be used to suspend this operation until the next mode
change. Clients will probably use this for specialised tasks to ensure that
their output is immediately visible, such as within games or high
responsiveness applications.

Bit 2 is intended to allow clients to disable all hardware acceleration.
Whilst this is generally not desirable, it may be useful to clients who either
believe there to be faults within the hardware acceleration or who wish to
determine the difference made by hardware acceleration. Hardware
acceleration is should not be re-enabled by a mode change as the client
may wish to examine mode change timings, or it may be believed that
mode change acceleration is faulty.

This vector call is triggered by OS_ScreenMode 4.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 777
(Vector &2C)

Immediate control operations for acceleration

On entry

R0=
operation:

Value Meaning
0 clean cache immediately, if necessary and not suspended
1 clean cache immediately, if necessary

other reserved

R1-6=dependant on reason code
R7=display number
R8=&309 (reason code)

On exit

R1-6=dependant on reason code
R7=display number

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to cause the screen to be made up to date if necessary
such that the data written to it is visible to the user. It is likely that these
operations will be used by games. The WindowManager will use this call at
the end of a series of redraw operations.

This vector call is triggered by OS_ScreenMode 5 and 6 at present.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 778
(Vector &2C)

Select a display for use

On entry

R7=display number
R8=&30A (reason code)

On exit

R7=display number

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to inform display device drivers of a device selection.
Drivers should claim VSync interrupts when they are enabled and begin
generating VSyncs through the VSync dispatch entry point returned when
they registered with OS_ScreenMode 255. Drivers should release the
VSync interrupts when another device is selected.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 800
(Vector &2C)

Read number of supported screen banks

On entry

R0=size of current mode, in bytes
R7=display number
R8=&320 (reason code)

On exit

R0=number of banks available (1 if only a single bank available)

R1-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to request the number of screen banks that can be
supported by the current configuration of the display. The driver should
return the maximum number of banks that may be supported at the
instant that the request was made. Subsequent driver operations may
cause this value to change.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 801
(Vector &2C)

Change the displayed screen bank

On entry

R0=bank to display (0 .. max-1)
R1=size of current mode, in bytes
R7=display number
R8=&321 (reason code)

On exit

R0=bank we are displaying
R1=pointer to address of bank
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to request a change of display bank. The display bank
is presented to the user. Both display and driver banks should be available
in memory simultaneously once selected and may both be written to
directly. They may be coincident. Once requested (and the request
honoured), the Driver should maintain the memory allocated for that bank
until the next mode change. Drivers are not required to page all available,
or used, banks into logical memory at any time. At the drivers discretion it
may remove mappings a bank which is not the driver or display from
logical memory. Clients are not expected to access banks which are not
selected. Drivers are not expected to support hardware scrolling of any
bank but the display bank. Selection of a pre-existing bank should not
clear its contents.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 802
(Vector &2C)

Change the screen bank used by VDU drivers

On entry

R0=bank to update through VDU drivers (0 .. max-1)
R1=size of current mode, in bytes
R7=display number
R8=&322 (reason code)

On exit

R0=bank we are displaying
R1=pointer to address of bank
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to request a change of driver bank. The driver bank is
presented to the video drivers for writing to. Both display and driver banks
should be available in memory simultaneously once selected and may both
be written to directly. They may be coincident. Once requested (and the
request honoured), the Driver should maintain the memory allocated for
that bank until the next mode change. Drivers are not required to page all
available, or used, banks into logical memory at any time. At the drivers
discretion it may remove mappings a bank which is not the driver or
display from logical memory. Clients are not expected to access banks
which are not selected. Drivers are not expected to support hardware
scrolling of any bank but the display bank. Selection of a pre-existing bank
should not clear its contents.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 803
(Vector &2C)

Copy a screen bank

On entry

R0=source bank number (0..max-1)
R1=destination bank number (0..max-1)
R2=size of current mode, in bytes
R7=display number
R8=&323 (reason code)

On exit

R2-3corrupted
R7=-1 if handled

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called when a client requests a copy of a screen bank be
made. If the destination bank has not yet been allocated it should be

allocated. The banks requested need not be paged in to logical memory.
Drivers which require the banks to be paged in to logical memory for the
copy to take place should take the necessary steps to achieve this. This
operation must not affect any other bank by the destination. Clients are
expected to perform a bank switch to update the display bank, rather than
a bank copy.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

Related vectors

VideoV

VideoV 1024
(Vector &2C)

Initialise teletext mode

On entry

R0=requested maximum text columns (ScrRCol)
R1=requested maximum text rows (ScrBRow)
R2=maximum horizontal pixel coordinate (XWindLimit)
R3=maximum vertical pixel coordinate (YWindLimit)
R4=x eigen factor
R5=y eigen factor
R7=display number
R8=&400 (reason code)

On exit

R0=acceptable text columns
R1=acceptable text rows

R2-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to initialise teletext mode. The values supplied in R0
and R1 are the requested number of columns and rows for the mode. The
driver should either fit those values within the graphics limitations of the
mode, or modify the values to be acceptable before return. The frame
buffer does not need to be initialised.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1025
(Vector &2C)

Clear a region of the display

On entry

R0=left char x
R1=bottom char y
R2=right char x
R3=top char y
R7=display number
R8=&401 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to clear a region of the display. It is used after mode
selection and for CLS operations. The frame buffer does not need to be
updated.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1026
(Vector &2C)

Update the frame buffer with teletext changes

On entry

R7=display number
R8=&402 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to update the frame buffer with the previously applied
changes. This is the primary point at which the frame buffer should be
modified.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1027
(Vector &2C)

Write a character to the teletext screen

On entry

R0=character
R1=x position

R2=y position
R7=display number
R8=&403 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to change the character at a given position. The frame
buffer does not need to be updated. The change of the character may
change not only the representation of the character at that position, but
also all subsequent character on that line and (potentially) the characters
on the line below.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1028
(Vector &2C)

Scroll a region of the teletext buffer

On entry

R0=left char x
R1=bottom char y
R2=right char x
R3=top char y
R4=change in x position (negative = left, positive = right)
R5=change in y position (negative = up, positive = down)
R7=display number
R8=&404 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to scroll a region of the teletext buffer. The frame
buffer does not need to be updated. The change of the region may also
result in surrounding characters being changed in their representation.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1029
(Vector &2C)

Change the flash state of the teletext buffer

On entry

R0=
Flags:

Bit(s) Meaning
0 Flash characters visible

1-31 Reserved, must be zero

R7=display number
R8=&405 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to update the state of the display with respect to
flashing characters. The frame buffer does not need to be updated. This
entry point may be called under interrupts.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1030
(Vector &2C)

Read a character from the teletext buffer

On entry

R0=x position
R1=y position
R7=display number
R8=&406 (reason code)

On exit

R0=character read
R1-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to read a character from the display at a position. It is
used during the character copying routines, via the OS_Byte mechanisms.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1031
(Vector &2C)

Invert the text cursor in the teletext screen

On entry

R0=composite cursor position (&SS0000EE)
R2=x position (origin top left)
R3=y position (origin top left)
R7=display number
R8=&407 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called to invert a cursor on the screen. It is used to flash the
cursor whilst updating the display. It may be called under interrupts.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1032
(Vector &2C)

Change the quality of teletext rendering

On entry

R0=
Flags:

Bit(s) Meaning
0 High quality requested

1-31 Reserved, must be zero

R7=display number
R8=&408 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called in response to VDU23,18,16,flags| to set the quality of
the display. Display drivers may use it to provide a higher quality (and
potentially slower) implementation.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

VideoV 1033
(Vector &2C)

Change the reveal state for hidden characters

On entry

R0=
Flags:

Bit(s) Meaning
0 Concealed characters visible

1-31 Reserved, must be zero

R7=display number
R8=&409 (reason code)

On exit

R0-8preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called in response to VDU23,18,2,flags| to change the reveal
state. Display drivers may update the hidden characters to be visible
immediately or defer this until an update.

Compatibility

RISCOS Ltd RISC OS >= Select 3
Supported

RISC OS Pyromaniac RISC OS >= 7.47
Supported

Related vectors

VideoV

Entry points

VideoV_Context_HLine
Draw horizontal line

On entry

R0=X left coordinate
R1=Y coordinate
R2=X right coordinate
R3=Colour operation
R7=pointer to Graphics context

On exit

R0-7preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

Not defined

Use

This entry point is provided as part of the graphics context. It may be used
by any of the operations called by VideoV to effect a horizontal line. This
allows a VideoV claimant who has been requested to draw a shape to
render without knowing the specifics of how to access the screen.

The VideoV system will pass the request to draw the line to the registered
drivers as a primitive rendering operation.

The functions for bounded and unbounded line rendering have the same
interface, but the bounded entry points should clip the rendering to the
supplied clipping window.

Related entry points

VideoV_Context_Point

VideoV_Context_Point
Plot a point

On entry

R0=X coordinate
R1=Y coordinate
R2=Colour operation
R7=pointer to Graphics context

On exit

R0-7preserved

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

Not defined

Use

This entry point is provided as part of the graphics context. It may be used
by any of the operations called by VideoV to effect a single point. This
allows a VideoV claimant who has been requested to draw a shape to
render without knowing the specifics of how to access the screen.

The VideoV system will pass the request to plot the point to the registered
drivers as a primitive rendering operation.

The functions for bounded and unbounded point rendering have the same
interface, but the bounded entry points should clip the rendering to the
supplied clipping window.

Related entry points

VideoV_Context_HLine

Document information
Maintainer(s):Gerph <gerph@gerph.org>

History: RevisionDate AuthorChanges
1 28 Oct 2006 Gerph Initial version

• Released as part of the
Video SDK

2 30 Mar 2023 Gerph Updated for PRM-in-XML
• Transferred content to

PRM-in-XML format
3 17 May 2023Gerph Updated for RISC OS

Pyromaniac
• Updated with details of

compatibility
• Fixed some validity

problems
Disclaimer:

© Gerph, 2006-2023.

mailto:gerph@gerph.org

PathUtils

Contents
• Introduction
• SWI calls

◦ SWI PathUtils_EnumeratePath
◦ SWI PathUtils_JoinPath
◦ SWI PathUtils_RemovePath

• *Commands
◦ *AppPath
◦ *PrepPath
◦ *RemPath

Introduction
The PathUtils module provides an interface to manipulate system variables
used as path variables by FileSwitch. That is, variables ending '$Path'
which are used as references to multiple paths in filenames.

SWI calls

PathUtils_EnumeratePath
(SWI &53B80)

Enumerate the components of a path variable

On entry

R0=
Flags:

Bit(s) Meaning
0 Set: Return all components of the path recursively

Clear: Return only leaf components of the path
1-31 Reserved, must be 0

R1=Pointer to path to process
R2=Pointer to output buffer
R3=Maximum length of the buffer, or 0 to request length
R4=Opaque context value, or 0 for the first call

On exit

R0-2preserved
R3=Number of spare bytes in the buffer
R4=Context value, or -1 if complete (and the other registers are invalid)
R5=Variable type that the value was expanded from
R6=Depth the value was expanded from

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to enumerate the components of a path variables. The
path variable is expanded recursively. If R0 bit 0 is set, each path
component will be returned in the results, even it is not terminal itself.

Related APIs

None

PathUtils_JoinPath
(SWI &53B81)

Join a new path to a path variable

On entry

R0=
Flags:

Bit(s) Meaning
0 Set: Append the supplied path

Clear: Prepend the supplied path
1-31 Reserved, must be 0

R1=Pointer to variable name to modify
R2=Pointer to path component to join

On exit

R0-2preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to join a path to an existing path variable. If the
component already exists in the path variable, it will not be added.

Related * commands

*AppPath, *PrepPath

PathUtils_RemovePath
(SWI &53B82)

Remove a path from a path variable

On entry

R0=
Flags:

Bit(s) Meaning
0-31 Reserved, must be 0

R1=Pointer to variable name to modify
R2=Pointer to path component to remove

On exit

R0-2preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This SWI is used to remove a path from an existing path variable. If the
component is not present, the variable will not be modified.

Related * commands

*RemPath

*Commands

*AppPath
Append a path component to a path variable

Syntax

*AppPath <path-variable> <path-component>

Parameters

<path-variable> -name of the path variable to append to
<path-component> -name of the path to append to the variable

Use

This command appends a given path component to a path variable. If the
path is already present, it has no effect.

Example

*AppPath Run$Path $.Library.

Related * commands

*PrepPath

Related SWIs

PathUtils_JoinPath

*PrepPath
Prepend a path component to a path variable

Syntax

*PrepPath <path-variable> <path-component>

Parameters

<path-variable> -name of the path variable to append to
<path-
component>

-name of the path to insert at the start of the path
variable

Use

This command prepends a given path component to a path variable,
inserting the path at the start of the variable's value. If the path is already
present, it has no effect.

Example

*PrepPath Run$Path $.Library.

Related * commands

*AppPath

Related SWIs

PathUtils_JoinPath

*RemPath
Remove a path component from a path variable

Syntax

*RemPath <path-variable> <path-component>

Parameters

<path-variable> -name of the path variable to change
<path-component> -name of the path to remove from the path variable

Use

This command removes a given path component from a path variable. If
the variable is not present, the variable is not changed.

Example

*RemPath Run$Path $.Library.

Related SWIs

PathUtils_RemovePath

Document information
Maintainer(s):Gerph <Gerph@gerph.org>

History: RevisionDate AuthorChanges
1 6 Oct 2006 gerph Initial version

mailto:Gerph@gerph.org

• Original documentation.
2 8 May 2023gerph PRM-in-XML version

• Recreated
documentation in PRM-
in-XML format.

Disclaimer:
© Gerph, 2006-2023.

Index (command)

Contents |Commands | SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
*AppPath Append a path component to a path

variable PathUtils

*DHCP Modify the DHCP control of an interface DHCPClient

*DHCPStatus Display information on DHCP controlled
interfaces DHCPClient

*Desktop_AcornURI starts the URI handler URI Handler
specification

*ImageFileRenderersList renderers registered with
ImageFileRender

Image file
renderer

*ImageFileViewer Sets the default viewer to use for files
known to ImageFileRender

Image file
renderer

*PrepPath Prepend a path component to a path
variable PathUtils

*RemPath Remove a path component from a path
variable PathUtils

*URIdispatch try to launch a URI URI Handler
specification

*URIinfo display information about the URI handler URI Handler
specification

*URLProtoShow Shows all the current protocols known and
their SWI bases

URL Fetcher
specification

Contents |Commands | SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (swi)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section

Clipboard_CatchDrop (&4E004)
Request the Clipboard to
act as a proxy for data
transfer during a drop

Cut and paste
specification

Clipboard_Get (&4E001)
Requests data from the
clipboard, using the
Clipboard as a proxy

Cut and paste
specification

Clipboard_GetDataType (&4E002)
Requests data type of
the clipboard, using the
Clipboard as a proxy

Cut and paste
specification

Clipboard_Put (&4E000)
Puts data on the
clipboard, or initiates
the data-send of a drop

Cut and paste
specification

Clipboard_StartDrag (&4E003)
Starts a drag-and-drop
drag, using the
Clipboard as a proxy

Cut and paste
specification

CryptRandom_AddNoise (&51982) Introduce data to the
random pool

CryptRandom
module

CryptRandom_Block (&51983) Reads multiple bytes
from the random pool

CryptRandom
module

CryptRandom_Byte (&51980) Reads a byte from the
random pool

CryptRandom
module

CryptRandom_Stir (&51981) Stirs the random pool CryptRandom
module

CryptRandom_Word (&51984) Reads a 32-bit word
from the random pool

CryptRandom
module

DHCPClient_Control (&55E00) Controls the DHCPClient
interface management DHCPClient

DHCPClient_Enumerate (&55E02)
Enumerates names of
interfaces controlled by
DHCPClient

DHCPClient

DHCPClient_State (&55E01)
Reads the status of a
DHCPClient managed
interface

DHCPClient

Filter_DeRegisterIconBorderFilter
(&4264D)

De-register a filter from
handling the rendering
of icon borders

Icon border
filters

Filter_RegisterIconBorderFilter
(&4264C)

Register a filter to
handle the rendering of
icon borders

Icon border
filters

ImageFileRender_BBox (&562C1) Calculates an image's
bounding box

Image file
renderer

ImageFileRender_DeclareFonts
(&562C3)

Declare fonts prior to
printing

Image file
renderer

ImageFileRender_Deregister (&56267) Deregister a renderer Image file
renderer

ImageFileRender_EnumerateRenderers
(&56268)

Enumerate the active
renderers

Image file
renderer

ImageFileRender_Info (&56264) Discover miscellaneous
image information

Image file
renderer

ImageFileRender_Register (&56266) Register a renderer Image file
renderer

ImageFileRender_Render (&562C0) Render an image Image file
renderer

ImageFileRender_RendererInfo
(&56265)

Discover information on
the renderer

Image file
renderer

ImageFileRender_Transform (&562C2)
Return transformation
matrix for render
operation

Image file
renderer

OS_Mouse (&1C) Read current mouse
state Pointer devices

OS_Pointer (&64) 2 - ReadAltPosition Read alternate position Pointer devices

OS_ResyncTime (&6C) Synchronisation
operations for RTC Real Time Clock

OS_Word (&7) 15, 5
Set real time clock to
UTC time as a 5-byte
value

Real Time Clock

PathUtils_EnumeratePath (&53B80)
Enumerate the
components of a path
variable

PathUtils

PathUtils_JoinPath (&53B81) Join a new path to a path
variable PathUtils

PathUtils_RemovePath (&53B82) Remove a path from a
path variable PathUtils

Protocol_GetData Start retrieving data URL Fetcher
specification

Protocol_ReadData Read data pending from
a request

URL Fetcher
specification

Protocol_Status Monitor data transfer URL Fetcher
specification

Protocol_Stop Abort a current request URL Fetcher
specification

RouterDiscovery_Control (&57D80) Control the operation of RouterDiscovery

the RouterDiscovery
module

RouterDiscovery_Control (&57D80) 0 -
ActivateHost

Activate Host mode for
the interface RouterDiscovery

RouterDiscovery_Control (&57D80) 1 -
ActivateRouter

Activate Router mode for
the interface RouterDiscovery

RouterDiscovery_Control (&57D80) 2 -
Deactivate

Deactivate control of
interface RouterDiscovery

RouterDiscovery_Status (&57D81)
Return information
about the
RouterDiscovery module

RouterDiscovery

ShareFS_CreateShare (&47AC0) Share a directory
through ShareFS ShareFS module

ShareFS_EnumerateShares (&47AC2) List the currently shared
directories ShareFS module

ShareFS_IdentifyShare (&47AC3) Identify a shared disc ShareFS module

ShareFS_StopShare (&47AC1) Stop sharing a directory
through ShareFS ShareFS module

TimerManager_Claim (&58B81) Claim a hardware timer
Hardware timer
device driver
(TimerManager)

TimerManager_Convert (&58B84)
Convert between rate
formats used by a
hardware timer

Hardware timer
device driver
(TimerManager)

TimerManager_Release (&58B82) Release a hardware
timer

Hardware timer
device driver
(TimerManager)

TimerManager_ReturnNumber
(&58B80)

Return number of
supported timers

Hardware timer
device driver
(TimerManager)

TimerManager_SetRate (&58B83) Change the rate used by
a hardware timer

Hardware timer
device driver
(TimerManager)

URI_Dispatch (&4E381)

pass a URI string to the
handler for dispatch, or
checking for the
presence of a potential
servicer

URI Handler
specification

URI_InvalidateURI (&4E383) mark the specified URI
as being invalid

URI Handler
specification

URI_RequestURI (&4E382)

return size of buffer
required to hold
specified URI, or to
return the URI via the
buffer

URI Handler
specification

URI_Version (&4E380) return the URI handler URI Handler

module's version
number specification

URL_Deregister (&83E06)
Deregister a client
session with the URL
module

URL Fetcher
specification

URL_EnumerateProxies (&83E09) Enumerate proxies or
no-proxy URLs

URL Fetcher
specification

URL_EnumerateSchemes (&83E08) URL Fetcher
specification

URL_GetURL (&83E01)
Instigate data transfer
from / to a resource
server

URL Fetcher
specification

URL_ParseURL (&83E07) Parse URLs to / from
their constituent parts

URL Fetcher
specification

URL_ParseURL (&83E07) 0 -
ReturnLengths

Work out space required
for URL components

URL Fetcher
specification

URL_ParseURL (&83E07) 1 -
ReturnData

Split a URL into its
component parts

URL Fetcher
specification

URL_ParseURL (&83E07) 2 -
ComposeFromComponents

Combine the
components of a URL

URL Fetcher
specification

URL_ParseURL (&83E07) 3 -
QuickResolve

Quickly obtain a fully
resolved URL

URL Fetcher
specification

URL_ProtocolDeregister (&83E21)
Deregister a protocol
module from the URL
module.

URL Fetcher
specification

URL_ProtocolRegister (&83E20)
Register a protocol
module with the URL
module

URL Fetcher
specification

URL_ReadData (&83E03) Read data pending from
a request

URL Fetcher
specification

URL_Register (&83E00) Initialise a client session
with the URL module

URL Fetcher
specification

URL_SetProxy (&83E04)
Set up a proxy server for
a session with the URL
module

URL Fetcher
specification

URL_Status (&83E02) Obtain information on a
session

URL Fetcher
specification

URL_Stop (&83E05) Abort a request placed
with the URL module

URL Fetcher
specification

Wimp_CreateIcon (&400C2)
Nested Window
Manager
specification

Wimp_CreateWindow (&400C1)
Nested Window
Manager
specification

Wimp_Extend (&400FB) Nested Window

Manager
specification

Wimp_ForceRedraw (&400D1)
Nested Window
Manager
specification

Wimp_GetCaretPosition (&400D3)
Returns details of the
state of the caret, ghost
caret or writable icon
selection

Cut and paste
specification

Wimp_GetWindowInfo (&400CC)
Nested Window
Manager
specification

Wimp_GetWindowOutline (&400E0)
Nested Window
Manager
specification

Wimp_GetWindowState (&400CB)
Nested Window
Manager
specification

Wimp_Initialise (&400C0)
Nested Window
Manager
specification

Wimp_OpenWindow (&400C5)
Nested Window
Manager
specification

Wimp_RegisterFilter (&400F5)
Nested Window
Manager
specification

Wimp_SetCaretPosition (&400D2)
Set up the data for a
new caret, ghost caret or
selection position, and
redraw it there

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 0 -
Remove

To remove the caret /
ghost caret / selection

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 1 -
SetUserCaretOrUserGhostCaret

To set a user caret / user
ghost caret:

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 2 -
SetIconCaretByIndex

To set an icon caret,
centred if possible, by
known index into the
string

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 3 -
SetIconCaretAndFlags

To set an icon caret and
override the default Y
position, size or flags

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 4 -
SetIconCaretByScreenPosition

To set an icon caret,
centred if possible, by
approximate current
position on screen

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 5 - To set an icon caret / Cut and paste

SetIconCaretOrGhostCaret icon ghost caret, not
necessarily centred specification

Wimp_SetCaretPosition (&400D2) 6 -
SetIconSelectionCentred

To set an icon selection,
centred if possible

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 7 -
SetIconSelection

To set an icon selection,
not necessarily centred

Cut and paste
specification

ZeroConf_Control (&56A00) Controls the ZeroConf
interface management ZeroConf

ZeroConf_Control (&56A00) 0 -
ZeroConfAddInterface

Places an interface
under management by
ZeroConf

ZeroConf

ZeroConf_Control (&56A00) 1 -
ZeroConfRemoveInterface

Releases an interface
from management by
ZeroConf

ZeroConf

ZeroConf_Status (&56A01) Reads the status of the
ZeroConf module ZeroConf

ZeroConf_Status (&56A01) 0 -
ConfigurationState

Reads the current
configuration status ZeroConf

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (swi)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
Protocol_GetData Start retrieving data URL Fetcher

specification

Protocol_Status Monitor data transfer URL Fetcher
specification

Protocol_ReadData Read data pending from
a request

URL Fetcher
specification

Protocol_Stop Abort a current request URL Fetcher
specification

OS_Word (&7) 15, 5
Set real time clock to
UTC time as a 5-byte
value

Real Time Clock

OS_Mouse (&1C) Read current mouse
state Pointer devices

OS_Pointer (&64) 2 - ReadAltPosition Read alternate position Pointer devices

OS_ResyncTime (&6C) Synchronisation
operations for RTC Real Time Clock

Wimp_Initialise (&400C0)
Nested Window
Manager
specification

Wimp_CreateWindow (&400C1)
Nested Window
Manager
specification

Wimp_CreateIcon (&400C2)
Nested Window
Manager
specification

Wimp_OpenWindow (&400C5)
Nested Window
Manager
specification

Wimp_GetWindowState (&400CB)
Nested Window
Manager
specification

Wimp_GetWindowInfo (&400CC)
Nested Window
Manager
specification

Wimp_ForceRedraw (&400D1) Nested Window
Manager

specification

Wimp_SetCaretPosition (&400D2)
Set up the data for a
new caret, ghost caret or
selection position, and
redraw it there

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 0 -
Remove

To remove the caret /
ghost caret / selection

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 1 -
SetUserCaretOrUserGhostCaret

To set a user caret / user
ghost caret:

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 2 -
SetIconCaretByIndex

To set an icon caret,
centred if possible, by
known index into the
string

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 3 -
SetIconCaretAndFlags

To set an icon caret and
override the default Y
position, size or flags

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 4 -
SetIconCaretByScreenPosition

To set an icon caret,
centred if possible, by
approximate current
position on screen

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 5 -
SetIconCaretOrGhostCaret

To set an icon caret /
icon ghost caret, not
necessarily centred

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 6 -
SetIconSelectionCentred

To set an icon selection,
centred if possible

Cut and paste
specification

Wimp_SetCaretPosition (&400D2) 7 -
SetIconSelection

To set an icon selection,
not necessarily centred

Cut and paste
specification

Wimp_GetCaretPosition (&400D3)
Returns details of the
state of the caret, ghost
caret or writable icon
selection

Cut and paste
specification

Wimp_GetWindowOutline (&400E0)
Nested Window
Manager
specification

Wimp_RegisterFilter (&400F5)
Nested Window
Manager
specification

Wimp_Extend (&400FB)
Nested Window
Manager
specification

Filter_RegisterIconBorderFilter
(&4264C)

Register a filter to
handle the rendering of
icon borders

Icon border
filters

Filter_DeRegisterIconBorderFilter
(&4264D)

De-register a filter from
handling the rendering
of icon borders

Icon border
filters

ShareFS_CreateShare (&47AC0) Share a directory ShareFS module

through ShareFS

ShareFS_StopShare (&47AC1) Stop sharing a directory
through ShareFS ShareFS module

ShareFS_EnumerateShares (&47AC2) List the currently shared
directories ShareFS module

ShareFS_IdentifyShare (&47AC3) Identify a shared disc ShareFS module

Clipboard_Put (&4E000)
Puts data on the
clipboard, or initiates
the data-send of a drop

Cut and paste
specification

Clipboard_Get (&4E001)
Requests data from the
clipboard, using the
Clipboard as a proxy

Cut and paste
specification

Clipboard_GetDataType (&4E002)
Requests data type of
the clipboard, using the
Clipboard as a proxy

Cut and paste
specification

Clipboard_StartDrag (&4E003)
Starts a drag-and-drop
drag, using the
Clipboard as a proxy

Cut and paste
specification

Clipboard_CatchDrop (&4E004)
Request the Clipboard to
act as a proxy for data
transfer during a drop

Cut and paste
specification

URI_Version (&4E380)
return the URI handler
module's version
number

URI Handler
specification

URI_Dispatch (&4E381)

pass a URI string to the
handler for dispatch, or
checking for the
presence of a potential
servicer

URI Handler
specification

URI_RequestURI (&4E382)

return size of buffer
required to hold
specified URI, or to
return the URI via the
buffer

URI Handler
specification

URI_InvalidateURI (&4E383) mark the specified URI
as being invalid

URI Handler
specification

CryptRandom_Byte (&51980) Reads a byte from the
random pool

CryptRandom
module

CryptRandom_Stir (&51981) Stirs the random pool CryptRandom
module

CryptRandom_AddNoise (&51982) Introduce data to the
random pool

CryptRandom
module

CryptRandom_Block (&51983) Reads multiple bytes
from the random pool

CryptRandom
module

CryptRandom_Word (&51984) Reads a 32-bit word
from the random pool

CryptRandom
module

PathUtils_EnumeratePath (&53B80)
Enumerate the
components of a path
variable

PathUtils

PathUtils_JoinPath (&53B81) Join a new path to a path
variable PathUtils

PathUtils_RemovePath (&53B82) Remove a path from a
path variable PathUtils

DHCPClient_Control (&55E00) Controls the DHCPClient
interface management DHCPClient

DHCPClient_State (&55E01)
Reads the status of a
DHCPClient managed
interface

DHCPClient

DHCPClient_Enumerate (&55E02)
Enumerates names of
interfaces controlled by
DHCPClient

DHCPClient

ImageFileRender_Info (&56264) Discover miscellaneous
image information

Image file
renderer

ImageFileRender_RendererInfo
(&56265)

Discover information on
the renderer

Image file
renderer

ImageFileRender_Register (&56266) Register a renderer Image file
renderer

ImageFileRender_Deregister (&56267) Deregister a renderer Image file
renderer

ImageFileRender_EnumerateRenderers
(&56268)

Enumerate the active
renderers

Image file
renderer

ImageFileRender_Render (&562C0) Render an image Image file
renderer

ImageFileRender_BBox (&562C1) Calculates an image's
bounding box

Image file
renderer

ImageFileRender_Transform (&562C2)
Return transformation
matrix for render
operation

Image file
renderer

ImageFileRender_DeclareFonts
(&562C3)

Declare fonts prior to
printing

Image file
renderer

ZeroConf_Control (&56A00) Controls the ZeroConf
interface management ZeroConf

ZeroConf_Control (&56A00) 0 -
ZeroConfAddInterface

Places an interface
under management by
ZeroConf

ZeroConf

ZeroConf_Control (&56A00) 1 -
ZeroConfRemoveInterface

Releases an interface
from management by
ZeroConf

ZeroConf

ZeroConf_Status (&56A01) Reads the status of the
ZeroConf module ZeroConf

ZeroConf_Status (&56A01) 0 -
ConfigurationState

Reads the current
configuration status ZeroConf

RouterDiscovery_Control (&57D80)
Control the operation of
the RouterDiscovery
module

RouterDiscovery

RouterDiscovery_Control (&57D80) 0 -
ActivateHost

Activate Host mode for
the interface RouterDiscovery

RouterDiscovery_Control (&57D80) 1 -
ActivateRouter

Activate Router mode for
the interface RouterDiscovery

RouterDiscovery_Control (&57D80) 2 -
Deactivate

Deactivate control of
interface RouterDiscovery

RouterDiscovery_Status (&57D81)
Return information
about the
RouterDiscovery module

RouterDiscovery

TimerManager_ReturnNumber
(&58B80)

Return number of
supported timers

Hardware timer
device driver
(TimerManager)

TimerManager_Claim (&58B81) Claim a hardware timer
Hardware timer
device driver
(TimerManager)

TimerManager_Release (&58B82) Release a hardware
timer

Hardware timer
device driver
(TimerManager)

TimerManager_SetRate (&58B83) Change the rate used by
a hardware timer

Hardware timer
device driver
(TimerManager)

TimerManager_Convert (&58B84)
Convert between rate
formats used by a
hardware timer

Hardware timer
device driver
(TimerManager)

URL_Register (&83E00) Initialise a client session
with the URL module

URL Fetcher
specification

URL_GetURL (&83E01)
Instigate data transfer
from / to a resource
server

URL Fetcher
specification

URL_Status (&83E02) Obtain information on a
session

URL Fetcher
specification

URL_ReadData (&83E03) Read data pending from
a request

URL Fetcher
specification

URL_SetProxy (&83E04)
Set up a proxy server for
a session with the URL
module

URL Fetcher
specification

URL_Stop (&83E05) Abort a request placed
with the URL module

URL Fetcher
specification

URL_Deregister (&83E06)
Deregister a client
session with the URL
module

URL Fetcher
specification

URL_ParseURL (&83E07) Parse URLs to / from
their constituent parts

URL Fetcher
specification

URL_ParseURL (&83E07) 0 -
ReturnLengths

Work out space required
for URL components

URL Fetcher
specification

URL_ParseURL (&83E07) 1 -
ReturnData

Split a URL into its
component parts

URL Fetcher
specification

URL_ParseURL (&83E07) 2 -
ComposeFromComponents

Combine the
components of a URL

URL Fetcher
specification

URL_ParseURL (&83E07) 3 -
QuickResolve

Quickly obtain a fully
resolved URL

URL Fetcher
specification

URL_EnumerateSchemes (&83E08) URL Fetcher
specification

URL_EnumerateProxies (&83E09) Enumerate proxies or
no-proxy URLs

URL Fetcher
specification

URL_ProtocolRegister (&83E20)
Register a protocol
module with the URL
module

URL Fetcher
specification

URL_ProtocolDeregister (&83E21)
Deregister a protocol
module from the URL
module.

URL Fetcher
specification

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (upcall)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
DriveAdded (&18) A filing system may be available on a given path. Drive

Hints
DriveRemoved
(&19)

A filing system is no longer available on a given
path.

Drive
Hints

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (upcall)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
DriveAdded (&18) A filing system may be available on a given path. Drive

Hints
DriveRemoved
(&19)

A filing system is no longer available on a given
path.

Drive
Hints

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (message)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section

ClaimEntity (&0000F)
This message is broadcast by a task
claiming the cut-and-paste / drag-and-drop
caret, selection or clipboard

Cut and
paste
specification

DataRequest (&00010)
Broadcast by a task when it wishes to paste
data from a clipboard maintained by
another task

Cut and
paste
specification

DataTypeIs (&4E002) Informs a task of the data type of the
clipboard

Cut and
paste
specification

DragClaim (&00012)
This message is sent by a claiming task to
the sending task in response to a
Message_Dragging, carrying context-
sensitive information about the drag

Cut and
paste
specification

Dragging (&00011)
This message is sent by a sending task to a
(prospective) claiming task at intervals of
0.25 second, carrying context-sensitive
information about the drag

Cut and
paste
specification

FileShareDir (&408) Request a dialogue for sharing directories ShareFS
module

FilerDevicePath (&408) Request to Filer to copy a file to a location Icon bar file
drags

Paste (&4E001)
Informs the task being pasted to or
dropped upon that the data is ready to be
received

Cut and
paste
specification

PlugIn_Abort (&4D552) Stop activity for a plug-in instance
Browser
Plug-in
Protocol
specification

PlugIn_Action (&4D551) Send a command to a plug-in
Browser
Plug-in
Protocol
specification

PlugIn_Busy (&4D550) Signal a plug-in state change to the parent
Browser
Plug-in
Protocol
specification

PlugIn_Close (&4D542) Tell a plug-in instance to close down
Browser
Plug-in
Protocol
specification

PlugIn_Closed (&4D543) A plug-in [instance] has closed down
Browser
Plug-in
Protocol
specification

PlugIn_Focus (&4D546) Move the input focus between plug-in and
parent

Browser
Plug-in
Protocol
specification

PlugIn_Notify (&4D54E) Signal completion of handling a URL to a
plug-in

Browser
Plug-in
Protocol
specification

PlugIn_Open (&4D540) Sent by the browser to create a plug-in
instance

Browser
Plug-in
Protocol
specification

PlugIn_Opening
(&4D541)

Sent by the plug-in task to say an instance
has been created

Browser
Plug-in
Protocol
specification

PlugIn_Reshape
(&4D544) Move or resize a plug-in instance

Browser
Plug-in
Protocol
specification

PlugIn_Reshape_Request
(&4D545) A plug-in instance wants to resize

Browser
Plug-in
Protocol
specification

PlugIn_Status (&4D54F) Send a status message to the browser
Browser
Plug-in
Protocol
specification

PlugIn_Stream_As_File
(&4D54C) Send stream data as a file

Browser
Plug-in
Protocol
specification

PlugIn_Stream_Destroy
(&4D549) Destroy a stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_New
(&4D548) Create a new stream

Browser
Plug-in
Protocol

specification

PlugIn_Stream_Write
(&4D54A) Write data to a stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_Written
(&4D54B) Accept data that was written to a stream

Browser
Plug-in
Protocol
specification

PlugIn_URL_Access
(&4D54D) Ask the browser to deal with a URL

Browser
Plug-in
Protocol
specification

PlugIn_Unlock (&4D547) For internal use only
Browser
Plug-in
Protocol
specification

PutRequest (&4E000) Requests that clipboard or selection data
be sent to the Clipboard

Cut and
paste
specification

URI_MDying (&4E381) URI handler dying
URI
Handler
specification

URI_MProcess (&4E382) process or check URI
URI
Handler
specification

URI_MProcessAck
(&4E384) acknowledge URI_MProcess

URI
Handler
specification

URI_MReturnResult
(&4E383) return result of a dispatch

URI
Handler
specification

URI_MStarted (&4E380) URI handler started
URI
Handler
specification

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (message)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

| Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section

ClaimEntity (&0000F)
This message is broadcast by a task
claiming the cut-and-paste / drag-and-drop
caret, selection or clipboard

Cut and
paste
specification

DataRequest (&00010)
Broadcast by a task when it wishes to paste
data from a clipboard maintained by
another task

Cut and
paste
specification

Dragging (&00011)
This message is sent by a sending task to a
(prospective) claiming task at intervals of
0.25 second, carrying context-sensitive
information about the drag

Cut and
paste
specification

DragClaim (&00012)
This message is sent by a claiming task to
the sending task in response to a
Message_Dragging, carrying context-
sensitive information about the drag

Cut and
paste
specification

FilerDevicePath (&408) Request to Filer to copy a file to a location Icon bar file
drags

FileShareDir (&408) Request a dialogue for sharing directories ShareFS
module

PlugIn_Open (&4D540) Sent by the browser to create a plug-in
instance

Browser
Plug-in
Protocol
specification

PlugIn_Opening
(&4D541)

Sent by the plug-in task to say an instance
has been created

Browser
Plug-in
Protocol
specification

PlugIn_Close (&4D542) Tell a plug-in instance to close down
Browser
Plug-in
Protocol
specification

PlugIn_Closed (&4D543) A plug-in [instance] has closed down
Browser
Plug-in
Protocol
specification

PlugIn_Reshape
(&4D544) Move or resize a plug-in instance Browser

Plug-in

Protocol
specification

PlugIn_Reshape_Request
(&4D545) A plug-in instance wants to resize

Browser
Plug-in
Protocol
specification

PlugIn_Focus (&4D546) Move the input focus between plug-in and
parent

Browser
Plug-in
Protocol
specification

PlugIn_Unlock (&4D547) For internal use only
Browser
Plug-in
Protocol
specification

PlugIn_Stream_New
(&4D548) Create a new stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_Destroy
(&4D549) Destroy a stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_Write
(&4D54A) Write data to a stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_Written
(&4D54B) Accept data that was written to a stream

Browser
Plug-in
Protocol
specification

PlugIn_Stream_As_File
(&4D54C) Send stream data as a file

Browser
Plug-in
Protocol
specification

PlugIn_URL_Access
(&4D54D) Ask the browser to deal with a URL

Browser
Plug-in
Protocol
specification

PlugIn_Notify (&4D54E) Signal completion of handling a URL to a
plug-in

Browser
Plug-in
Protocol
specification

PlugIn_Status (&4D54F) Send a status message to the browser
Browser
Plug-in
Protocol
specification

PlugIn_Busy (&4D550) Signal a plug-in state change to the parent Browser

Plug-in
Protocol
specification

PlugIn_Action (&4D551) Send a command to a plug-in
Browser
Plug-in
Protocol
specification

PlugIn_Abort (&4D552) Stop activity for a plug-in instance
Browser
Plug-in
Protocol
specification

PutRequest (&4E000) Requests that clipboard or selection data
be sent to the Clipboard

Cut and
paste
specification

Paste (&4E001)
Informs the task being pasted to or
dropped upon that the data is ready to be
received

Cut and
paste
specification

DataTypeIs (&4E002) Informs a task of the data type of the
clipboard

Cut and
paste
specification

URI_MStarted (&4E380) URI handler started
URI
Handler
specification

URI_MDying (&4E381) URI handler dying
URI
Handler
specification

URI_MProcess (&4E382) process or check URI
URI
Handler
specification

URI_MReturnResult
(&4E383) return result of a dispatch

URI
Handler
specification

URI_MProcessAck
(&4E384) acknowledge URI_MProcess

URI
Handler
specification

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

| Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (service)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
DCIDriverStatus (&9D) 2 -
LinkActive

Notification that the link
provided by a DCI driver
has become active

DCI Driver Link
Status

DCIDriverStatus (&9D) 3 -
LinkInactive

Notification that the link
provided by a DCI driver
has become inactive

DCI Driver Link
Status

ImageFileRender_Dying (&80D41) ImageFileRenderer about
to finalise

Image file
renderer

ImageFileRender_RendererChanged
(&80D42)

A renderer has initialised
or finalised

Image file
renderer

ImageFileRender_Started (&80D40) ImageFileRenderer has
initialised

Image file
renderer

InternetStatus (&B0) Duplicate Internet address
detected

Internet address
collision

InternetStatus (&B0) &40
RouterDiscovery has
changed its host behaviour
for an interface

RouterDiscovery

InternetStatus (&B0) &41
RouterDiscovery has
changed its router
behaviour for an interface

RouterDiscovery

InternetStatus (&B0) &42 RouterDiscovery has
changed the route RouterDiscovery

InternetStatus (&B0) 32 -
ZeroConfAddressAcquired

Address has been acquired
by the ZeroConf module ZeroConf

InternetStatus (&B0) 33 -
ZeroConfAddressLost

Address has been lost by
the ZeroConf module ZeroConf

InternetStatus (&B0) 4 - BootPReply Response received for
BootP/DHCP request DHCPClient

InternetStatus (&B0) 48 -
DHCPLeaseGained

DHCP address has been
configured on an interface DHCPClient

InternetStatus (&B0) 49 -
DHCPLeaseLost

DHCP address has been
removed from an interface DHCPClient

InternetStatus (&B0) 5 - DHCPOffer DHCPOffer has been
received DHCPClient

RTCSynchronised (&DD) Real time clock has been
synchronised Real Time Clock

Sharing (&801C8) Change to shared
directories ShareFS module

URI (&A7) events issued by URI
handler

URI Handler
specification

URI (&A7) 0 - Started URI handler started URI Handler
specification

URI (&A7) 1 - Dying URI handler dying URI Handler
specification

URI (&A7) 2 - Process process or check URI URI Handler
specification

URI (&A7) 3 - ReturnResult return result of a dispatch URI Handler
specification

URLProtocolModule (&83E00) Communicate important
events to protocol modules

URL Fetcher
specification

URLProtocolModule (&83E00) 0 -
UrlModuleStarted URL module has initialised URL Fetcher

specification
URLProtocolModule (&83E00) 1 -
UrlModuleDying URL module is dying URL Fetcher

specification
URLProtocolModule_ProtocolModule
(&83E01)

A protocol module has
registered or deregistered

URL Fetcher
specification

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (service)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
DCIDriverStatus (&9D) 2 -
LinkActive

Notification that the link
provided by a DCI driver
has become active

DCI Driver Link
Status

DCIDriverStatus (&9D) 3 -
LinkInactive

Notification that the link
provided by a DCI driver
has become inactive

DCI Driver Link
Status

URI (&A7) events issued by URI
handler

URI Handler
specification

URI (&A7) 0 - Started URI handler started URI Handler
specification

URI (&A7) 1 - Dying URI handler dying URI Handler
specification

URI (&A7) 2 - Process process or check URI URI Handler
specification

URI (&A7) 3 - ReturnResult return result of a dispatch URI Handler
specification

InternetStatus (&B0) Duplicate Internet address
detected

Internet address
collision

InternetStatus (&B0) &40
RouterDiscovery has
changed its host behaviour
for an interface

RouterDiscovery

InternetStatus (&B0) &41
RouterDiscovery has
changed its router
behaviour for an interface

RouterDiscovery

InternetStatus (&B0) &42 RouterDiscovery has
changed the route RouterDiscovery

InternetStatus (&B0) 4 - BootPReply Response received for
BootP/DHCP request DHCPClient

InternetStatus (&B0) 5 - DHCPOffer DHCPOffer has been
received DHCPClient

InternetStatus (&B0) 32 -
ZeroConfAddressAcquired

Address has been acquired
by the ZeroConf module ZeroConf

InternetStatus (&B0) 33 -
ZeroConfAddressLost

Address has been lost by
the ZeroConf module ZeroConf

InternetStatus (&B0) 48 -
DHCPLeaseGained

DHCP address has been
configured on an interface DHCPClient

InternetStatus (&B0) 49 -
DHCPLeaseLost

DHCP address has been
removed from an interface DHCPClient

RTCSynchronised (&DD) Real time clock has been
synchronised Real Time Clock

Sharing (&801C8) Change to shared
directories ShareFS module

ImageFileRender_Started (&80D40) ImageFileRenderer has
initialised

Image file
renderer

ImageFileRender_Dying (&80D41) ImageFileRenderer about
to finalise

Image file
renderer

ImageFileRender_RendererChanged
(&80D42)

A renderer has initialised
or finalised

Image file
renderer

URLProtocolModule (&83E00) Communicate important
events to protocol modules

URL Fetcher
specification

URLProtocolModule (&83E00) 0 -
UrlModuleStarted URL module has initialised URL Fetcher

specification
URLProtocolModule (&83E00) 1 -
UrlModuleDying URL module is dying URL Fetcher

specification
URLProtocolModule_ProtocolModule
(&83E01)

A protocol module has
registered or deregistered

URL Fetcher
specification

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (vector)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
EventV (&10) 21,4 -
ExpansionMouseScroll

Scroll event has been triggered by the
user

Pointer
devices

NVRAMV (&3E) Operations on non-volatile memory used
for configuration

NVRAM
vector

NVRAMV (&3E) 0 -
FillCache Populate the cache with NVRAM data NVRAM

vector
NVRAMV (&3E) 1 -
ReadByte Read a single value from NVRAM NVRAM

vector
NVRAMV (&3E) 2 -
WriteByte Write a single value to NVRAM NVRAM

vector
PointerV (&38) 4 -
ExtendedRequest

Request information about the current
pointing device position

Pointer
devices

RTCV (&3F) Abstracted interface to the real time
clock

Real Time
Clock vector

RTCV (&3F) 0 -
ReadTime

Read time from hardware Real Time
Clock

Real Time
Clock vector

RTCV (&3F) 1 -
WriteTime

Update hardware Real Time Clock with a
new value

Real Time
Clock vector

VideoV (&2C) Graphics operation abstraction Video drivers
VideoV (&2C) 0 -
Text_ChangeDestination

Notifies the text system when redirection
occurs Video drivers

VideoV (&2C) 1 -
Text_DefineChar Defines the bitmap of a text character Video drivers

VideoV (&2C) 1024 -
TTX_Init Initialise teletext mode Video drivers

VideoV (&2C) 1025 -
TTX_ClearBox Clear a region of the display Video drivers

VideoV (&2C) 1026 -
TTX_Update

Update the frame buffer with teletext
changes Video drivers

VideoV (&2C) 1027 -
TTX_WriteChar Write a character to the teletext screen Video drivers

VideoV (&2C) 1028 -
TTX_Scroll Scroll a region of the teletext buffer Video drivers

VideoV (&2C) 1029 -
TTX_FlashState

Change the flash state of the teletext
buffer Video drivers

VideoV (&2C) 1030 -
TTX_ReadChar Read a character from the teletext buffer Video drivers

VideoV (&2C) 1031 -
TTX_TextCursor

Invert the text cursor in the teletext
screen Video drivers

VideoV (&2C) 1032 -
TTX_SetQuality Change the quality of teletext rendering Video drivers

VideoV (&2C) 1033 -
TTX_RevealState

Change the reveal state for hidden
characters Video drivers

VideoV (&2C) 16 -
Graf_SetColour1

Selects a colour to use as the primary
drawing colour Video drivers

VideoV (&2C) 17 -
Graf_SetColour2

Selects a colour to use as the secondary
drawing colour (background) Video drivers

VideoV (&2C) 18 -
Graf_ChangeDestination

Notifies the graphics system when
redirection occurs Video drivers

VideoV (&2C) 19 -
Graf_ChangeBase

Notifies the graphics system that the
destination base has changed Video drivers

VideoV (&2C) 2 -
Text_SetTextColour

Change the colour used for rendering
text Video drivers

VideoV (&2C) 20 -
Graf_ReadPrimitives

Read primitive operations to use for the
current output Video drivers

VideoV (&2C) 21 -
Graf_Rectangle Render a rectangle Video drivers

VideoV (&2C) 22 -
Graf_Triangle Render a triangle Video drivers

VideoV (&2C) 23 -
Graf_Parallelogram Render a parallelogram Video drivers

VideoV (&2C) 24 -
Graf_BlockCopy Copy a rectangle Video drivers

VideoV (&2C) 25 -
Graf_CircleOutline Render the outline of a circle Video drivers

VideoV (&2C) 26 -
Graf_CircleFill Render a filled circle Video drivers

VideoV (&2C) 27 -
Graf_CircleArc Render the outline of an circle arc Video drivers

VideoV (&2C) 28 -
Graf_CircleSegment Render a filled segment of a circle Video drivers

VideoV (&2C) 29 -
Graf_CircleSector Render a filled sector of a circle Video drivers

VideoV (&2C) 3 -
Text_WriteTextChar Render a character on the screen Video drivers

VideoV (&2C) 30 -
Graf_EllipseOutline Render the outline of an ellipse Video drivers

VideoV (&2C) 31 -
Graf_EllipseFill Render a filled ellipse Video drivers

VideoV (&2C) 32 -
Graf_FillRight Fill a line right from a position Video drivers

VideoV (&2C) 33 -
Graf_FillLeftAndRight Fill a line left and right from a position Video drivers

VideoV (&2C) 34 -
Graf_FillFlood Flood fill a region Video drivers

VideoV (&2C) 35 -
Graf_PolyHLine Fill multiple horizontal lines Video drivers

VideoV (&2C) 4 -
Text_TextCursor Render a cursor on the screen Video drivers

VideoV (&2C) 5 -
Text_ClearBox Clear a region of the screen for text Video drivers

VideoV (&2C) 512 -
Pointer_Define Define a pointer shape Video drivers

VideoV (&2C) 513 -
Pointer_Select Select a pointer for use Video drivers

VideoV (&2C) 514 -
Pointer_Update

Updates the location of the pointer on
the screen Video drivers

VideoV (&2C) 515 -
Pointer_Remove Removes the pointer from the screen Video drivers

VideoV (&2C) 516 -
Pointer_SetPalette Set a colour used by the pointer Video drivers

VideoV (&2C) 768 -
Mode_VetMode Check the validity of a mode Video drivers

VideoV (&2C) 769 -
Mode_SetMode Select a screen mode for use Video drivers

VideoV (&2C) 770 -
Mode_Scroll Hardware scroll of the display Video drivers

VideoV (&2C) 771 -
Mode_SetPalette

Change displayed colours in paletted
modes Video drivers

VideoV (&2C) 772 -
Mode_Enable Enable display hardware Video drivers

VideoV (&2C) 773 -
Mode_Disable Disable display hardware Video drivers

VideoV (&2C) 774 -
Mode_PowerSave

Select a power saving mode for the
display Video drivers

VideoV (&2C) 775 -
Mode_SetRGBTable

Modify RGB mapping tables (gamma
tables) Video drivers

VideoV (&2C) 776 -
Mode_AccelConfigure Configure acceleration options Video drivers

VideoV (&2C) 777 -
Mode_AccelControl

Immediate control operations for
acceleration Video drivers

VideoV (&2C) 778 -
Mode_DisplaySelect Select a display for use Video drivers

VideoV (&2C) 800 -
Mode_BankCount Read number of supported screen banks Video drivers

VideoV (&2C) 801 -
Mode_BankDisplay Change the displayed screen bank Video drivers

VideoV (&2C) 802 -
Mode_BankDriver

Change the screen bank used by VDU
drivers Video drivers

VideoV (&2C) 803 -
Mode_BankCopy Copy a screen bank Video drivers

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (vector)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
EventV (&10) 21,4 -
ExpansionMouseScroll

Scroll event has been triggered by the
user

Pointer
devices

VideoV (&2C) Graphics operation abstraction Video drivers
VideoV (&2C) 0 -
Text_ChangeDestination

Notifies the text system when redirection
occurs Video drivers

VideoV (&2C) 1 -
Text_DefineChar Defines the bitmap of a text character Video drivers

VideoV (&2C) 2 -
Text_SetTextColour

Change the colour used for rendering
text Video drivers

VideoV (&2C) 3 -
Text_WriteTextChar Render a character on the screen Video drivers

VideoV (&2C) 4 -
Text_TextCursor Render a cursor on the screen Video drivers

VideoV (&2C) 5 -
Text_ClearBox Clear a region of the screen for text Video drivers

VideoV (&2C) 16 -
Graf_SetColour1

Selects a colour to use as the primary
drawing colour Video drivers

VideoV (&2C) 17 -
Graf_SetColour2

Selects a colour to use as the secondary
drawing colour (background) Video drivers

VideoV (&2C) 18 -
Graf_ChangeDestination

Notifies the graphics system when
redirection occurs Video drivers

VideoV (&2C) 19 -
Graf_ChangeBase

Notifies the graphics system that the
destination base has changed Video drivers

VideoV (&2C) 20 -
Graf_ReadPrimitives

Read primitive operations to use for the
current output Video drivers

VideoV (&2C) 21 -
Graf_Rectangle Render a rectangle Video drivers

VideoV (&2C) 22 -
Graf_Triangle Render a triangle Video drivers

VideoV (&2C) 23 -
Graf_Parallelogram Render a parallelogram Video drivers

VideoV (&2C) 24 -
Graf_BlockCopy Copy a rectangle Video drivers

VideoV (&2C) 25 -
Graf_CircleOutline Render the outline of a circle Video drivers

VideoV (&2C) 26 -
Graf_CircleFill Render a filled circle Video drivers

VideoV (&2C) 27 -
Graf_CircleArc Render the outline of an circle arc Video drivers

VideoV (&2C) 28 -
Graf_CircleSegment Render a filled segment of a circle Video drivers

VideoV (&2C) 29 -
Graf_CircleSector Render a filled sector of a circle Video drivers

VideoV (&2C) 30 -
Graf_EllipseOutline Render the outline of an ellipse Video drivers

VideoV (&2C) 31 -
Graf_EllipseFill Render a filled ellipse Video drivers

VideoV (&2C) 32 -
Graf_FillRight Fill a line right from a position Video drivers

VideoV (&2C) 33 -
Graf_FillLeftAndRight Fill a line left and right from a position Video drivers

VideoV (&2C) 34 -
Graf_FillFlood Flood fill a region Video drivers

VideoV (&2C) 35 -
Graf_PolyHLine Fill multiple horizontal lines Video drivers

VideoV (&2C) 512 -
Pointer_Define Define a pointer shape Video drivers

VideoV (&2C) 513 -
Pointer_Select Select a pointer for use Video drivers

VideoV (&2C) 514 -
Pointer_Update

Updates the location of the pointer on
the screen Video drivers

VideoV (&2C) 515 -
Pointer_Remove Removes the pointer from the screen Video drivers

VideoV (&2C) 516 -
Pointer_SetPalette Set a colour used by the pointer Video drivers

VideoV (&2C) 768 -
Mode_VetMode Check the validity of a mode Video drivers

VideoV (&2C) 769 -
Mode_SetMode Select a screen mode for use Video drivers

VideoV (&2C) 770 -
Mode_Scroll Hardware scroll of the display Video drivers

VideoV (&2C) 771 -
Mode_SetPalette

Change displayed colours in paletted
modes Video drivers

VideoV (&2C) 772 -
Mode_Enable Enable display hardware Video drivers

VideoV (&2C) 773 -
Mode_Disable Disable display hardware Video drivers

VideoV (&2C) 774 -
Mode_PowerSave

Select a power saving mode for the
display Video drivers

VideoV (&2C) 775 -
Mode_SetRGBTable

Modify RGB mapping tables (gamma
tables) Video drivers

VideoV (&2C) 776 -
Mode_AccelConfigure Configure acceleration options Video drivers

VideoV (&2C) 777 -
Mode_AccelControl

Immediate control operations for
acceleration Video drivers

VideoV (&2C) 778 -
Mode_DisplaySelect Select a display for use Video drivers

VideoV (&2C) 800 -
Mode_BankCount Read number of supported screen banks Video drivers

VideoV (&2C) 801 -
Mode_BankDisplay Change the displayed screen bank Video drivers

VideoV (&2C) 802 -
Mode_BankDriver

Change the screen bank used by VDU
drivers Video drivers

VideoV (&2C) 803 -
Mode_BankCopy Copy a screen bank Video drivers

VideoV (&2C) 1024 -
TTX_Init Initialise teletext mode Video drivers

VideoV (&2C) 1025 -
TTX_ClearBox Clear a region of the display Video drivers

VideoV (&2C) 1026 -
TTX_Update

Update the frame buffer with teletext
changes Video drivers

VideoV (&2C) 1027 -
TTX_WriteChar Write a character to the teletext screen Video drivers

VideoV (&2C) 1028 -
TTX_Scroll Scroll a region of the teletext buffer Video drivers

VideoV (&2C) 1029 -
TTX_FlashState

Change the flash state of the teletext
buffer Video drivers

VideoV (&2C) 1030 -
TTX_ReadChar Read a character from the teletext buffer Video drivers

VideoV (&2C) 1031 -
TTX_TextCursor

Invert the text cursor in the teletext
screen Video drivers

VideoV (&2C) 1032 -
TTX_SetQuality Change the quality of teletext rendering Video drivers

VideoV (&2C) 1033 -
TTX_RevealState

Change the reveal state for hidden
characters Video drivers

PointerV (&38) 4 -
ExtendedRequest

Request information about the current
pointing device position

Pointer
devices

NVRAMV (&3E) Operations on non-volatile memory used
for configuration

NVRAM
vector

NVRAMV (&3E) 0 -
FillCache Populate the cache with NVRAM data NVRAM

vector
NVRAMV (&3E) 1 -
ReadByte Read a single value from NVRAM NVRAM

vector
NVRAMV (&3E) 2 -
WriteByte Write a single value to NVRAM NVRAM

vector

RTCV (&3F) Abstracted interface to the real time
clock

Real Time
Clock vector

RTCV (&3F) 0 -
ReadTime

Read time from hardware Real Time
Clock

Real Time
Clock vector

RTCV (&3F) 1 -
WriteTime

Update hardware Real Time Clock with a
new value

Real Time
Clock vector

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (sysvar)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars | Entry
points

Link Description Section
FSFiler$DefaultPathDefault path for files dropped on the filer

icon
Icon bar file
drags

ShareFS$Filer Whether the ShareFS Filer is enabled ShareFS module

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars | Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (entry)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section

Get Rectangle Filter
Nested Window
Manager
specification

IFR_BBox Bounding box function for
ImageFileRenderer Image file renderer

IFR_DeclareFonts Declare fonts function for
ImageFileRenderer Image file renderer

IFR_Info Information function for
ImageFileRenderer Image file renderer

IFR_Render Rendering routine for
ImageFileRender Image file renderer

IFR_Start Initialisation routine for
ImageFileRender Image file renderer

IFR_Stop Finalisation routine for
ImageFileRender Image file renderer

IconBorder_Colour Update the colours for an icon border
on behalf of the WindowManager Icon border filters

IconBorder_Draw Draw an icon border on behalf of the
WindowManager Icon border filters

IconBorder_Fill Fill an icon border on behalf of the
WindowManager Icon border filters

IconBorder_Size Return the size available for text after
rendering the icon border Icon border filters

IconBorder_State Get information about the type of
icon border filter Icon border filters

Post-Icon Filter
Nested Window
Manager
specification

Post-Rectangle Filter
Nested Window
Manager
specification

Rectangle Copy Filter
Nested Window
Manager
specification

VideoV_Context_HLineDraw horizontal line Video drivers
VideoV_Context_Point Plot a point Video drivers

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (error)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
IFR_BadAPI (&81A806) Bad API version Image file

renderer

IFR_BadInfoLength (&81A80A) Bad query length Image file
renderer

IFR_BadInfoQuery (&81A809) Query type not recognised Image file
renderer

IFR_BadSpriteFile (&81A811) Sprite file corrupt or contains
unrecognised data

Image file
renderer

IFR_BadSpriteMode (&81A810) Bad sprite mode Image file
renderer

IFR_BadTransformType
(&81A800) Bad transform type Image file

renderer

IFR_CantTransform (&81A807) Transformation type not supported
by filetype

Image file
renderer

IFR_Memory (&81A803) Not enough memory for
ImageFileRender

Image file
renderer

IFR_NoColourMap (&81A808) Colour mapping not supported by
filetype

Image file
renderer

IFR_NoRenderr (&81A805) No renderer registered for that
filetype

Image file
renderer

IFR_NoSuchRendererToRemove
(&81A804) Renderer not known Image file

renderer

IFR_NoSuchSprite (&81A812) Sprite not found Image file
renderer

IFR_Reserved (&81A801) Reserved flags set for
ImageFileRender SWI

Image file
renderer

IFR_ReservedRendererFlags
(&81A802)

Reserved flags set for
ImageFileRender renderer

Image file
renderer

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their

completeness.

Index (error)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

Link Description Section
IFR_BadTransformType
(&81A800) Bad transform type Image file

renderer

IFR_Reserved (&81A801) Reserved flags set for
ImageFileRender SWI

Image file
renderer

IFR_ReservedRendererFlags
(&81A802)

Reserved flags set for
ImageFileRender renderer

Image file
renderer

IFR_Memory (&81A803) Not enough memory for
ImageFileRender

Image file
renderer

IFR_NoSuchRendererToRemove
(&81A804) Renderer not known Image file

renderer

IFR_NoRenderr (&81A805) No renderer registered for that
filetype

Image file
renderer

IFR_BadAPI (&81A806) Bad API version Image file
renderer

IFR_CantTransform (&81A807) Transformation type not supported
by filetype

Image file
renderer

IFR_NoColourMap (&81A808) Colour mapping not supported by
filetype

Image file
renderer

IFR_BadInfoQuery (&81A809) Query type not recognised Image file
renderer

IFR_BadInfoLength (&81A80A) Bad query length Image file
renderer

IFR_BadSpriteMode (&81A810) Bad sprite mode Image file
renderer

IFR_BadSpriteFile (&81A811) Sprite file corrupt or contains
unrecognised data

Image file
renderer

IFR_NoSuchSprite (&81A812) Sprite not found Image file
renderer

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their

completeness.

Index (vdu)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

LinkDescriptionSection

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (tboxmethod)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

LinkDescriptionSection

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (tboxmethod)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

LinkDescriptionSection

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (tboxmessage)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

LinkDescriptionSection

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

Index (tboxmessage)

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

LinkDescriptionSection

Contents |Commands| SWIs
(Number)

| UpCalls
(Number)

|Messages
(Number)

| Services
(Number)

| Vectors
(Number)

|SysVars| Entry
points

These documents are not necessarily complete. Consult individual documents and authors for details of their
completeness.

	Contents
	Introduction
	Functional specs
	3rd Party
	RISC OS 5
	RISC OS Select
	Kernel
	I/O
	Desktop
	Wimp
	Hardware
	Time
	Networking
	Graphics
	Programmer

	About these documents
	Contents
	Introduction
	Collection areas
	Functional specs ('acorn')
	3rd Party documentation ('3rdparty')

	Document information

	Cut-and-Paste
	Contents
	1. Overview
	1.1 This Document
	1.2 Cut-and-Paste
	1.3 Drag-and-Drop
	1.4 General

	2. Outstanding Issues
	2.1 Bounding Box Discrepancies

	3. Technical Background
	3.1 This Document
	3.2 Previous Documents
	3.3 Previous Applications

	4.User Interface
	4.1 Selection
	4.1.1 Protocol
	4.1.1.1 Rendering
	4.1.1.2 Mouse Events
	4.1.1.3 Keypresses
	4.1.1.4 Scope

	4.1.2 Clipboard Module
	4.1.3 Writable Icons
	4.1.3.1 Rendering
	4.1.3.2 Scrolling
	4.1.3.3 Mouse Events
	4.1.3.4 Keypresses
	4.1.3.5 Wimp Selections and Menus
	4.1.3.6 Password icons
	4.1.3.7 Application-altered Indirected Data
	4.1.3.8 Scope
	4.1.3.9 Draggable-Writable (Type 14) Icons

	4.2. Cut and Copy
	4.2.1. Protocol
	4.2.2. Clipboard Module
	4.2.3. Writable Icons
	4.3. Paste
	4.3.1. Protocol
	4.3.2. Clipboard Module
	4.3.3. Writable Icons
	4.4. Drag
	4.4.1. Protocol
	4.4.1.1. General
	4.4.1.2. Pointers
	4.4.1.3. Dragboxes
	4.4.1.4. Ghost Carets
	4.4.1.5. Scrolling

	4.4.2. Clipboard Module
	4.4.3. Writable Icons
	4.5. Drop
	4.5.1. Protocol
	4.5.1.1. Sending
	4.5.1.2. Receiving

	4.5.2. Clipboard Module
	4.5.3. Writable Icons

	5. Programming Interface and Data Interchange
	5.1. Selection
	5.1.1. Protocol

	Message_ClaimEntity (&0000F)
	Message
	Source
	Destination
	Delivery
	Use
	5.1.2. Clipboard Module
	5.1.3. Writable Icons
	5.1.3.1. Wimp_SetCaretPosition API

	Wimp_SetCaretPosition (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 0 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 1 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 2 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 3 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 4 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 5 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 6 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp_SetCaretPosition 7 (SWI &400D2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	5.1.3.2. Wimp_GetCaretPosition API

	Wimp_GetCaretPosition (SWI &400D3)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	5.2. Cut and Copy
	5.2.1. Protocol
	5.2.2. Clipboard Module

	Clipboard_Put (SWI &4E000)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	5.2.3. Writable Icons
	5.3. Paste
	5.3.1. Protocol

	Message_DataRequest (&00010)
	Message
	Source
	Destination
	Delivery
	Use
	Related SWIs
	Related messages
	5.3.2. Clipboard Module
	5.3.2.1. The Complete Paste Process

	Clipboard_Get (SWI &4E001)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related messages

	Message_PutRequest (&4E000)
	Message
	Source
	Destination
	Delivery
	Use
	Related SWIs
	Related messages

	Message_Paste (&4E001)
	Message
	Source
	Destination
	Delivery
	Use
	Related SWIs
	Related messages
	5.3.2.2. Interactions
	5.3.2.3. Clipboard Data Type Determination

	Clipboard_GetDataType (SWI &4E002)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related messages

	Message_DataTypeIs (&4E002)
	Message
	Source
	Destination
	Delivery
	Use
	Related SWIs
	5.3.3. Writable Icons
	5.4. Drag and Drop
	5.4.1. Protocol
	5.4.1.1. Responsibilities
	5.4.1.2. Messaging

	Message_Dragging (&00011)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_DragClaim (&00012)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages
	5.4.1.3. Use
	5.4.2. Clipboard Module
	5.4.2.1. Use
	5.4.2.2. Messaging

	Clipboard_StartDrag (SWI &4E003)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Clipboard_CatchDrop (SWI &4E004)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	5.4.3. Writable Icons

	6. Data Formats
	7. Dependencies
	8. Acceptance Test
	8.1. Clipboard Module
	8.1.1. Compatibility
	8.1.2. Reliability/Robustness
	8.1.3. Performance
	8.1.4. Memory Usage
	8.2. Wimp Writable Icon Code
	8.2.1. Compatibility
	8.2.2. Reliability/Robustness
	8.2.3. Performance
	8.2.4. Memory Usage

	9. Non Compliances
	10. Development Test Strategy
	11. Product Organisation
	12. Future Enhancements
	13. Glossary
	14. References
	15. History
	Document information

	URI Handler Functional Specification
	Contents
	Overview
	Deliverable 'product'
	Programmer's interface
	URI SWIs

	URI_Version (SWI &4E380)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	URI_Dispatch (SWI &4E381)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related services
	Related messages

	URI_RequestURI (SWI &4E382)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	URI_InvalidateURI (SWI &4E383)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs
	URI service calls

	Service_URI (Service &A7)
	On entry
	On exit
	Use
	Related APIs

	Service_URI 0 (Service &A7)
	On entry
	On exit
	Use
	Related APIs

	Service_URI 1 (Service &A7)
	On entry
	On exit
	Use
	Related APIs

	Service_URI 2 (Service &A7)
	On entry
	On exit
	Use
	Related SWIs

	Service_URI 3 (Service &A7)
	On entry
	On exit
	Use
	Related SWIs
	WIMP messages

	Message_URI_MStarted (&4E380)
	Message
	Delivery
	Use
	Related APIs

	Message_URI_MDying (&4E381)
	Message
	Delivery
	Use
	Related APIs

	Message_URI_MProcess (&4E382)
	Message
	Delivery
	Use
	Related SWIs
	Related messages

	Message_URI_MReturnResult (&4E383)
	Message
	Delivery
	Use
	Related APIs

	Message_URI_MProcessAck (&4E384)
	Message
	Delivery
	Use
	Related APIs
	* Commands

	*Desktop_AcornURI
	Syntax
	Parameters
	Use
	Example
	Related APIs

	*URIinfo
	Syntax
	Parameters
	Use
	Example
	Related APIs

	*URIdispatch
	Syntax
	Parameters
	Use
	Example
	Related SWIs
	URI handler errors
	Defined errors
	Error generators
	Use of the URI filetype
	Use of URI environment variables

	Performance targets
	Document information

	Acorn URL Fetcher API Specification
	Contents
	Overview
	Outstanding issues
	Client to URL module interface
	URL_Register (SWI &83E00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_GetURL (SWI &83E01)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Table of method numbers
	Related SWIs

	URL_Status (SWI &83E02)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ReadData (SWI &83E03)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_SetProxy (SWI &83E04)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_Stop (SWI &83E05)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_Deregister (SWI &83E06)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ParseURL (SWI &83E07)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ParseURL 0 (SWI &83E07)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ParseURL 1 (SWI &83E07)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ParseURL 2 (SWI &83E07)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_ParseURL 3 (SWI &83E07)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL_EnumerateSchemes (SWI &83E08)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	URL_EnumerateProxies (SWI &83E09)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Protocol module to URL module interface
	URL_ProtocolRegister (SWI &83E20)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related services

	URL_ProtocolDeregister (SWI &83E21)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related services

	URL module to protocol module interface
	Protocol_GetData (SWI URLFetcherProtocol+&00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Protocol_Status (SWI URLFetcherProtocol+&01)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Protocol_ReadData (SWI URLFetcherProtocol+&02)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Protocol_Stop (SWI URLFetcherProtocol+&03)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	URL module service calls
	Service_URLProtocolModule (Service &83E00)
	On entry
	On exit
	Use
	Related APIs

	Service_URLProtocolModule 0 (Service &83E00)
	On entry
	On exit
	Use
	Related APIs

	Service_URLProtocolModule 1 (Service &83E00)
	On entry
	On exit
	Use
	Related APIs

	Service_URLProtocolModule_ProtocolModule (Service &83E01)
	On entry
	On exit
	Use
	Related APIs

	URL module *-commands
	*URLProtoShow
	Syntax
	Parameters
	Use
	Example
	Related SWIs

	URL errors
	Performance targets
	Glossary
	References
	Document information

	Acorn Plug-In Protocol Functional Specification
	Contents
	Overview
	Outstanding issues
	Technical background
	User interface
	Programmer interface
	Invocation
	Shutdown
	Plug-in death
	Browser death
	Window events
	Data pointers
	Stream protocol
	Initial transfer
	Plug-in requests data be fetched or posted
	Plug-in write to browser
	System variables
	The OBJECT tag
	Helper applications
	Help protocol
	About plug-in

	Data interchange
	Message_PlugIn_Open (&4D540)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Opening (&4D541)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Close (&4D542)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Closed (&4D543)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Reshape (&4D544)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Reshape_Request (&4D545)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Focus (&4D546)
	Message
	Source
	Destination
	Delivery
	Use
	Related APIs

	Message_PlugIn_Unlock (&4D547)
	Message_PlugIn_Stream_New (&4D548)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Stream_Destroy (&4D549)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Stream_Write (&4D54A)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Stream_Written (&4D54B)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Stream_As_File (&4D54C)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_URL_Access (&4D54D)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Notify (&4D54E)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Status (&4D54F)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Busy (&4D550)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Action (&4D551)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Message_PlugIn_Abort (&4D552)
	Message
	Source
	Destination
	Delivery
	Use
	Related messages

	Data formats
	API Versions

	External dependencies
	Acceptance test
	Non-compliances
	Development test strategy
	Glossary
	References
	Director Player Software Functional Specification
	Java Software Functional Specification
	[NC] Browser Software Functional Specification
	Acorn Nested Window Manager Functional Specification
	Wimp message protocol
	Wimp Help protocol

	Document information

	Acorn Nested Window Manager Functional Specification
	Contents
	Overview
	Technical Background
	User Interface
	Child and Nested Windows
	Child Windows Without a Work Area
	Furniture Windows
	Windows in General
	Invalid Rectangle Handling
	Standard Window Furniture
	Minimum Sizes
	Shift-Toggle-Sized Windows
	Error Report Dialogue Boxes
	Icons
	Menus
	Icon Bar
	Panic Redraws

	Programmer's interface
	Wimp_Initialise (SWI &400C0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_CreateWindow (SWI &400C1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_CreateIcon (SWI &400C2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_OpenWindow (SWI &400C5)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_GetWindowState (SWI &400CB)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_GetWindowInfo (SWI &400CC)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_ForceRedraw (SWI &400D1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_GetWindowOutline (SWI &400E0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_RegisterFilter (SWI &400F5)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Wimp_Extend (SWI &400FB)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Filter Entry Points
	Rectangle Copy Filter
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Get Rectangle Filter
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Post-Rectangle Filter
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Post-Icon Filter
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	References
	The Filter Manager
	The Window Manager: Wimp_RegisterFilter
	Acorn Filter Manager v0.18: Functional Specification

	Document information

	CryptRandom
	Contents
	Introduction
	Overview
	Installation
	Lineage

	Technical details
	contact
	Sources

	SWIs
	CryptRandom_Byte (SWI &51980)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	CryptRandom_Stir (SWI &51981)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	CryptRandom_AddNoise (SWI &51982)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	CryptRandom_Block (SWI &51983)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	CryptRandom_Word (SWI &51984)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Document information

	Filing system drive information
	Contents
	Introduction
	Technical details
	UpCalls
	UpCall_DriveAdded (UpCall &18)
	On entry
	On exit
	Use
	Related upcalls

	UpCall_DriveRemoved (UpCall &19)
	On entry
	On exit
	Use
	Related upcalls

	Document information

	Pointer devices (supplement for Pyromaniac)
	Contents
	Introduction and overview
	Technical details
	PointerV
	Driver updates in RISC OS Select
	Quadrature mouse driver
	PS 2 mouse driver
	Touch screen or tablet drivers
	OSPointer handling of extended requests
	Additional buttons
	Programmers interface

	SWI calls
	OS_Mouse (SWI &1C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related vectors

	OS_Pointer 2 (SWI &64)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related SWIs
	Related vectors

	Software vectors
	EventV 21,4 (Vector &10)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related SWIs
	Related vectors

	PointerV 4 (Vector &38)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related SWIs
	Related vectors

	Document information

	Icon bar file drags
	Contents
	Introduction
	Technical details
	Icon bar save protocol
	Icon bar copy protocol

	System variables
	FSFiler$DefaultPath
	Use
	Related messages

	Wimp messages
	Message_FilerDevicePath (&408)
	Message
	Source
	Destination
	Delivery
	Use
	Related system variables
	Related messages

	Document information

	Icon bordering filters
	Contents
	Introduction
	Overview
	Technical details
	Registration
	Rendering icons
	Customisable features
	Border colouring
	Fill colouring
	Bordering
	Filling
	Sizing the text
	Highlighting

	Common parameters
	Icon flags word
	Icon border rendering box
	Icon border colour table
	Icon rendering flags

	Configuration

	SWI calls
	Filter_RegisterIconBorderFilter (SWI &4264C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Filter_DeRegisterIconBorderFilter (SWI &4264D)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Entry points
	IconBorder_Draw (&0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IconBorder_Fill (&1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IconBorder_Size (&2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IconBorder_Colour (&4)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IconBorder_State (&5)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Shape changes
	Highlightable borders
	Related SWIs
	Related entry points

	Document information

	Iconbar priorities
	Contents
	Introduction
	Technical details
	Object sources and sinks
	Data source / sink controllers
	User applications
	System control applications

	Document information

	Hardware timer device driver (TimerManager)
	Contents
	Introduction
	Overview
	Technical details
	Measurement format

	SWI calls
	TimerManager_ReturnNumber (SWI &58B80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	TimerManager_Claim (SWI &58B81)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	TimerManager_Release (SWI &58B82)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	TimerManager_SetRate (SWI &58B83)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	TimerManager_Convert (SWI &58B84)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	Document information

	NVRAM vector
	Contents
	Introduction
	Technical details
	Terminology

	Software vectors
	NVRAMV (Vector &3E)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	NVRAMV 0 (Vector &3E)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	NVRAMV 1 (Vector &3E)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	NVRAMV 2 (Vector &3E)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Document information

	Real Time Clock
	Contents
	Introduction
	Service calls
	Service_RTCSynchronised (Service &DD)
	On entry
	On exit
	Use
	Related SWIs

	SWI calls
	OS_Word 15, 5 (SWI &7)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	OS_ResyncTime (SWI &6C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related services

	Document information

	Real Time Clock Vector
	Contents
	Introduction
	Software vectors
	RTCV (Vector &3F)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	RTCV 0 (Vector &3F)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	RTCV 1 (Vector &3F)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related vectors

	Document information

	System clock
	Contents
	Introduction
	Document information

	ShareFS
	Contents
	Introduction
	System variables
	ShareFS$Filer
	Use
	Related APIs

	Service calls
	Service_Sharing (Service &801C8)
	On entry
	On exit
	Use
	Related SWIs

	SWI calls
	ShareFS_CreateShare (SWI &47AC0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related messages

	ShareFS_StopShare (SWI &47AC1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related messages

	ShareFS_EnumerateShares (SWI &47AC2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	ShareFS_IdentifyShare (SWI &47AC3)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Wimp messages
	Message_FileShareDir (&408)
	Message
	Source
	Destination
	Delivery
	Use
	Related SWIs
	Related messages

	Document information

	Internet address collisions
	Contents
	Introduction
	Service calls
	Service_InternetStatus (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	Document information

	DCI Driver Link Status
	Contents
	Introduction
	Service calls
	Service_DCIDriverStatus 2 (Service &9D)
	On entry
	On exit
	Use
	Related services

	Document information

	RouterDiscovery
	Contents
	Introduction
	Service calls
	Service_InternetStatus &40 (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	Service_InternetStatus &41 (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	Service_InternetStatus &42 (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	SWI calls
	RouterDiscovery_Control (SWI &57D80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	RouterDiscovery_Control 0 (SWI &57D80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	RouterDiscovery_Control 1 (SWI &57D80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	RouterDiscovery_Control 2 (SWI &57D80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	RouterDiscovery_Status (SWI &57D81)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Document information

	DHCPClient
	Contents
	Introduction
	Service calls
	Service_InternetStatus 4 (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	Service_InternetStatus 5 (Service &B0)
	On entry
	On exit
	Use
	Related APIs

	Service_InternetStatus 48 (Service &B0)
	On entry
	On exit
	Use
	Related services

	Service_InternetStatus 49 (Service &B0)
	On entry
	On exit
	Use
	Related services

	SWI calls
	DHCPClient_Control (SWI &55E00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related * commands

	DHCPClient_State (SWI &55E01)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related * commands

	DHCPClient_Enumerate (SWI &55E02)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	*Commands
	*DHCP
	Syntax
	Parameters
	Use
	Example
	Related APIs

	*DHCPStatus
	Syntax
	Parameters
	Use
	Example
	Related * commands

	Document information

	Chapter Title
	Contents
	Introduction
	Conformance

	Service calls
	Service_InternetStatus 32 (Service &B0)
	On entry
	On exit
	Use
	Related services

	Service_InternetStatus 33 (Service &B0)
	On entry
	On exit
	Use
	Related services

	SWI calls
	ZeroConf_Control (SWI &56A00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	ZeroConf_Control 0 (SWI &56A00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	ZeroConf_Control 1 (SWI &56A00)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	ZeroConf_Status (SWI &56A01)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	ZeroConf_Status 0 (SWI &56A01)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	Document information

	Graphics Mode Specification
	Contents
	Introduction and Overview
	Technical details
	Mode specifiers
	Mode numbers
	Sprite mode words
	Compatibility

	Mode selectors
	Compatibility

	Mode strings
	Compatibility

	Document information

	The Image File Renderer
	Contents
	Introduction and Overview
	Technical Details
	Sequence numbers
	Rendering quality
	Transformation types
	Render to fit
	Render scaled
	Render transformed
	Arbitrary transformations

	Clipping
	Image file origins
	Colour mapping
	Extensions for more complex colour mapping

	Sprite file extensions
	Renderers
	Custom renderers
	Renderer name
	Renderer flags

	Service calls
	Service_ImageFileRender_Started (Service &80D40)
	On entry
	On exit
	Use
	Related services

	Service_ImageFileRender_Dying (Service &80D41)
	On entry
	On exit
	Use
	Related services

	Service_ImageFileRender_RendererChanged (Service &80D42)
	On entry
	On exit
	Use
	Related SWIs

	SWI calls
	ImageFileRender_Render (SWI &562C0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	ImageFileRender_BBox (SWI &562C1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	ImageFileRender_Transform (SWI &562C2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	ImageFileRender_DeclareFonts (SWI &562C3)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	ImageFileRender_Info (SWI &56264)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	ImageFileRender_RendererInfo (SWI &56265)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	ImageFileRender_Register (SWI &56266)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	ImageFileRender_Deregister (SWI &56267)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	ImageFileRender_EnumerateRenderers (SWI &56268)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	Error Messages
	Error_IFR_BadTransformType (Error &81A800)
	Use

	Error_IFR_Reserved (Error &81A801)
	Use

	Error_IFR_ReservedRendererFlags (Error &81A802)
	Use

	Error_IFR_Memory (Error &81A803)
	Use

	Error_IFR_NoSuchRendererToRemove (Error &81A804)
	Use

	Error_IFR_NoRenderr (Error &81A805)
	Use

	Error_IFR_BadAPI (Error &81A806)
	Use

	Error_IFR_CantTransform (Error &81A807)
	Use

	Error_IFR_NoColourMap (Error &81A808)
	Use

	Error_IFR_BadInfoQuery (Error &81A809)
	Use

	Error_IFR_BadInfoLength (Error &81A80A)
	Use

	Error_IFR_BadSpriteMode (Error &81A810)
	Use

	Error_IFR_BadSpriteFile (Error &81A811)
	Use

	Error_IFR_NoSuchSprite (Error &81A812)
	Use

	Entry Points
	IFR_Start (&0)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IFR_Stop (&1)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs
	Related entry points

	IFR_Render (&2)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	IFR_BBox (&3)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	IFR_DeclareFonts (&4)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	IFR_Info (&5)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related SWIs

	*Commands
	*ImageFileRenderers
	Syntax
	Parameters
	Use
	Example
	Related SWIs

	*ImageFileViewer
	Syntax
	Parameters
	Use
	Example
	Related APIs

	Document information

	Video drivers (supplement for RISC OS Pyromaniac)
	Contents
	Introduction and Overview
	Technical details
	Text operations
	Graphics operations
	Coordinates
	Colour operation
	Graphics context
	Pointer operations
	Mode operations
	Teletext operations
	Display device registration

	Software vectors
	VideoV (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related APIs

	VideoV 0 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 2 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 3 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 4 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 5 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 16 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 17 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 18 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 19 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 20 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 21 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 22 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 23 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 24 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 25 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 26 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 27 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 28 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 29 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 30 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 31 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 32 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 33 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 34 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 35 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 512 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 513 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 514 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 515 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 516 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 768 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 769 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 770 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 771 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 772 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 773 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 774 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 775 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 776 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 777 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 778 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 800 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 801 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 802 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 803 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1024 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1025 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1026 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1027 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1028 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1029 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1030 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1031 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1032 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	VideoV 1033 (Vector &2C)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Compatibility
	Related vectors

	Entry points
	VideoV_Context_HLine
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	VideoV_Context_Point
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related entry points

	Document information

	PathUtils
	Contents
	Introduction
	SWI calls
	PathUtils_EnumeratePath (SWI &53B80)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related APIs

	PathUtils_JoinPath (SWI &53B81)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related * commands

	PathUtils_RemovePath (SWI &53B82)
	On entry
	On exit
	Interrupts
	Processor mode
	Re-entrancy
	Use
	Related * commands

	*Commands
	*AppPath
	Syntax
	Parameters
	Use
	Example
	Related * commands
	Related SWIs

	*PrepPath
	Syntax
	Parameters
	Use
	Example
	Related * commands
	Related SWIs

	*RemPath
	Syntax
	Parameters
	Use
	Example
	Related SWIs

	Document information

	Index (command)
	Index (swi)
	Index (swi)
	Index (upcall)
	Index (upcall)
	Index (message)
	Index (message)
	Index (service)
	Index (service)
	Index (vector)
	Index (vector)
	Index (sysvar)
	Index (entry)
	Index (error)
	Index (error)
	Index (vdu)
	Index (tboxmethod)
	Index (tboxmethod)
	Index (tboxmessage)
	Index (tboxmessage)

